File:  [local] / rpl / lapack / lapack / dgelsx.f
Revision 1.1.1.1 (vendor branch): download - view: text, annotated - select for diffs - revision graph
Tue Jan 26 15:22:46 2010 UTC (14 years, 3 months ago) by bertrand
Branches: JKB
CVS tags: start, rpl-4_0_14, rpl-4_0_13, rpl-4_0_12, rpl-4_0_11, rpl-4_0_10


Commit initial.

    1:       SUBROUTINE DGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
    2:      $                   WORK, INFO )
    3: *
    4: *  -- LAPACK driver routine (version 3.2) --
    5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    7: *     November 2006
    8: *
    9: *     .. Scalar Arguments ..
   10:       INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
   11:       DOUBLE PRECISION   RCOND
   12: *     ..
   13: *     .. Array Arguments ..
   14:       INTEGER            JPVT( * )
   15:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
   16: *     ..
   17: *
   18: *  Purpose
   19: *  =======
   20: *
   21: *  This routine is deprecated and has been replaced by routine DGELSY.
   22: *
   23: *  DGELSX computes the minimum-norm solution to a real linear least
   24: *  squares problem:
   25: *      minimize || A * X - B ||
   26: *  using a complete orthogonal factorization of A.  A is an M-by-N
   27: *  matrix which may be rank-deficient.
   28: *
   29: *  Several right hand side vectors b and solution vectors x can be
   30: *  handled in a single call; they are stored as the columns of the
   31: *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   32: *  matrix X.
   33: *
   34: *  The routine first computes a QR factorization with column pivoting:
   35: *      A * P = Q * [ R11 R12 ]
   36: *                  [  0  R22 ]
   37: *  with R11 defined as the largest leading submatrix whose estimated
   38: *  condition number is less than 1/RCOND.  The order of R11, RANK,
   39: *  is the effective rank of A.
   40: *
   41: *  Then, R22 is considered to be negligible, and R12 is annihilated
   42: *  by orthogonal transformations from the right, arriving at the
   43: *  complete orthogonal factorization:
   44: *     A * P = Q * [ T11 0 ] * Z
   45: *                 [  0  0 ]
   46: *  The minimum-norm solution is then
   47: *     X = P * Z' [ inv(T11)*Q1'*B ]
   48: *                [        0       ]
   49: *  where Q1 consists of the first RANK columns of Q.
   50: *
   51: *  Arguments
   52: *  =========
   53: *
   54: *  M       (input) INTEGER
   55: *          The number of rows of the matrix A.  M >= 0.
   56: *
   57: *  N       (input) INTEGER
   58: *          The number of columns of the matrix A.  N >= 0.
   59: *
   60: *  NRHS    (input) INTEGER
   61: *          The number of right hand sides, i.e., the number of
   62: *          columns of matrices B and X. NRHS >= 0.
   63: *
   64: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
   65: *          On entry, the M-by-N matrix A.
   66: *          On exit, A has been overwritten by details of its
   67: *          complete orthogonal factorization.
   68: *
   69: *  LDA     (input) INTEGER
   70: *          The leading dimension of the array A.  LDA >= max(1,M).
   71: *
   72: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
   73: *          On entry, the M-by-NRHS right hand side matrix B.
   74: *          On exit, the N-by-NRHS solution matrix X.
   75: *          If m >= n and RANK = n, the residual sum-of-squares for
   76: *          the solution in the i-th column is given by the sum of
   77: *          squares of elements N+1:M in that column.
   78: *
   79: *  LDB     (input) INTEGER
   80: *          The leading dimension of the array B. LDB >= max(1,M,N).
   81: *
   82: *  JPVT    (input/output) INTEGER array, dimension (N)
   83: *          On entry, if JPVT(i) .ne. 0, the i-th column of A is an
   84: *          initial column, otherwise it is a free column.  Before
   85: *          the QR factorization of A, all initial columns are
   86: *          permuted to the leading positions; only the remaining
   87: *          free columns are moved as a result of column pivoting
   88: *          during the factorization.
   89: *          On exit, if JPVT(i) = k, then the i-th column of A*P
   90: *          was the k-th column of A.
