Annotation of rpl/lapack/lapack/dgelsy.f, revision 1.2

1.1       bertrand    1:       SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
                      2:      $                   WORK, LWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                     11:       DOUBLE PRECISION   RCOND
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            JPVT( * )
                     15:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  DGELSY computes the minimum-norm solution to a real linear least
                     22: *  squares problem:
                     23: *      minimize || A * X - B ||
                     24: *  using a complete orthogonal factorization of A.  A is an M-by-N
                     25: *  matrix which may be rank-deficient.
                     26: *
                     27: *  Several right hand side vectors b and solution vectors x can be
                     28: *  handled in a single call; they are stored as the columns of the
                     29: *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
                     30: *  matrix X.
                     31: *
                     32: *  The routine first computes a QR factorization with column pivoting:
                     33: *      A * P = Q * [ R11 R12 ]
                     34: *                  [  0  R22 ]
                     35: *  with R11 defined as the largest leading submatrix whose estimated
                     36: *  condition number is less than 1/RCOND.  The order of R11, RANK,
                     37: *  is the effective rank of A.
                     38: *
                     39: *  Then, R22 is considered to be negligible, and R12 is annihilated
                     40: *  by orthogonal transformations from the right, arriving at the
                     41: *  complete orthogonal factorization:
                     42: *     A * P = Q * [ T11 0 ] * Z
                     43: *                 [  0  0 ]
                     44: *  The minimum-norm solution is then
                     45: *     X = P * Z' [ inv(T11)*Q1'*B ]
                     46: *                [        0       ]
                     47: *  where Q1 consists of the first RANK columns of Q.
                     48: *
                     49: *  This routine is basically identical to the original xGELSX except
                     50: *  three differences:
                     51: *    o The call to the subroutine xGEQPF has been substituted by the
                     52: *      the call to the subroutine xGEQP3. This subroutine is a Blas-3
                     53: *      version of the QR factorization with column pivoting.
                     54: *    o Matrix B (the right hand side) is updated with Blas-3.
                     55: *    o The permutation of matrix B (the right hand side) is faster and
                     56: *      more simple.
                     57: *
                     58: *  Arguments
                     59: *  =========
                     60: *
                     61: *  M       (input) INTEGER
                     62: *          The number of rows of the matrix A.  M >= 0.
                     63: *
                     64: *  N       (input) INTEGER
                     65: *          The number of columns of the matrix A.  N >= 0.
                     66: *
                     67: *  NRHS    (input) INTEGER
                     68: *          The number of right hand sides, i.e., the number of
                     69: *          columns of matrices B and X. NRHS >= 0.
                     70: *
                     71: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
                     72: *          On entry, the M-by-N matrix A.
                     73: *          On exit, A has been overwritten by details of its
                     74: *          complete orthogonal factorization.
                     75: *
                     76: *  LDA     (input) INTEGER
                     77: *          The leading dimension of the array A.  LDA >= max(1,M).
                     78: *
                     79: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
                     80: *          On entry, the M-by-NRHS right hand side matrix B.
                     81: *          On exit, the N-by-NRHS solution matrix X.
                     82: *
                     83: *  LDB     (input) INTEGER
                     84: *          The leading dimension of the array B. LDB >= max(1,M,N).
                     85: *
                     86: *  JPVT    (input/output) INTEGER array, dimension (N)
                     87: *          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
                     88: *          to the front of AP, otherwise column i is a free column.
                     89: *          On exit, if JPVT(i) = k, then the i-th column of AP
                     90: *          was the k-th column of A.
                     91: *
                     92: *  RCOND   (input) DOUBLE PRECISION
                     93: *          RCOND is used to determine the effective rank of A, which
                     94: *          is defined as the order of the largest leading triangular
                     95: *          submatrix R11 in the QR factorization with pivoting of A,
                     96: *          whose estimated condition number < 1/RCOND.
                     97: *
                     98: *  RANK    (output) INTEGER
                     99: *          The effective rank of A, i.e., the order of the submatrix
                    100: *          R11.  This is the same as the order of the submatrix T11
                    101: *          in the complete orthogonal factorization of A.
                    102: *
                    103: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    104: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    105: *
                    106: *  LWORK   (input) INTEGER
                    107: *          The dimension of the array WORK.
                    108: *          The unblocked strategy requires that:
                    109: *             LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),
                    110: *          where MN = min( M, N ).
                    111: *          The block algorithm requires that:
                    112: *             LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),
                    113: *          where NB is an upper bound on the blocksize returned
                    114: *          by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR,
                    115: *          and DORMRZ.
                    116: *
                    117: *          If LWORK = -1, then a workspace query is assumed; the routine
                    118: *          only calculates the optimal size of the WORK array, returns
                    119: *          this value as the first entry of the WORK array, and no error
                    120: *          message related to LWORK is issued by XERBLA.
