Annotation of rpl/lapack/lapack/dgelsy.f, revision 1.18

1.9       bertrand    1: *> \brief <b> DGELSY solves overdetermined or underdetermined systems for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DGELSY + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsy.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsy.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsy.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
                     22: *                          WORK, LWORK, INFO )
1.15      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                     26: *       DOUBLE PRECISION   RCOND
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            JPVT( * )
                     30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
                     31: *       ..
1.15      bertrand   32: *
1.9       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DGELSY computes the minimum-norm solution to a real linear least
                     40: *> squares problem:
                     41: *>     minimize || A * X - B ||
                     42: *> using a complete orthogonal factorization of A.  A is an M-by-N
                     43: *> matrix which may be rank-deficient.
                     44: *>
                     45: *> Several right hand side vectors b and solution vectors x can be
                     46: *> handled in a single call; they are stored as the columns of the
                     47: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
                     48: *> matrix X.
                     49: *>
                     50: *> The routine first computes a QR factorization with column pivoting:
                     51: *>     A * P = Q * [ R11 R12 ]
                     52: *>                 [  0  R22 ]
                     53: *> with R11 defined as the largest leading submatrix whose estimated
                     54: *> condition number is less than 1/RCOND.  The order of R11, RANK,
                     55: *> is the effective rank of A.
                     56: *>
                     57: *> Then, R22 is considered to be negligible, and R12 is annihilated
                     58: *> by orthogonal transformations from the right, arriving at the
                     59: *> complete orthogonal factorization:
                     60: *>    A * P = Q * [ T11 0 ] * Z
                     61: *>                [  0  0 ]
                     62: *> The minimum-norm solution is then
                     63: *>    X = P * Z**T [ inv(T11)*Q1**T*B ]
                     64: *>                 [        0         ]
                     65: *> where Q1 consists of the first RANK columns of Q.
                     66: *>
                     67: *> This routine is basically identical to the original xGELSX except
                     68: *> three differences:
                     69: *>   o The call to the subroutine xGEQPF has been substituted by the
                     70: *>     the call to the subroutine xGEQP3. This subroutine is a Blas-3
                     71: *>     version of the QR factorization with column pivoting.
                     72: *>   o Matrix B (the right hand side) is updated with Blas-3.
                     73: *>   o The permutation of matrix B (the right hand side) is faster and
                     74: *>     more simple.
                     75: *> \endverbatim
                     76: *
                     77: *  Arguments:
                     78: *  ==========
                     79: *
                     80: *> \param[in] M
                     81: *> \verbatim
                     82: *>          M is INTEGER
                     83: *>          The number of rows of the matrix A.  M >= 0.
                     84: *> \endverbatim
                     85: *>
                     86: *> \param[in] N
                     87: *> \verbatim
                     88: *>          N is INTEGER
                     89: *>          The number of columns of the matrix A.  N >= 0.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in] NRHS
                     93: *> \verbatim
                     94: *>          NRHS is INTEGER
                     95: *>          The number of right hand sides, i.e., the number of
                     96: *>          columns of matrices B and X. NRHS >= 0.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in,out] A
                    100: *> \verbatim
                    101: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                    102: *>          On entry, the M-by-N matrix A.
                    103: *>          On exit, A has been overwritten by details of its
                    104: *>          complete orthogonal factorization.
                    105: *> \endverbatim
                    106: *>
                    107: *> \param[in] LDA
                    108: *> \verbatim
                    109: *>          LDA is INTEGER
                    110: *>          The leading dimension of the array A.  LDA >= max(1,M).
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in,out] B
                    114: *> \verbatim
                    115: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    116: *>          On entry, the M-by-NRHS right hand side matrix B.
                    117: *>          On exit, the N-by-NRHS solution matrix X.
                    118: *> \endverbatim
                    119: *>
                    120: *> \param[in] LDB
                    121: *> \verbatim
                    122: *>          LDB is INTEGER
                    123: *>          The leading dimension of the array B. LDB >= max(1,M,N).
                    124: *> \endverbatim
                    125: *>
                    126: *> \param[in,out] JPVT
                    127: *> \verbatim
                    128: *>          JPVT is INTEGER array, dimension (N)
                    129: *>          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
                    130: *>          to the front of AP, otherwise column i is a free column.