   91: *
   92: *  RCOND   (input) DOUBLE PRECISION
   93: *          RCOND is used to determine the effective rank of A, which
   94: *          is defined as the order of the largest leading triangular
   95: *          submatrix R11 in the QR factorization with pivoting of A,
   96: *          whose estimated condition number < 1/RCOND.
   97: *
   98: *  RANK    (output) INTEGER
   99: *          The effective rank of A, i.e., the order of the submatrix
  100: *          R11.  This is the same as the order of the submatrix T11
  101: *          in the complete orthogonal factorization of A.
  102: *
  103: *  WORK    (workspace) DOUBLE PRECISION array, dimension
  104: *                      (max( min(M,N)+3*N, 2*min(M,N)+NRHS )),
  105: *
  106: *  INFO    (output) INTEGER
  107: *          = 0:  successful exit
  108: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  109: *
  110: *  =====================================================================
  111: *
  112: *     .. Parameters ..
  113:       INTEGER            IMAX, IMIN
  114:       PARAMETER          ( IMAX = 1, IMIN = 2 )
  115:       DOUBLE PRECISION   ZERO, ONE, DONE, NTDONE
  116:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, DONE = ZERO,
  117:      $                   NTDONE = ONE )
  118: *     ..
  119: *     .. Local Scalars ..
  120:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
  121:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
  122:      $                   SMAXPR, SMIN, SMINPR, SMLNUM, T1, T2
  123: *     ..
  124: *     .. External Functions ..
  125:       DOUBLE PRECISION   DLAMCH, DLANGE
  126:       EXTERNAL           DLAMCH, DLANGE
  127: *     ..
  128: *     .. External Subroutines ..
  129:       EXTERNAL           DGEQPF, DLAIC1, DLASCL, DLASET, DLATZM, DORM2R,
  130:      $                   DTRSM, DTZRQF, XERBLA
  131: *     ..
  132: *     .. Intrinsic Functions ..
  133:       INTRINSIC          ABS, MAX, MIN
  134: *     ..
  135: *     .. Executable Statements ..
  136: *
  137:       MN = MIN( M, N )
  138:       ISMIN = MN + 1
  139:       ISMAX = 2*MN + 1
  140: *
  141: *     Test the input arguments.
  142: *
  143:       INFO = 0
  144:       IF( M.LT.0 ) THEN
  145:          INFO = -1
  146:       ELSE IF( N.LT.0 ) THEN
  147:          INFO = -2
  148:       ELSE IF( NRHS.LT.0 ) THEN
  149:          INFO = -3
  150:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  151:          INFO = -5
  152:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
  153:          INFO = -7
  154:       END IF
  155: *
  156:       IF( INFO.NE.0 ) THEN
  157:          CALL XERBLA( 'DGELSX', -INFO )
  158:          RETURN
  159:       END IF
  160: *
  161: *     Quick return if possible
  162: *
  163:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
  164:          RANK = 0
  165:          RETURN
  166:       END IF
  167: *
  168: *     Get machine parameters
  169: *
  170:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
  171:       BIGNUM = ONE / SMLNUM
  172:       CALL DLABAD( SMLNUM, BIGNUM )
  173: *
  174: *     Scale A, B if max elements outside range [SMLNUM,BIGNUM]
  175: *
  176:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
  177:       IASCL = 0
  178:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  179: *
  180: *        Scale matrix norm up to SMLNUM
  181: *
  182:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  183:          IASCL = 1
  184:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  185: *
  186: *        Scale matrix norm down to BIGNUM
  187: *
  188:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  189:          IASCL = 2
  190:       ELSE IF( ANRM.EQ.ZERO ) THEN
  191: *
  192: *        Matrix all zero. Return zero solution.
  193: *
  194:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
  195:          RANK = 0
  196:          GO TO 100
  197:       END IF
  198: *
  199:       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
  200:       IBSCL = 0
  201:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  202: *
  203: *        Scale matrix norm up to SMLNUM
  204: *
  205:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
  206:          IBSCL = 1
  207:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  208: *
  209: *        Scale matrix norm down to BIGNUM
  210: *
  211:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
  212:          IBSCL = 2
  213:       END IF
  214: *
  215: *     Compute QR factorization with column pivoting of A:
  216: *        A * P = Q * R
  217: *
  218:       CALL DGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), INFO )
  219: *
  220: *     workspace 3*N. Details of Householder rotations stored
  221: *     in WORK(1:MN).
