Annotation of rpl/lapack/lapack/dgelsx.f, revision 1.18

1.9       bertrand    1: *> \brief <b> DGELSX solves overdetermined or underdetermined systems for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DGELSX + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsx.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsx.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsx.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
                     22: *                          WORK, INFO )
1.15      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
                     26: *       DOUBLE PRECISION   RCOND
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            JPVT( * )
                     30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
                     31: *       ..
1.15      bertrand   32: *
1.9       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> This routine is deprecated and has been replaced by routine DGELSY.
                     40: *>
                     41: *> DGELSX computes the minimum-norm solution to a real linear least
                     42: *> squares problem:
                     43: *>     minimize || A * X - B ||
                     44: *> using a complete orthogonal factorization of A.  A is an M-by-N
                     45: *> matrix which may be rank-deficient.
                     46: *>
                     47: *> Several right hand side vectors b and solution vectors x can be
                     48: *> handled in a single call; they are stored as the columns of the
                     49: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
                     50: *> matrix X.
                     51: *>
                     52: *> The routine first computes a QR factorization with column pivoting:
                     53: *>     A * P = Q * [ R11 R12 ]
                     54: *>                 [  0  R22 ]
                     55: *> with R11 defined as the largest leading submatrix whose estimated
                     56: *> condition number is less than 1/RCOND.  The order of R11, RANK,
                     57: *> is the effective rank of A.
                     58: *>
                     59: *> Then, R22 is considered to be negligible, and R12 is annihilated
                     60: *> by orthogonal transformations from the right, arriving at the
                     61: *> complete orthogonal factorization:
                     62: *>    A * P = Q * [ T11 0 ] * Z
                     63: *>                [  0  0 ]
                     64: *> The minimum-norm solution is then
                     65: *>    X = P * Z**T [ inv(T11)*Q1**T*B ]
                     66: *>                 [        0         ]
                     67: *> where Q1 consists of the first RANK columns of Q.
                     68: *> \endverbatim
                     69: *
                     70: *  Arguments:
                     71: *  ==========
                     72: *
                     73: *> \param[in] M
                     74: *> \verbatim
                     75: *>          M is INTEGER
                     76: *>          The number of rows of the matrix A.  M >= 0.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in] N
                     80: *> \verbatim
                     81: *>          N is INTEGER
                     82: *>          The number of columns of the matrix A.  N >= 0.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] NRHS
                     86: *> \verbatim
                     87: *>          NRHS is INTEGER
                     88: *>          The number of right hand sides, i.e., the number of
                     89: *>          columns of matrices B and X. NRHS >= 0.
                     90: *> \endverbatim
                     91: *>
                     92: *> \param[in,out] A
                     93: *> \verbatim
                     94: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     95: *>          On entry, the M-by-N matrix A.
                     96: *>          On exit, A has been overwritten by details of its
                     97: *>          complete orthogonal factorization.
                     98: *> \endverbatim
                     99: *>
                    100: *> \param[in] LDA
                    101: *> \verbatim
                    102: *>          LDA is INTEGER
                    103: *>          The leading dimension of the array A.  LDA >= max(1,M).
                    104: *> \endverbatim
                    105: *>
                    106: *> \param[in,out] B
                    107: *> \verbatim
                    108: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    109: *>          On entry, the M-by-NRHS right hand side matrix B.
                    110: *>          On exit, the N-by-NRHS solution matrix X.
                    111: *>          If m >= n and RANK = n, the residual sum-of-squares for
                    112: *>          the solution in the i-th column is given by the sum of
                    113: *>          squares of elements N+1:M in that column.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[in] LDB
                    117: *> \verbatim
                    118: *>          LDB is INTEGER
                    119: *>          The leading dimension of the array B. LDB >= max(1,M,N).
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in,out] JPVT
                    123: *> \verbatim
                    124: *>          JPVT is INTEGER array, dimension (N)
                    125: *>          On entry, if JPVT(i) .ne. 0, the i-th column of A is an
                    126: *>          initial column, otherwise it is a free column.  Before
                    127: *>          the QR factorization of A, all initial columns are
                    128: *>          permuted to the leading positions; only the remaining
                    129: *>          free columns are moved as a result of column pivoting
                    130: *>          during the factorization.
                    131: *>          On exit, if JPVT(i) = k, then the i-th column of A*P
                    132: *>          was the k-th column of A.
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[in] RCOND
                    136: *> \verbatim
                    137: *>          RCOND is DOUBLE PRECISION
                    138: *>          RCOND is used to determine the effective rank of A, which
                    139: *>          is defined as the order of the largest leading triangular
                    140: *>          submatrix R11 in the QR factorization with pivoting of A,
                    141: *>          whose estimated condition number < 1/RCOND.
                    142: *> \endverbatim
                    143: *>
                    144: *> \param[out] RANK
                    145: *> \verbatim
                    146: *>          RANK is INTEGER
                    147: *>          The effective rank of A, i.e., the order of the submatrix
                    148: *>          R11.  This is the same as the order of the submatrix T11
                    149: *>          in the complete orthogonal factorization of A.
