Annotation of rpl/lapack/lapack/dgelsy.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DGELSY( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
        !             2:      $                   WORK, LWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
        !            11:       DOUBLE PRECISION   RCOND
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            JPVT( * )
        !            15:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  DGELSY computes the minimum-norm solution to a real linear least
        !            22: *  squares problem:
        !            23: *      minimize || A * X - B ||
        !            24: *  using a complete orthogonal factorization of A.  A is an M-by-N
        !            25: *  matrix which may be rank-deficient.
        !            26: *
        !            27: *  Several right hand side vectors b and solution vectors x can be
        !            28: *  handled in a single call; they are stored as the columns of the
        !            29: *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
        !            30: *  matrix X.
        !            31: *
        !            32: *  The routine first computes a QR factorization with column pivoting:
        !            33: *      A * P = Q * [ R11 R12 ]
        !            34: *                  [  0  R22 ]
        !            35: *  with R11 defined as the largest leading submatrix whose estimated
        !            36: *  condition number is less than 1/RCOND.  The order of R11, RANK,
        !            37: *  is the effective rank of A.
        !            38: *
        !            39: *  Then, R22 is considered to be negligible, and R12 is annihilated
        !            40: *  by orthogonal transformations from the right, arriving at the
        !            41: *  complete orthogonal factorization:
        !            42: *     A * P = Q * [ T11 0 ] * Z
        !            43: *                 [  0  0 ]
        !            44: *  The minimum-norm solution is then
        !            45: *     X = P * Z' [ inv(T11)*Q1'*B ]
        !            46: *                [        0       ]
        !            47: *  where Q1 consists of the first RANK columns of Q.
        !            48: *
        !            49: *  This routine is basically identical to the original xGELSX except
        !            50: *  three differences:
        !            51: *    o The call to the subroutine xGEQPF has been substituted by the
        !            52: *      the call to the subroutine xGEQP3. This subroutine is a Blas-3
        !            53: *      version of the QR factorization with column pivoting.
        !            54: *    o Matrix B (the right hand side) is updated with Blas-3.
        !            55: *    o The permutation of matrix B (the right hand side) is faster and
        !            56: *      more simple.
        !            57: *
        !            58: *  Arguments
        !            59: *  =========
        !            60: *
        !            61: *  M       (input) INTEGER
        !            62: *          The number of rows of the matrix A.  M >= 0.
        !            63: *
        !            64: *  N       (input) INTEGER
        !            65: *          The number of columns of the matrix A.  N >= 0.
        !            66: *
        !            67: *  NRHS    (input) INTEGER
        !            68: *          The number of right hand sides, i.e., the number of
        !            69: *          columns of matrices B and X. NRHS >= 0.
        !            70: *
        !            71: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
        !            72: *          On entry, the M-by-N matrix A.
        !            73: *          On exit, A has been overwritten by details of its
        !            74: *          complete orthogonal factorization.
        !            75: *
        !            76: *  LDA     (input) INTEGER
        !            77: *          The leading dimension of the array A.  LDA >= max(1,M).
        !            78: *
        !            79: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
        !            80: *          On entry, the M-by-NRHS right hand side matrix B.
        !            81: *          On exit, the N-by-NRHS solution matrix X.
        !            82: *
        !            83: *  LDB     (input) INTEGER
        !            84: *          The leading dimension of the array B. LDB >= max(1,M,N).
        !            85: *
        !            86: *  JPVT    (input/output) INTEGER array, dimension (N)
        !            87: *          On entry, if JPVT(i) .ne. 0, the i-th column of A is permuted
        !            88: *          to the front of AP, otherwise column i is a free column.
        !            89: *          On exit, if JPVT(i) = k, then the i-th column of AP
        !            90: *          was the k-th column of A.
        !            91: *
        !            92: *  RCOND   (input) DOUBLE PRECISION
        !            93: *          RCOND is used to determine the effective rank of A, which
        !            94: *          is defined as the order of the largest leading triangular
        !            95: *          submatrix R11 in the QR factorization with pivoting of A,
        !            96: *          whose estimated condition number < 1/RCOND.