                    121: *
                    122: *  INFO    (output) INTEGER
                    123: *          = 0: successful exit
                    124: *          < 0: If INFO = -i, the i-th argument had an illegal value.
                    125: *
                    126: *  Further Details
                    127: *  ===============
                    128: *
                    129: *  Based on contributions by
                    130: *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
                    131: *    E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
                    132: *    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
                    133: *
                    134: *  =====================================================================
                    135: *
                    136: *     .. Parameters ..
                    137:       INTEGER            IMAX, IMIN
                    138:       PARAMETER          ( IMAX = 1, IMIN = 2 )
                    139:       DOUBLE PRECISION   ZERO, ONE
                    140:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    141: *     ..
                    142: *     .. Local Scalars ..
                    143:       LOGICAL            LQUERY
                    144:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKMIN,
                    145:      $                   LWKOPT, MN, NB, NB1, NB2, NB3, NB4
                    146:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
                    147:      $                   SMAXPR, SMIN, SMINPR, SMLNUM, WSIZE
                    148: *     ..
                    149: *     .. External Functions ..
                    150:       INTEGER            ILAENV
                    151:       DOUBLE PRECISION   DLAMCH, DLANGE
                    152:       EXTERNAL           ILAENV, DLAMCH, DLANGE
                    153: *     ..
                    154: *     .. External Subroutines ..
                    155:       EXTERNAL           DCOPY, DGEQP3, DLABAD, DLAIC1, DLASCL, DLASET,
                    156:      $                   DORMQR, DORMRZ, DTRSM, DTZRZF, XERBLA
                    157: *     ..
                    158: *     .. Intrinsic Functions ..
                    159:       INTRINSIC          ABS, MAX, MIN
                    160: *     ..
                    161: *     .. Executable Statements ..
                    162: *
                    163:       MN = MIN( M, N )
                    164:       ISMIN = MN + 1
                    165:       ISMAX = 2*MN + 1
                    166: *
                    167: *     Test the input arguments.
                    168: *
                    169:       INFO = 0
                    170:       LQUERY = ( LWORK.EQ.-1 )
                    171:       IF( M.LT.0 ) THEN
                    172:          INFO = -1
                    173:       ELSE IF( N.LT.0 ) THEN
                    174:          INFO = -2
                    175:       ELSE IF( NRHS.LT.0 ) THEN
                    176:          INFO = -3
                    177:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    178:          INFO = -5
                    179:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
                    180:          INFO = -7
                    181:       END IF
                    182: *
                    183: *     Figure out optimal block size
                    184: *
                    185:       IF( INFO.EQ.0 ) THEN
                    186:          IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    187:             LWKMIN = 1
                    188:             LWKOPT = 1
                    189:          ELSE
                    190:             NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
                    191:             NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
                    192:             NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, NRHS, -1 )
                    193:             NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, NRHS, -1 )
                    194:             NB = MAX( NB1, NB2, NB3, NB4 )
                    195:             LWKMIN = MN + MAX( 2*MN, N + 1, MN + NRHS )
                    196:             LWKOPT = MAX( LWKMIN,
                    197:      $                    MN + 2*N + NB*( N + 1 ), 2*MN + NB*NRHS )
                    198:          END IF
                    199:          WORK( 1 ) = LWKOPT
                    200: *
                    201:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
                    202:             INFO = -12
                    203:          END IF
                    204:       END IF
                    205: *
                    206:       IF( INFO.NE.0 ) THEN
                    207:          CALL XERBLA( 'DGELSY', -INFO )
                    208:          RETURN
                    209:       ELSE IF( LQUERY ) THEN
                    210:          RETURN
                    211:       END IF
                    212: *
                    213: *     Quick return if possible
                    214: *
                    215:       IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    216:          RANK = 0
                    217:          RETURN
                    218:       END IF
                    219: *
                    220: *     Get machine parameters
                    221: *
                    222:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
                    223:       BIGNUM = ONE / SMLNUM
                    224:       CALL DLABAD( SMLNUM, BIGNUM )
                    225: *
                    226: *     Scale A, B if max entries outside range [SMLNUM,BIGNUM]
                    227: *
                    228:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
                    229:       IASCL = 0
                    230:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    231: *
                    232: *        Scale matrix norm up to SMLNUM
                    233: *
                    234:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    235:          IASCL = 1
                    236:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    237: *
                    238: *        Scale matrix norm down to BIGNUM
                    239: *
                    240:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    241:          IASCL = 2
                    242:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    243: *
                    244: *        Matrix all zero. Return zero solution.