                    131: *>          On exit, if JPVT(i) = k, then the i-th column of AP
                    132: *>          was the k-th column of A.
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[in] RCOND
                    136: *> \verbatim
                    137: *>          RCOND is DOUBLE PRECISION
                    138: *>          RCOND is used to determine the effective rank of A, which
                    139: *>          is defined as the order of the largest leading triangular
                    140: *>          submatrix R11 in the QR factorization with pivoting of A,
                    141: *>          whose estimated condition number < 1/RCOND.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[out] RANK
                    145: *> \verbatim
                    146: *>          RANK is INTEGER
                    147: *>          The effective rank of A, i.e., the order of the submatrix
                    148: *>          R11.  This is the same as the order of the submatrix T11
                    149: *>          in the complete orthogonal factorization of A.
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[out] WORK
                    153: *> \verbatim
                    154: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    155: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[in] LWORK
                    159: *> \verbatim
                    160: *>          LWORK is INTEGER
                    161: *>          The dimension of the array WORK.
                    162: *>          The unblocked strategy requires that:
                    163: *>             LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),
                    164: *>          where MN = min( M, N ).
                    165: *>          The block algorithm requires that:
                    166: *>             LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),
                    167: *>          where NB is an upper bound on the blocksize returned
                    168: *>          by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR,
                    169: *>          and DORMRZ.
                    170: *>
                    171: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    172: *>          only calculates the optimal size of the WORK array, returns
                    173: *>          this value as the first entry of the WORK array, and no error
                    174: *>          message related to LWORK is issued by XERBLA.
                    175: *> \endverbatim
                    176: *>
                    177: *> \param[out] INFO
                    178: *> \verbatim
                    179: *>          INFO is INTEGER
                    180: *>          = 0: successful exit
                    181: *>          < 0: If INFO = -i, the i-th argument had an illegal value.
                    182: *> \endverbatim
                    183: *
                    184: *  Authors:
                    185: *  ========
                    186: *
1.15      bertrand  187: *> \author Univ. of Tennessee
                    188: *> \author Univ. of California Berkeley
                    189: *> \author Univ. of Colorado Denver
                    190: *> \author NAG Ltd.
1.9       bertrand  191: *
                    192: *> \ingroup doubleGEsolve
                    193: *
                    194: *> \par Contributors:
                    195: *  ==================
                    196: *>
1.15      bertrand  197: *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA \n
1.9       bertrand  198: *>    E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
                    199: *>    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain \n
                    200: *>
                    201: *  =====================================================================
1.1       bertrand  202:       SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
                    203:      $                   WORK, LWORK, INFO )
                    204: *
1.18    ! bertrand  205: *  -- LAPACK driver routine --
1.1       bertrand  206: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    207: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    208: *
                    209: *     .. Scalar Arguments ..
                    210:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                    211:       DOUBLE PRECISION   RCOND
                    212: *     ..
                    213: *     .. Array Arguments ..
                    214:       INTEGER            JPVT( * )
                    215:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
                    216: *     ..
                    217: *
                    218: *  =====================================================================
                    219: *
                    220: *     .. Parameters ..
                    221:       INTEGER            IMAX, IMIN
                    222:       PARAMETER          ( IMAX = 1, IMIN = 2 )
                    223:       DOUBLE PRECISION   ZERO, ONE
                    224:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    225: *     ..
                    226: *     .. Local Scalars ..
                    227:       LOGICAL            LQUERY
                    228:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKMIN,
                    229:      $                   LWKOPT, MN, NB, NB1, NB2, NB3, NB4
                    230:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
                    231:      $                   SMAXPR, SMIN, SMINPR, SMLNUM, WSIZE
                    232: *     ..
                    233: *     .. External Functions ..
                    234:       INTEGER            ILAENV
                    235:       DOUBLE PRECISION   DLAMCH, DLANGE
                    236:       EXTERNAL           ILAENV, DLAMCH, DLANGE
                    237: *     ..
                    238: *     .. External Subroutines ..