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[out] WORK
                    153: *> \verbatim
                    154: *>          WORK is DOUBLE PRECISION array, dimension
                    155: *>                      (max( min(M,N)+3*N, 2*min(M,N)+NRHS )),
                    156: *> \endverbatim
                    157: *>
                    158: *> \param[out] INFO
                    159: *> \verbatim
                    160: *>          INFO is INTEGER
                    161: *>          = 0:  successful exit
                    162: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    163: *> \endverbatim
                    164: *
                    165: *  Authors:
                    166: *  ========
                    167: *
1.15      bertrand  168: *> \author Univ. of Tennessee
                    169: *> \author Univ. of California Berkeley
                    170: *> \author Univ. of Colorado Denver
                    171: *> \author NAG Ltd.
1.9       bertrand  172: *
                    173: *> \ingroup doubleGEsolve
                    174: *
                    175: *  =====================================================================
1.1       bertrand  176:       SUBROUTINE DGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK,
                    177:      $                   WORK, INFO )
                    178: *
1.18    ! bertrand  179: *  -- LAPACK driver routine --
1.1       bertrand  180: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    181: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    182: *
                    183: *     .. Scalar Arguments ..
                    184:       INTEGER            INFO, LDA, LDB, M, N, NRHS, RANK
                    185:       DOUBLE PRECISION   RCOND
                    186: *     ..
                    187: *     .. Array Arguments ..
                    188:       INTEGER            JPVT( * )
                    189:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
                    190: *     ..
                    191: *
                    192: *  =====================================================================
                    193: *
                    194: *     .. Parameters ..
                    195:       INTEGER            IMAX, IMIN
                    196:       PARAMETER          ( IMAX = 1, IMIN = 2 )
                    197:       DOUBLE PRECISION   ZERO, ONE, DONE, NTDONE
                    198:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, DONE = ZERO,
                    199:      $                   NTDONE = ONE )
                    200: *     ..
                    201: *     .. Local Scalars ..
                    202:       INTEGER            I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN
                    203:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX,
                    204:      $                   SMAXPR, SMIN, SMINPR, SMLNUM, T1, T2
                    205: *     ..
                    206: *     .. External Functions ..
                    207:       DOUBLE PRECISION   DLAMCH, DLANGE
                    208:       EXTERNAL           DLAMCH, DLANGE
                    209: *     ..
                    210: *     .. External Subroutines ..
                    211:       EXTERNAL           DGEQPF, DLAIC1, DLASCL, DLASET, DLATZM, DORM2R,
                    212:      $                   DTRSM, DTZRQF, XERBLA
                    213: *     ..
                    214: *     .. Intrinsic Functions ..
                    215:       INTRINSIC          ABS, MAX, MIN
                    216: *     ..
                    217: *     .. Executable Statements ..
                    218: *
                    219:       MN = MIN( M, N )
                    220:       ISMIN = MN + 1
                    221:       ISMAX = 2*MN + 1
                    222: *
                    223: *     Test the input arguments.
                    224: *
                    225:       INFO = 0
                    226:       IF( M.LT.0 ) THEN
                    227:          INFO = -1
                    228:       ELSE IF( N.LT.0 ) THEN
                    229:          INFO = -2
                    230:       ELSE IF( NRHS.LT.0 ) THEN
                    231:          INFO = -3
                    232:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    233:          INFO = -5
                    234:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
                    235:          INFO = -7
                    236:       END IF
                    237: *
                    238:       IF( INFO.NE.0 ) THEN
                    239:          CALL XERBLA( 'DGELSX', -INFO )
                    240:          RETURN
                    241:       END IF
                    242: *
                    243: *     Quick return if possible
                    244: *
                    245:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
                    246:          RANK = 0
                    247:          RETURN
                    248:       END IF
                    249: *
                    250: *     Get machine parameters
                    251: *
                    252:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
                    253:       BIGNUM = ONE / SMLNUM
                    254:       CALL DLABAD( SMLNUM, BIGNUM )
                    255: *
                    256: *     Scale A, B if max elements outside range [SMLNUM,BIGNUM]
                    257: *
                    258:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
                    259:       IASCL = 0
                    260:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    261: *
                    262: *        Scale matrix norm up to SMLNUM
                    263: *
                    264:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    265:          IASCL = 1
                    266:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    267: *
                    268: *        Scale matrix norm down to BIGNUM
                    269: *
                    270:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    271:          IASCL = 2
                    272:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    273: *
                    274: *        Matrix all zero. Return zero solution.
                    275: *
                    276:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
                    277:          RANK = 0
                    278:          GO TO 100
                    279:       END IF
                    280: *
                    281:       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
                    282:       IBSCL = 0
                    283:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    284: *
                    285: *        Scale matrix norm up to SMLNUM
                    286: *
                    287:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    288:          IBSCL = 1
                    289:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    290: *
                    291: *        Scale matrix norm down to BIGNUM
                    292: *
                    293:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    294:          IBSCL = 2
                    295:       END IF
                    296: *
                    297: *     Compute QR factorization with column pivoting of A:
                    298: *        A * P = Q * R
                    299: *
                    300:       CALL DGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), INFO )
                    301: *
                    302: *     workspace 3*N. Details of Householder rotations stored
                    303: *     in WORK(1:MN).