        !            97: *
        !            98: *  RANK    (output) INTEGER
        !            99: *          The effective rank of A, i.e., the order of the submatrix
        !           100: *          R11.  This is the same as the order of the submatrix T11
        !           101: *          in the complete orthogonal factorization of A.
        !           102: *
        !           103: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           104: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           105: *
        !           106: *  LWORK   (input) INTEGER
        !           107: *          The dimension of the array WORK.
        !           108: *          The unblocked strategy requires that:
        !           109: *             LWORK >= MAX( MN+3*N+1, 2*MN+NRHS ),
        !           110: *          where MN = min( M, N ).
        !           111: *          The block algorithm requires that:
        !           112: *             LWORK >= MAX( MN+2*N+NB*(N+1), 2*MN+NB*NRHS ),
        !           113: *          where NB is an upper bound on the blocksize returned
        !           114: *          by ILAENV for the routines DGEQP3, DTZRZF, STZRQF, DORMQR,
        !           115: *          and DORMRZ.
        !           116: *
        !           117: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           118: *          only calculates the optimal size of the WORK array, returns
        !           119: *          this value as the first entry of the WORK array, and no error
        !           120: *          message related to LWORK is issued by XERBLA.
        !           121: *
        !           122: *  INFO    (output) INTEGER
        !           123: *          = 0: successful exit
        !           124: *          < 0: If INFO = -i, the i-th argument had an illegal value.
        !           125: *
        !           126: *  Further Details
        !           127: *  ===============
        !           128: *
        !           129: *  Based on contributions by
        !           130: *    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
        !           131: *    E. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
        !           132: *    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
        !           133: *
        !           134: *  =====================================================================
        !           135: *
        !           136: *     .. Parameters ..
        !           137:       INTEGER            IMAX, IMIN
        !           138:       PARAMETER          ( IMAX = 1, IMIN = 2 )
        !           139:       DOUBLE PRECISION   ZERO, ONE
        !           140:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
        !           141: *     ..
        !           142: *     .. Local Scalars ..
        !           143:       LOGICAL            LQUERY
        !           144:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, LWKMIN,
        !           145:      $                   LWKOPT, MN, NB, NB1, NB2, NB3, NB4
        !           146:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
        !           147:      $                   SMAXPR, SMIN, SMINPR, SMLNUM, WSIZE
        !           148: *     ..
        !           149: *     .. External Functions ..
        !           150:       INTEGER            ILAENV
        !           151:       DOUBLE PRECISION   DLAMCH, DLANGE
        !           152:       EXTERNAL           ILAENV, DLAMCH, DLANGE
        !           153: *     ..
        !           154: *     .. External Subroutines ..
        !           155:       EXTERNAL           DCOPY, DGEQP3, DLABAD, DLAIC1, DLASCL, DLASET,
        !           156:      $                   DORMQR, DORMRZ, DTRSM, DTZRZF, XERBLA
        !           157: *     ..
        !           158: *     .. Intrinsic Functions ..
        !           159:       INTRINSIC          ABS, MAX, MIN
        !           160: *     ..
        !           161: *     .. Executable Statements ..
        !           162: *
        !           163:       MN = MIN( M, N )
        !           164:       ISMIN = MN + 1
        !           165:       ISMAX = 2*MN + 1
        !           166: *
        !           167: *     Test the input arguments.