                    239:       EXTERNAL           DCOPY, DGEQP3, DLABAD, DLAIC1, DLASCL, DLASET,
                    240:      $                   DORMQR, DORMRZ, DTRSM, DTZRZF, XERBLA
                    241: *     ..
                    242: *     .. Intrinsic Functions ..
                    243:       INTRINSIC          ABS, MAX, MIN
                    244: *     ..
                    245: *     .. Executable Statements ..
                    246: *
                    247:       MN = MIN( M, N )
                    248:       ISMIN = MN + 1
                    249:       ISMAX = 2*MN + 1
                    250: *
                    251: *     Test the input arguments.
                    252: *
                    253:       INFO = 0
                    254:       LQUERY = ( LWORK.EQ.-1 )
                    255:       IF( M.LT.0 ) THEN
                    256:          INFO = -1
                    257:       ELSE IF( N.LT.0 ) THEN
                    258:          INFO = -2
                    259:       ELSE IF( NRHS.LT.0 ) THEN
                    260:          INFO = -3
                    261:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    262:          INFO = -5
                    263:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
                    264:          INFO = -7
                    265:       END IF
                    266: *
                    267: *     Figure out optimal block size
                    268: *
                    269:       IF( INFO.EQ.0 ) THEN
                    270:          IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    271:             LWKMIN = 1
                    272:             LWKOPT = 1
                    273:          ELSE
                    274:             NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
                    275:             NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
                    276:             NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, NRHS, -1 )
                    277:             NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, NRHS, -1 )
                    278:             NB = MAX( NB1, NB2, NB3, NB4 )
                    279:             LWKMIN = MN + MAX( 2*MN, N + 1, MN + NRHS )
                    280:             LWKOPT = MAX( LWKMIN,
                    281:      $                    MN + 2*N + NB*( N + 1 ), 2*MN + NB*NRHS )
                    282:          END IF
                    283:          WORK( 1 ) = LWKOPT
                    284: *
                    285:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
                    286:             INFO = -12
                    287:          END IF
                    288:       END IF
                    289: *
                    290:       IF( INFO.NE.0 ) THEN
                    291:          CALL XERBLA( 'DGELSY', -INFO )
                    292:          RETURN
                    293:       ELSE IF( LQUERY ) THEN
                    294:          RETURN
                    295:       END IF
                    296: *
                    297: *     Quick return if possible
                    298: *
                    299:       IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
                    300:          RANK = 0
                    301:          RETURN
                    302:       END IF
                    303: *
                    304: *     Get machine parameters
                    305: *
                    306:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
                    307:       BIGNUM = ONE / SMLNUM
                    308:       CALL DLABAD( SMLNUM, BIGNUM )
                    309: *
                    310: *     Scale A, B if max entries outside range [SMLNUM,BIGNUM]
                    311: *
                    312:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
                    313:       IASCL = 0
                    314:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    315: *
                    316: *        Scale matrix norm up to SMLNUM
                    317: *
                    318:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    319:          IASCL = 1
                    320:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    321: *
                    322: *        Scale matrix norm down to BIGNUM
                    323: *
                    324:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    325:          IASCL = 2
                    326:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    327: *
                    328: *        Matrix all zero. Return zero solution.
                    329: *
                    330:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
                    331:          RANK = 0
                    332:          GO TO 70
                    333:       END IF
                    334: *
                    335:       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
                    336:       IBSCL = 0
                    337:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    338: *
                    339: *        Scale matrix norm up to SMLNUM
                    340: *
                    341:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    342:          IBSCL = 1
                    343:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    344: *
                    345: *        Scale matrix norm down to BIGNUM
                    346: *
                    347:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    348:          IBSCL = 2
                    349:       END IF
                    350: *
                    351: *     Compute QR factorization with column pivoting of A:
                    352: *        A * P = Q * R
                    353: *
                    354:       CALL DGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
                    355:      $             LWORK-MN, INFO )
                    356:       WSIZE = MN + WORK( MN+1 )
                    357: *
                    358: *     workspace: MN+2*N+NB*(N+1).
                    359: *     Details of Householder rotations stored in WORK(1:MN).
