Annotation of rpl/lapack/lapack/dgelsx.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE DGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
                      2:      $                   WORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
                     11:       DOUBLE PRECISION   RCOND
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       INTEGER            JPVT( * )
                     15:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
                     16: *     ..
                     17: *
                     18: *  Purpose
                     19: *  =======
                     20: *
                     21: *  This routine is deprecated and has been replaced by routine DGELSY.
                     22: *
                     23: *  DGELSX computes the minimum-norm solution to a real linear least
                     24: *  squares problem:
                     25: *      minimize || A * X - B ||
                     26: *  using a complete orthogonal factorization of A.  A is an M-by-N
                     27: *  matrix which may be rank-deficient.
                     28: *
                     29: *  Several right hand side vectors b and solution vectors x can be
                     30: *  handled in a single call; they are stored as the columns of the
                     31: *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
                     32: *  matrix X.
                     33: *
                     34: *  The routine first computes a QR factorization with column pivoting:
                     35: *      A * P = Q * [ R11 R12 ]
                     36: *                  [  0  R22 ]
                     37: *  with R11 defined as the largest leading submatrix whose estimated
                     38: *  condition number is less than 1/RCOND.  The order of R11, RANK,
                     39: *  is the effective rank of A.
                     40: *
                     41: *  Then, R22 is considered to be negligible, and R12 is annihilated
                     42: *  by orthogonal transformations from the right, arriving at the
                     43: *  complete orthogonal factorization:
                     44: *     A * P = Q * [ T11 0 ] * Z
                     45: *                 [  0  0 ]
                     46: *  The minimum-norm solution is then
                     47: *     X = P * Z' [ inv(T11)*Q1'*B ]
                     48: *                [        0       ]
                     49: *  where Q1 consists of the first RANK columns of Q.
                     50: *
                     51: *  Arguments
                     52: *  =========
                     53: *
                     54: *  M       (input) INTEGER
                     55: *          The number of rows of the matrix A.  M >= 0.
                     56: *
                     57: *  N       (input) INTEGER
                     58: *          The number of columns of the matrix A.  N >= 0.
                     59: *
                     60: *  NRHS    (input) INTEGER
                     61: *          The number of right hand sides, i.e., the number of
                     62: *          columns of matrices B and X. NRHS >= 0.
                     63: *
                     64: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
                     65: *          On entry, the M-by-N matrix A.
                     66: *          On exit, A has been overwritten by details of its
                     67: *          complete orthogonal factorization.
                     68: *
                     69: *  LDA     (input) INTEGER
                     70: *          The leading dimension of the array A.  LDA >= max(1,M).
                     71: *
                     72: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
                     73: *          On entry, the M-by-NRHS right hand side matrix B.
                     74: *          On exit, the N-by-NRHS solution matrix X.
                     75: *          If m >= n and RANK = n, the residual sum-of-squares for
                     76: *          the solution in the i-th column is given by the sum of
                     77: *          squares of elements N+1:M in that column.
                     78: *
                     79: *  LDB     (input) INTEGER
                     80: *          The leading dimension of the array B. LDB >= max(1,M,N).
                     81: *
                     82: *  JPVT    (input/output) INTEGER array, dimension (N)
                     83: *          On entry, if JPVT(i) .ne. 0, the i-th column of A is an
                     84: *          initial column, otherwise it is a free column.  Before
                     85: *          the QR factorization of A, all initial columns are
                     86: *          permuted to the leading positions; only the remaining
                     87: *          free columns are moved as a result of column pivoting
                     88: *          during the factorization.
                     89: *          On exit, if JPVT(i) = k, then the i-th column of A*P
                     90: *          was the k-th column of A.
                     91: *
                     92: *  RCOND   (input) DOUBLE PRECISION
                     93: *          RCOND is used to determine the effective rank of A, which
                     94: *          is defined as the order of the largest leading triangular
                     95: *          submatrix R11 in the QR factorization with pivoting of A,
                     96: *          whose estimated condition number < 1/RCOND.
                     97: *
                     98: *  RANK    (output) INTEGER
                     99: *          The effective rank of A, i.e., the order of the submatrix
                    100: *          R11.  This is the same as the order of the submatrix T11
                    101: *          in the complete orthogonal factorization of A.