        !           168: *
        !           169:       INFO = 0
        !           170:       LQUERY = ( LWORK.EQ.-1 )
        !           171:       IF( M.LT.0 ) THEN
        !           172:          INFO = -1
        !           173:       ELSE IF( N.LT.0 ) THEN
        !           174:          INFO = -2
        !           175:       ELSE IF( NRHS.LT.0 ) THEN
        !           176:          INFO = -3
        !           177:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           178:          INFO = -5
        !           179:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
        !           180:          INFO = -7
        !           181:       END IF
        !           182: *
        !           183: *     Figure out optimal block size
        !           184: *
        !           185:       IF( INFO.EQ.0 ) THEN
        !           186:          IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
        !           187:             LWKMIN = 1
        !           188:             LWKOPT = 1
        !           189:          ELSE
        !           190:             NB1 = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
        !           191:             NB2 = ILAENV( 1, 'DGERQF', ' ', M, N, -1, -1 )
        !           192:             NB3 = ILAENV( 1, 'DORMQR', ' ', M, N, NRHS, -1 )
        !           193:             NB4 = ILAENV( 1, 'DORMRQ', ' ', M, N, NRHS, -1 )
        !           194:             NB = MAX( NB1, NB2, NB3, NB4 )
        !           195:             LWKMIN = MN + MAX( 2*MN, N + 1, MN + NRHS )
        !           196:             LWKOPT = MAX( LWKMIN,
        !           197:      $                    MN + 2*N + NB*( N + 1 ), 2*MN + NB*NRHS )
        !           198:          END IF
        !           199:          WORK( 1 ) = LWKOPT
        !           200: *
        !           201:          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
        !           202:             INFO = -12
        !           203:          END IF
        !           204:       END IF
        !           205: *
        !           206:       IF( INFO.NE.0 ) THEN
        !           207:          CALL XERBLA( 'DGELSY', -INFO )
        !           208:          RETURN
        !           209:       ELSE IF( LQUERY ) THEN
        !           210:          RETURN
        !           211:       END IF
        !           212: *
        !           213: *     Quick return if possible
        !           214: *
        !           215:       IF( MN.EQ.0 .OR. NRHS.EQ.0 ) THEN
        !           216:          RANK = 0
        !           217:          RETURN
        !           218:       END IF
        !           219: *
        !           220: *     Get machine parameters
        !           221: *
        !           222:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
        !           223:       BIGNUM = ONE / SMLNUM
        !           224:       CALL DLABAD( SMLNUM, BIGNUM )
        !           225: *
        !           226: *     Scale A, B if max entries outside range [SMLNUM,BIGNUM]
        !           227: *
        !           228:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
        !           229:       IASCL = 0
        !           230:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           231: *
        !           232: *        Scale matrix norm up to SMLNUM
        !           233: *
        !           234:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
        !           235:          IASCL = 1
        !           236:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           237: *
        !           238: *        Scale matrix norm down to BIGNUM
        !           239: *
        !           240:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
        !           241:          IASCL = 2
        !           242:       ELSE IF( ANRM.EQ.ZERO ) THEN
        !           243: *
        !           244: *        Matrix all zero. Return zero solution.
        !           245: *
        !           246:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
        !           247:          RANK = 0
        !           248:          GO TO 70
        !           249:       END IF
        !           250: *
        !           251:       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
        !           252:       IBSCL = 0
        !           253:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
        !           254: *
        !           255: *        Scale matrix norm up to SMLNUM
        !           256: *
        !           257:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
        !           258:          IBSCL = 1
        !           259:       ELSE IF( BNRM.GT.BIGNUM ) THEN
        !           260: *
        !           261: *        Scale matrix norm down to BIGNUM
        !           262: *
        !           263:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
        !           264:          IBSCL = 2
        !           265:       END IF
        !           266: *
        !           267: *     Compute QR factorization with column pivoting of A:
        !           268: *        A * P = Q * R
        !           269: *
        !           270:       CALL DGEQP3( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ),
        !           271:      $             LWORK-MN, INFO )
        !           272:       WSIZE = MN + WORK( MN+1 )
        !           273: *
        !           274: *     workspace: MN+2*N+NB*(N+1).
        !           275: *     Details of Householder rotations stored in WORK(1:MN).