                    304: *
                    305: *     Determine RANK using incremental condition estimation
                    306: *
                    307:       WORK( ISMIN ) = ONE
                    308:       WORK( ISMAX ) = ONE
                    309:       SMAX = ABS( A( 1, 1 ) )
                    310:       SMIN = SMAX
                    311:       IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN
                    312:          RANK = 0
                    313:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
                    314:          GO TO 100
                    315:       ELSE
                    316:          RANK = 1
                    317:       END IF
                    318: *
                    319:    10 CONTINUE
                    320:       IF( RANK.LT.MN ) THEN
                    321:          I = RANK + 1
                    322:          CALL DLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ),
                    323:      $                A( I, I ), SMINPR, S1, C1 )
                    324:          CALL DLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ),
                    325:      $                A( I, I ), SMAXPR, S2, C2 )
                    326: *
                    327:          IF( SMAXPR*RCOND.LE.SMINPR ) THEN
                    328:             DO 20 I = 1, RANK
                    329:                WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 )
                    330:                WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 )
                    331:    20       CONTINUE
                    332:             WORK( ISMIN+RANK ) = C1
                    333:             WORK( ISMAX+RANK ) = C2
                    334:             SMIN = SMINPR
                    335:             SMAX = SMAXPR
                    336:             RANK = RANK + 1
                    337:             GO TO 10
                    338:          END IF
                    339:       END IF
                    340: *
                    341: *     Logically partition R = [ R11 R12 ]
                    342: *                             [  0  R22 ]
                    343: *     where R11 = R(1:RANK,1:RANK)
                    344: *
                    345: *     [R11,R12] = [ T11, 0 ] * Y
                    346: *
                    347:       IF( RANK.LT.N )
                    348:      $   CALL DTZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO )
                    349: *
                    350: *     Details of Householder rotations stored in WORK(MN+1:2*MN)
                    351: *
1.8       bertrand  352: *     B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS)
1.1       bertrand  353: *
                    354:       CALL DORM2R( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ),
                    355:      $             B, LDB, WORK( 2*MN+1 ), INFO )
                    356: *
                    357: *     workspace NRHS
                    358: *
                    359: *     B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS)
                    360: *
                    361:       CALL DTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK,
                    362:      $            NRHS, ONE, A, LDA, B, LDB )
                    363: *
                    364:       DO 40 I = RANK + 1, N
                    365:          DO 30 J = 1, NRHS
                    366:             B( I, J ) = ZERO
                    367:    30    CONTINUE
                    368:    40 CONTINUE
                    369: *
1.8       bertrand  370: *     B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS)
1.1       bertrand  371: *
                    372:       IF( RANK.LT.N ) THEN
                    373:          DO 50 I = 1, RANK
                    374:             CALL DLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA,
                    375:      $                   WORK( MN+I ), B( I, 1 ), B( RANK+1, 1 ), LDB,
                    376:      $                   WORK( 2*MN+1 ) )
                    377:    50    CONTINUE
                    378:       END IF
                    379: *
                    380: *     workspace NRHS
                    381: *
                    382: *     B(1:N,1:NRHS) := P * B(1:N,1:NRHS)
                    383: *
                    384:       DO 90 J = 1, NRHS
                    385:          DO 60 I = 1, N
                    386:             WORK( 2*MN+I ) = NTDONE
                    387:    60    CONTINUE
                    388:          DO 80 I = 1, N
                    389:             IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN
                    390:                IF( JPVT( I ).NE.I ) THEN
                    391:                   K = I
                    392:                   T1 = B( K, J )
                    393:                   T2 = B( JPVT( K ), J )
                    394:    70             CONTINUE
                    395:                   B( JPVT( K ), J ) = T1
                    396:                   WORK( 2*MN+K ) = DONE
                    397:                   T1 = T2
                    398:                   K = JPVT( K )
                    399:                   T2 = B( JPVT( K ), J )
                    400:                   IF( JPVT( K ).NE.I )
                    401:      $               GO TO 70
                    402:                   B( I, J ) = T1
                    403:                   WORK( 2*MN+K ) = DONE
                    404:                END IF
                    405:             END IF
                    406:    80    CONTINUE
                    407:    90 CONTINUE
                    408: *
                    409: *     Undo scaling
                    410: *
                    411:       IF( IASCL.EQ.1 ) THEN
                    412:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    413:          CALL DLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA,
                    414:      $                INFO )
                    415:       ELSE IF( IASCL.EQ.2 ) THEN
                    416:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    417:          CALL DLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA,
                    418:      $                INFO )
                    419:       END IF
                    420:       IF( IBSCL.EQ.1 ) THEN
                    421:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    422:       ELSE IF( IBSCL.EQ.2 ) THEN
                    423:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    424:       END IF
                    425: *
                    426:   100 CONTINUE
                    427: *
                    428:       RETURN
                    429: *
                    430: *     End of DGELSX
                    431: *
                    432:       END

CVSweb interface <joel.bertrand@systella.fr>