                    102: *
                    103: *  WORK    (workspace) DOUBLE PRECISION array, dimension
                    104: *                      (max( min(M,N)+3*N, 2*min(M,N)+NRHS )),
                    105: *
                    106: *  INFO    (output) INTEGER
                    107: *          = 0:  successful exit
                    108: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    109: *
                    110: *  =====================================================================
                    111: *
                    112: *     .. Parameters ..
                    113:       INTEGER            IMAX, IMIN
                    114:       PARAMETER          ( IMAX = 1, IMIN = 2 )
                    115:       DOUBLE PRECISION   ZERO, ONE, DONE, NTDONE
                    116:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, DONE = ZERO,
                    117:      $                   NTDONE = ONE )
                    118: *     ..
                    119: *     .. Local Scalars ..
                    120:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
                    121:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
                    122:      $                   SMAXPR, SMIN, SMINPR, SMLNUM, T1, T2
                    123: *     ..
                    124: *     .. External Functions ..
                    125:       DOUBLE PRECISION   DLAMCH, DLANGE
                    126:       EXTERNAL           DLAMCH, DLANGE
                    127: *     ..
                    128: *     .. External Subroutines ..
                    129:       EXTERNAL           DGEQPF, DLAIC1, DLASCL, DLASET, DLATZM, DORM2R,
                    130:      $                   DTRSM, DTZRQF, XERBLA
                    131: *     ..
                    132: *     .. Intrinsic Functions ..
                    133:       INTRINSIC          ABS, MAX, MIN
                    134: *     ..
                    135: *     .. Executable Statements ..
                    136: *
                    137:       MN = MIN( M, N )
                    138:       ISMIN = MN + 1
                    139:       ISMAX = 2*MN + 1
                    140: *
                    141: *     Test the input arguments.
                    142: *
                    143:       INFO = 0
                    144:       IF( M.LT.0 ) THEN
                    145:          INFO = -1
                    146:       ELSE IF( N.LT.0 ) THEN
                    147:          INFO = -2
                    148:       ELSE IF( NRHS.LT.0 ) THEN
                    149:          INFO = -3
                    150:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    151:          INFO = -5
                    152:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
                    153:          INFO = -7
                    154:       END IF
                    155: *
                    156:       IF( INFO.NE.0 ) THEN
                    157:          CALL XERBLA( 'DGELSX', -INFO )
                    158:          RETURN
                    159:       END IF
                    160: *
                    161: *     Quick return if possible
                    162: *
                    163:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
                    164:          RANK = 0
                    165:          RETURN
                    166:       END IF
                    167: *
                    168: *     Get machine parameters
                    169: *
                    170:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
                    171:       BIGNUM = ONE / SMLNUM
                    172:       CALL DLABAD( SMLNUM, BIGNUM )
                    173: *
                    174: *     Scale A, B if max elements outside range [SMLNUM,BIGNUM]
                    175: *
                    176:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
                    177:       IASCL = 0
                    178:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    179: *
                    180: *        Scale matrix norm up to SMLNUM
                    181: *
                    182:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    183:          IASCL = 1
                    184:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    185: *
                    186: *        Scale matrix norm down to BIGNUM
                    187: *
                    188:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    189:          IASCL = 2
                    190:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    191: *
                    192: *        Matrix all zero. Return zero solution.
                    193: *
                    194:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
                    195:          RANK = 0
                    196:          GO TO 100
                    197:       END IF
                    198: *
                    199:       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
                    200:       IBSCL = 0
                    201:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    202: *
                    203: *        Scale matrix norm up to SMLNUM
                    204: *
                    205:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    206:          IBSCL = 1
                    207:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    208: *
                    209: *        Scale matrix norm down to BIGNUM
                    210: *
                    211:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    212:          IBSCL = 2
                    213:       END IF
                    214: *
                    215: *     Compute QR factorization with column pivoting of A:
                    216: *        A * P = Q * R
                    217: *
                    218:       CALL DGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), INFO )
                    219: *
                    220: *     workspace 3*N. Details of Householder rotations stored
                    221: *     in WORK(1:MN).