  222: *
  223: *     Determine RANK using incremental condition estimation
  224: *
  225:       WORK( ISMIN ) = ONE
  226:       WORK( ISMAX ) = ONE
  227:       SMAX = ABS( A( 1, 1 ) )
  228:       SMIN = SMAX
  229:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
  230:          RANK = 0
  231:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
  232:          GO TO 100
  233:       ELSE
  234:          RANK = 1
  235:       END IF
  236: *
  237:    10 CONTINUE
  238:       IF( RANK.LT.MN ) THEN
  239:          I = RANK + 1
  240:          CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
  241:      $                A( I, I ), SMINPR, S1, C1 )
  242:          CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
  243:      $                A( I, I ), SMAXPR, S2, C2 )
  244: *
  245:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
  246:             DO 20 I = 1, RANK
  247:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
  248:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
  249:    20       CONTINUE
  250:             WORK( ISMIN+RANK ) = C1
  251:             WORK( ISMAX+RANK ) = C2
  252:             SMIN = SMINPR
  253:             SMAX = SMAXPR
  254:             RANK = RANK + 1
  255:             GO TO 10
  256:          END IF
  257:       END IF
  258: *
  259: *     Logically partition R = [ R11 R12 ]
  260: *                             [  0  R22 ]
  261: *     where R11 = R(1:RANK,1:RANK)
  262: *
  263: *     [R11,R12] = [ T11, 0 ] * Y
  264: *
  265:       IF( RANK.LT.N )
  266:      $   CALL DTZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
  267: *
  268: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
  269: *
  270: *     B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)
  271: *
  272:       CALL DORM2R( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
  273:      $             B, LDB, WORK( 2*MN+1 ), INFO )
  274: *
  275: *     workspace NRHS
  276: *
  277: *     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
  278: *
  279:       CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
  280:      $            NRHS, ONE, A, LDA, B, LDB )
  281: *
  282:       DO 40 I = RANK + 1, N
  283:          DO 30 J = 1, NRHS
  284:             B( I, J ) = ZERO
  285:    30    CONTINUE
  286:    40 CONTINUE
  287: *
  288: *     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS)
  289: *
  290:       IF( RANK.LT.N ) THEN
  291:          DO 50 I = 1, RANK
  292:             CALL DLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
  293:      $                   WORK( MN+I ), B( I, 1 ), B( RANK+1, 1 ), LDB,
  294:      $                   WORK( 2*MN+1 ) )
  295:    50    CONTINUE
  296:       END IF
  297: *
  298: *     workspace NRHS
  299: *
  300: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
  301: *
  302:       DO 90 J = 1, NRHS
  303:          DO 60 I = 1, N
  304:             WORK( 2*MN+I ) = NTDONE
  305:    60    CONTINUE
  306:          DO 80 I = 1, N
  307:             IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
  308:                IF( JPVT( I ).NE.I ) THEN
  309:                   K = I
  310:                   T1 = B( K, J )
  311:                   T2 = B( JPVT( K ), J )
  312:    70             CONTINUE
  313:                   B( JPVT( K ), J ) = T1
  314:                   WORK( 2*MN+K ) = DONE
  315:                   T1 = T2
  316:                   K = JPVT( K )
  317:                   T2 = B( JPVT( K ), J )
  318:                   IF( JPVT( K ).NE.I )
  319:      $               GO TO 70
  320:                   B( I, J ) = T1
  321:                   WORK( 2*MN+K ) = DONE
  322:                END IF
  323:             END IF
  324:    80    CONTINUE
  325:    90 CONTINUE
  326: *
  327: *     Undo scaling
  328: *
  329:       IF( IASCL.EQ.1 ) THEN
  330:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
  331:          CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
  332:      $                INFO )
  333:       ELSE IF( IASCL.EQ.2 ) THEN
  334:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
  335:          CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
  336:      $                INFO )
  337:       END IF
  338:       IF( IBSCL.EQ.1 ) THEN
  339:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
  340:       ELSE IF( IBSCL.EQ.2 ) THEN
  341:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
  342:       END IF
  343: *
  344:   100 CONTINUE
  345: *
  346:       RETURN
  347: *
  348: *     End of DGELSX
  349: *
  350:       END

CVSweb interface <joel.bertrand@systella.fr>