                    360: *
                    361: *     Determine RANK using incremental condition estimation
                    362: *
                    363:       WORK( ISMIN ) = ONE
                    364:       WORK( ISMAX ) = ONE
                    365:       SMAX = ABS( A( 1, 1 ) )
                    366:       SMIN = SMAX
                    367:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
                    368:          RANK = 0
                    369:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
                    370:          GO TO 70
                    371:       ELSE
                    372:          RANK = 1
                    373:       END IF
                    374: *
                    375:    10 CONTINUE
                    376:       IF( RANK.LT.MN ) THEN
                    377:          I = RANK + 1
                    378:          CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
                    379:      $                A( I, I ), SMINPR, S1, C1 )
                    380:          CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
                    381:      $                A( I, I ), SMAXPR, S2, C2 )
                    382: *
                    383:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
                    384:             DO 20 I = 1, RANK
                    385:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
                    386:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
                    387:    20       CONTINUE
                    388:             WORK( ISMIN+RANK ) = C1
                    389:             WORK( ISMAX+RANK ) = C2
                    390:             SMIN = SMINPR
                    391:             SMAX = SMAXPR
                    392:             RANK = RANK + 1
                    393:             GO TO 10
                    394:          END IF
                    395:       END IF
                    396: *
                    397: *     workspace: 3*MN.
                    398: *
                    399: *     Logically partition R = [ R11 R12 ]
                    400: *                             [  0  R22 ]
                    401: *     where R11 = R(1:RANK,1:RANK)
                    402: *
                    403: *     [R11,R12] = [ T11, 0 ] * Y
                    404: *
                    405:       IF( RANK.LT.N )
                    406:      $   CALL DTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
                    407:      $                LWORK-2*MN, INFO )
                    408: *
                    409: *     workspace: 2*MN.
                    410: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
                    411: *
1.8       bertrand  412: *     B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
1.1       bertrand  413: *
                    414:       CALL DORMQR( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
                    415:      $             B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
                    416:       WSIZE = MAX( WSIZE, 2*MN+WORK( 2*MN+1 ) )
                    417: *
                    418: *     workspace: 2*MN+NB*NRHS.
                    419: *
                    420: *     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
                    421: *
                    422:       CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
                    423:      $            NRHS, ONE, A, LDA, B, LDB )
                    424: *
                    425:       DO 40 J = 1, NRHS
                    426:          DO 30 I = RANK + 1, N
                    427:             B( I, J ) = ZERO
                    428:    30    CONTINUE
                    429:    40 CONTINUE
                    430: *
1.8       bertrand  431: *     B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS)
1.1       bertrand  432: *
                    433:       IF( RANK.LT.N ) THEN
                    434:          CALL DORMRZ( 'Left', 'Transpose', N, NRHS, RANK, N-RANK, A,
                    435:      $                LDA, WORK( MN+1 ), B, LDB, WORK( 2*MN+1 ),
                    436:      $                LWORK-2*MN, INFO )
                    437:       END IF
                    438: *
                    439: *     workspace: 2*MN+NRHS.
                    440: *
                    441: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
                    442: *
                    443:       DO 60 J = 1, NRHS
                    444:          DO 50 I = 1, N
                    445:             WORK( JPVT( I ) ) = B( I, J )
                    446:    50    CONTINUE
                    447:          CALL DCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
                    448:    60 CONTINUE
                    449: *
                    450: *     workspace: N.
                    451: *
                    452: *     Undo scaling
                    453: *
                    454:       IF( IASCL.EQ.1 ) THEN
                    455:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    456:          CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
                    457:      $                INFO )
                    458:       ELSE IF( IASCL.EQ.2 ) THEN
                    459:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    460:          CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
                    461:      $                INFO )
                    462:       END IF
                    463:       IF( IBSCL.EQ.1 ) THEN
                    464:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    465:       ELSE IF( IBSCL.EQ.2 ) THEN
                    466:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    467:       END IF
                    468: *
                    469:    70 CONTINUE
                    470:       WORK( 1 ) = LWKOPT
                    471: *
                    472:       RETURN
                    473: *
                    474: *     End of DGELSY
                    475: *
                    476:       END

CVSweb interface <joel.bertrand@systella.fr>