                    222: *
                    223: *     Determine RANK using incremental condition estimation
                    224: *
                    225:       WORK( ISMIN ) = ONE
                    226:       WORK( ISMAX ) = ONE
                    227:       SMAX = ABS( A( 1, 1 ) )
                    228:       SMIN = SMAX
                    229:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
                    230:          RANK = 0
                    231:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
                    232:          GO TO 100
                    233:       ELSE
                    234:          RANK = 1
                    235:       END IF
                    236: *
                    237:    10 CONTINUE
                    238:       IF( RANK.LT.MN ) THEN
                    239:          I = RANK + 1
                    240:          CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
                    241:      $                A( I, I ), SMINPR, S1, C1 )
                    242:          CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
                    243:      $                A( I, I ), SMAXPR, S2, C2 )
                    244: *
                    245:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
                    246:             DO 20 I = 1, RANK
                    247:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
                    248:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
                    249:    20       CONTINUE
                    250:             WORK( ISMIN+RANK ) = C1
                    251:             WORK( ISMAX+RANK ) = C2
                    252:             SMIN = SMINPR
                    253:             SMAX = SMAXPR
                    254:             RANK = RANK + 1
                    255:             GO TO 10
                    256:          END IF
                    257:       END IF
                    258: *
                    259: *     Logically partition R = [ R11 R12 ]
                    260: *                             [  0  R22 ]
                    261: *     where R11 = R(1:RANK,1:RANK)
                    262: *
                    263: *     [R11,R12] = [ T11, 0 ] * Y
                    264: *
                    265:       IF( RANK.LT.N )
                    266:      $   CALL DTZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
                    267: *
                    268: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
                    269: *
                    270: *     B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)
                    271: *
                    272:       CALL DORM2R( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
                    273:      $             B, LDB, WORK( 2*MN+1 ), INFO )
                    274: *
                    275: *     workspace NRHS
                    276: *
                    277: *     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
                    278: *
                    279:       CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
                    280:      $            NRHS, ONE, A, LDA, B, LDB )
                    281: *
                    282:       DO 40 I = RANK + 1, N
                    283:          DO 30 J = 1, NRHS
                    284:             B( I, J ) = ZERO
                    285:    30    CONTINUE
                    286:    40 CONTINUE
                    287: *
                    288: *     B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS)
                    289: *
                    290:       IF( RANK.LT.N ) THEN
                    291:          DO 50 I = 1, RANK
                    292:             CALL DLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
                    293:      $                   WORK( MN+I ), B( I, 1 ), B( RANK+1, 1 ), LDB,
                    294:      $                   WORK( 2*MN+1 ) )
                    295:    50    CONTINUE
                    296:       END IF
                    297: *
                    298: *     workspace NRHS
                    299: *
                    300: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
                    301: *
                    302:       DO 90 J = 1, NRHS
                    303:          DO 60 I = 1, N
                    304:             WORK( 2*MN+I ) = NTDONE
                    305:    60    CONTINUE
                    306:          DO 80 I = 1, N
                    307:             IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
                    308:                IF( JPVT( I ).NE.I ) THEN
                    309:                   K = I
                    310:                   T1 = B( K, J )
                    311:                   T2 = B( JPVT( K ), J )
                    312:    70             CONTINUE
                    313:                   B( JPVT( K ), J ) = T1
                    314:                   WORK( 2*MN+K ) = DONE
                    315:                   T1 = T2
                    316:                   K = JPVT( K )
                    317:                   T2 = B( JPVT( K ), J )
                    318:                   IF( JPVT( K ).NE.I )
                    319:      $               GO TO 70
                    320:                   B( I, J ) = T1
                    321:                   WORK( 2*MN+K ) = DONE
                    322:                END IF
                    323:             END IF
                    324:    80    CONTINUE
                    325:    90 CONTINUE
                    326: *
                    327: *     Undo scaling
                    328: *
                    329:       IF( IASCL.EQ.1 ) THEN
                    330:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    331:          CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
                    332:      $                INFO )
                    333:       ELSE IF( IASCL.EQ.2 ) THEN
                    334:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    335:          CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
                    336:      $                INFO )
                    337:       END IF
                    338:       IF( IBSCL.EQ.1 ) THEN
                    339:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    340:       ELSE IF( IBSCL.EQ.2 ) THEN
                    341:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    342:       END IF
                    343: *
                    344:   100 CONTINUE
                    345: *
                    346:       RETURN
                    347: *
                    348: *     End of DGELSX
                    349: *
                    350:       END

CVSweb interface <joel.bertrand@systella.fr>