                    245: *
                    246:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
                    247:          RANK = 0
                    248:          GO TO 70
                    249:       END IF
                    250: *
                    251:       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
                    252:       IBSCL = 0
                    253:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    254: *
                    255: *        Scale matrix norm up to SMLNUM
                    256: *
                    257:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    258:          IBSCL = 1
                    259:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    260: *
                    261: *        Scale matrix norm down to BIGNUM
                    262: *
                    263:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    264:          IBSCL = 2
                    265:       END IF
                    266: *
                    267: *     Compute QR factorization with column pivoting of A:
                    268: *        A * P = Q * R
                    269: *
                    270:       CALL DGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
                    271:      $             LWORK-MN, INFO )
                    272:       WSIZE = MN + WORK( MN+1 )
                    273: *
                    274: *     workspace: MN+2*N+NB*(N+1).
                    275: *     Details of Householder rotations stored in WORK(1:MN).
                    276: *
                    277: *     Determine RANK using incremental condition estimation
                    278: *
                    279:       WORK( ISMIN ) = ONE
                    280:       WORK( ISMAX ) = ONE
                    281:       SMAX = ABS( A( 1, 1 ) )
                    282:       SMIN = SMAX
                    283:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
                    284:          RANK = 0
                    285:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
                    286:          GO TO 70
                    287:       ELSE
                    288:          RANK = 1
                    289:       END IF
                    290: *
                    291:    10 CONTINUE
                    292:       IF( RANK.LT.MN ) THEN
                    293:          I = RANK + 1
                    294:          CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
                    295:      $                A( I, I ), SMINPR, S1, C1 )
                    296:          CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
                    297:      $                A( I, I ), SMAXPR, S2, C2 )
                    298: *
                    299:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
                    300:             DO 20 I = 1, RANK
                    301:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
                    302:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
                    303:    20       CONTINUE
                    304:             WORK( ISMIN+RANK ) = C1
                    305:             WORK( ISMAX+RANK ) = C2
                    306:             SMIN = SMINPR
                    307:             SMAX = SMAXPR
                    308:             RANK = RANK + 1
                    309:             GO TO 10
                    310:          END IF
                    311:       END IF
                    312: *
                    313: *     workspace: 3*MN.
                    314: *
                    315: *     Logically partition R = [ R11 R12 ]
                    316: *                             [  0  R22 ]
                    317: *     where R11 = R(1:RANK,1:RANK)
                    318: *
                    319: *     [R11,R12] = [ T11, 0 ] * Y
                    320: *
                    321:       IF( RANK.LT.N )
                    322:      $   CALL DTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
                    323:      $                LWORK-2*MN, INFO )
                    324: *
                    325: *     workspace: 2*MN.
                    326: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
                    327: *
                    328: *     B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)
                    329: *
                    330:       CALL DORMQR( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
                    331:      $             B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
                    332:       WSIZE = MAX( WSIZE, 2*MN+WORK( 2*MN+1 ) )
                    333: *
                    334: *     workspace: 2*MN+NB*NRHS.
                    335: *
                    336: *     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
                    337: *
                    338:       CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
                    339:      $            NRHS, ONE, A, LDA, B, LDB )
                    340: *
                    341:       DO 40 J = 1, NRHS
                    342:          DO 30 I = RANK + 1, N
                    343:             B( I, J ) = ZERO
                    344:    30    CONTINUE
                    345:    40 CONTINUE
                    346: *
                    347: *     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS)
                    348: *
                    349:       IF( RANK.LT.N ) THEN
                    350:          CALL DORMRZ( 'Left', 'Transpose', N, NRHS, RANK, N-RANK, A,
                    351:      $                LDA, WORK( MN+1 ), B, LDB, WORK( 2*MN+1 ),
                    352:      $                LWORK-2*MN, INFO )
                    353:       END IF
                    354: *
                    355: *     workspace: 2*MN+NRHS.
                    356: *
                    357: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
                    358: *
                    359:       DO 60 J = 1, NRHS
                    360:          DO 50 I = 1, N
                    361:             WORK( JPVT( I ) ) = B( I, J )
                    362:    50    CONTINUE
                    363:          CALL DCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
                    364:    60 CONTINUE
                    365: *
                    366: *     workspace: N.
                    367: *
                    368: *     Undo scaling
                    369: *
                    370:       IF( IASCL.EQ.1 ) THEN
                    371:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    372:          CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
                    373:      $                INFO )
                    374:       ELSE IF( IASCL.EQ.2 ) THEN
                    375:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    376:          CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
                    377:      $                INFO )
                    378:       END IF
                    379:       IF( IBSCL.EQ.1 ) THEN
                    380:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    381:       ELSE IF( IBSCL.EQ.2 ) THEN
                    382:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    383:       END IF
                    384: *
                    385:    70 CONTINUE
                    386:       WORK( 1 ) = LWKOPT
                    387: *
                    388:       RETURN
                    389: *
                    390: *     End of DGELSY
                    391: *
                    392:       END

CVSweb interface <joel.bertrand@systella.fr>