        !           276: *
        !           277: *     Determine RANK using incremental condition estimation
        !           278: *
        !           279:       WORK( ISMIN ) = ONE
        !           280:       WORK( ISMAX ) = ONE
        !           281:       SMAX = ABS( A( 1, 1 ) )
        !           282:       SMIN = SMAX
        !           283:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
        !           284:          RANK = 0
        !           285:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
        !           286:          GO TO 70
        !           287:       ELSE
        !           288:          RANK = 1
        !           289:       END IF
        !           290: *
        !           291:    10 CONTINUE
        !           292:       IF( RANK.LT.MN ) THEN
        !           293:          I = RANK + 1
        !           294:          CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
        !           295:      $                A( I, I ), SMINPR, S1, C1 )
        !           296:          CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
        !           297:      $                A( I, I ), SMAXPR, S2, C2 )
        !           298: *
        !           299:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
        !           300:             DO 20 I = 1, RANK
        !           301:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
        !           302:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
        !           303:    20       CONTINUE
        !           304:             WORK( ISMIN+RANK ) = C1
        !           305:             WORK( ISMAX+RANK ) = C2
        !           306:             SMIN = SMINPR
        !           307:             SMAX = SMAXPR
        !           308:             RANK = RANK + 1
        !           309:             GO TO 10
        !           310:          END IF
        !           311:       END IF
        !           312: *
        !           313: *     workspace: 3*MN.
        !           314: *
        !           315: *     Logically partition R = [ R11 R12 ]
        !           316: *                             [  0  R22 ]
        !           317: *     where R11 = R(1:RANK,1:RANK)
        !           318: *
        !           319: *     [R11,R12] = [ T11, 0 ] * Y
        !           320: *
        !           321:       IF( RANK.LT.N )
        !           322:      $   CALL DTZRZF( RANK, N, A, LDA, WORK( MN+1 ), WORK( 2*MN+1 ),
        !           323:      $                LWORK-2*MN, INFO )
        !           324: *
        !           325: *     workspace: 2*MN.
        !           326: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
        !           327: *
        !           328: *     B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)
        !           329: *
        !           330:       CALL DORMQR( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
        !           331:      $             B, LDB, WORK( 2*MN+1 ), LWORK-2*MN, INFO )
        !           332:       WSIZE = MAX( WSIZE, 2*MN+WORK( 2*MN+1 ) )
        !           333: *
        !           334: *     workspace: 2*MN+NB*NRHS.
        !           335: *
        !           336: *     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
        !           337: *
        !           338:       CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
        !           339:      $            NRHS, ONE, A, LDA, B, LDB )
        !           340: *
        !           341:       DO 40 J = 1, NRHS
        !           342:          DO 30 I = RANK + 1, N
        !           343:             B( I, J ) = ZERO
        !           344:    30    CONTINUE
        !           345:    40 CONTINUE
        !           346: *
        !           347: *     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS)
        !           348: *
        !           349:       IF( RANK.LT.N ) THEN
        !           350:          CALL DORMRZ( 'Left', 'Transpose', N, NRHS, RANK, N-RANK, A,
        !           351:      $                LDA, WORK( MN+1 ), B, LDB, WORK( 2*MN+1 ),
        !           352:      $                LWORK-2*MN, INFO )
        !           353:       END IF
        !           354: *
        !           355: *     workspace: 2*MN+NRHS.
        !           356: *
        !           357: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
        !           358: *
        !           359:       DO 60 J = 1, NRHS
        !           360:          DO 50 I = 1, N
        !           361:             WORK( JPVT( I ) ) = B( I, J )
        !           362:    50    CONTINUE
        !           363:          CALL DCOPY( N, WORK( 1 ), 1, B( 1, J ), 1 )
        !           364:    60 CONTINUE
        !           365: *
        !           366: *     workspace: N.
        !           367: *
        !           368: *     Undo scaling
        !           369: *
        !           370:       IF( IASCL.EQ.1 ) THEN
        !           371:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
        !           372:          CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
        !           373:      $                INFO )
        !           374:       ELSE IF( IASCL.EQ.2 ) THEN
        !           375:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
        !           376:          CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
        !           377:      $                INFO )
        !           378:       END IF
        !           379:       IF( IBSCL.EQ.1 ) THEN
        !           380:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
        !           381:       ELSE IF( IBSCL.EQ.2 ) THEN
        !           382:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
        !           383:       END IF
        !           384: *
        !           385:    70 CONTINUE
        !           386:       WORK( 1 ) = LWKOPT
        !           387: *
        !           388:       RETURN
        !           389: *
        !           390: *     End of DGELSY
        !           391: *
        !           392:       END

CVSweb interface <joel.bertrand@systella.fr>