File:  [local] / rpl / lapack / lapack / dgelss.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:48 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> DGELSS solves overdetermined or underdetermined systems for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGELSS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelss.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelss.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelss.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
   22: *                          WORK, LWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
   26: *       DOUBLE PRECISION   RCOND
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DGELSS computes the minimum norm solution to a real linear least
   39: *> squares problem:
   40: *>
   41: *> Minimize 2-norm(| b - A*x |).
   42: *>
   43: *> using the singular value decomposition (SVD) of A. A is an M-by-N
   44: *> matrix which may be rank-deficient.
   45: *>
   46: *> Several right hand side vectors b and solution vectors x can be
   47: *> handled in a single call; they are stored as the columns of the
   48: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
   49: *> X.
   50: *>
   51: *> The effective rank of A is determined by treating as zero those
   52: *> singular values which are less than RCOND times the largest singular
   53: *> value.
   54: *> \endverbatim
   55: *
   56: *  Arguments:
   57: *  ==========
   58: *
   59: *> \param[in] M
   60: *> \verbatim
   61: *>          M is INTEGER
   62: *>          The number of rows of the matrix A. M >= 0.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>          The number of columns of the matrix A. N >= 0.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] NRHS
   72: *> \verbatim
   73: *>          NRHS is INTEGER
   74: *>          The number of right hand sides, i.e., the number of columns
   75: *>          of the matrices B and X. NRHS >= 0.
   76: *> \endverbatim
   77: *>
   78: *> \param[in,out] A
   79: *> \verbatim
   80: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   81: *>          On entry, the M-by-N matrix A.
   82: *>          On exit, the first min(m,n) rows of A are overwritten with
   83: *>          its right singular vectors, stored rowwise.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] LDA
   87: *> \verbatim
   88: *>          LDA is INTEGER
   89: *>          The leading dimension of the array A.  LDA >= max(1,M).
   90: *> \endverbatim
   91: *>
   92: *> \param[in,out] B
   93: *> \verbatim
   94: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
   95: *>          On entry, the M-by-NRHS right hand side matrix B.
   96: *>          On exit, B is overwritten by the N-by-NRHS solution
   97: *>          matrix X.  If m >= n and RANK = n, the residual
   98: *>          sum-of-squares for the solution in the i-th column is given
   99: *>          by the sum of squares of elements n+1:m in that column.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDB
  103: *> \verbatim
  104: *>          LDB is INTEGER
  105: *>          The leading dimension of the array B. LDB >= max(1,max(M,N)).
  106: *> \endverbatim
  107: *>
  108: *> \param[out] S
  109: *> \verbatim
  110: *>          S is DOUBLE PRECISION array, dimension (min(M,N))
  111: *>          The singular values of A in decreasing order.
  112: *>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
  113: *> \endverbatim
  114: *>
  115: *> \param[in] RCOND
  116: *> \verbatim
  117: *>          RCOND is DOUBLE PRECISION
  118: *>          RCOND is used to determine the effective rank of A.
  119: *>          Singular values S(i) <= RCOND*S(1) are treated as zero.
  120: *>          If RCOND < 0, machine precision is used instead.
  121: *> \endverbatim
  122: *>
  123: *> \param[out] RANK
  124: *> \verbatim
  125: *>          RANK is INTEGER
  126: *>          The effective rank of A, i.e., the number of singular values
  127: *>          which are greater than RCOND*S(1).
  128: *> \endverbatim
  129: *>
  130: *> \param[out] WORK
  131: *> \verbatim
  132: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  133: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  134: *> \endverbatim
  135: *>
  136: *> \param[in] LWORK
  137: *> \verbatim
  138: *>          LWORK is INTEGER
  139: *>          The dimension of the array WORK. LWORK >= 1, and also:
  140: *>          LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS )
  141: *>          For good performance, LWORK should generally be larger.
  142: *>
  143: *>          If LWORK = -1, then a workspace query is assumed; the routine
  144: *>          only calculates the optimal size of the WORK array, returns
  145: *>          this value as the first entry of the WORK array, and no error
  146: *>          message related to LWORK is issued by XERBLA.
  147: *> \endverbatim
  148: *>
  149: *> \param[out] INFO
  150: *> \verbatim
  151: *>          INFO is INTEGER
  152: *>          = 0:  successful exit
  153: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  154: *>          > 0:  the algorithm for computing the SVD failed to converge;
  155: *>                if INFO = i, i off-diagonal elements of an intermediate
  156: *>                bidiagonal form did not converge to zero.
  157: *> \endverbatim
  158: *
  159: *  Authors:
  160: *  ========
  161: *
  162: *> \author Univ. of Tennessee
  163: *> \author Univ. of California Berkeley
  164: *> \author Univ. of Colorado Denver
  165: *> \author NAG Ltd.
  166: *
  167: *> \ingroup doubleGEsolve
  168: *
  169: *  =====================================================================
  170:       SUBROUTINE DGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
  171:      $                   WORK, LWORK, INFO )
  172: *
  173: *  -- LAPACK driver routine --
  174: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  175: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  176: *
  177: *     .. Scalar Arguments ..
  178:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
  179:       DOUBLE PRECISION   RCOND
  180: *     ..
  181: *     .. Array Arguments ..
  182:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
  183: *     ..
  184: *
  185: *  =====================================================================
  186: *
  187: *     .. Parameters ..
  188:       DOUBLE PRECISION   ZERO, ONE
  189:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  190: *     ..
  191: *     .. Local Scalars ..
  192:       LOGICAL            LQUERY
  193:       INTEGER            BDSPAC, BL, CHUNK, I, IASCL, IBSCL, IE, IL,
  194:      $                   ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN,
  195:      $                   MAXWRK, MINMN, MINWRK, MM, MNTHR
  196:       INTEGER            LWORK_DGEQRF, LWORK_DORMQR, LWORK_DGEBRD,
  197:      $                   LWORK_DORMBR, LWORK_DORGBR, LWORK_DORMLQ,
  198:      $                   LWORK_DGELQF
  199:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR
  200: *     ..
  201: *     .. Local Arrays ..
  202:       DOUBLE PRECISION   DUM( 1 )
  203: *     ..
  204: *     .. External Subroutines ..
  205:       EXTERNAL           DBDSQR, DCOPY, DGEBRD, DGELQF, DGEMM, DGEMV,
  206:      $                   DGEQRF, DLABAD, DLACPY, DLASCL, DLASET, DORGBR,
  207:      $                   DORMBR, DORMLQ, DORMQR, DRSCL, XERBLA
  208: *     ..
  209: *     .. External Functions ..
  210:       INTEGER            ILAENV
  211:       DOUBLE PRECISION   DLAMCH, DLANGE
  212:       EXTERNAL           ILAENV, DLAMCH, DLANGE
  213: *     ..
  214: *     .. Intrinsic Functions ..
  215:       INTRINSIC          MAX, MIN
  216: *     ..
  217: *     .. Executable Statements ..
  218: *
  219: *     Test the input arguments
  220: *
  221:       INFO = 0
  222:       MINMN = MIN( M, N )
  223:       MAXMN = MAX( M, N )
  224:       LQUERY = ( LWORK.EQ.-1 )
  225:       IF( M.LT.0 ) THEN
  226:          INFO = -1
  227:       ELSE IF( N.LT.0 ) THEN
  228:          INFO = -2
  229:       ELSE IF( NRHS.LT.0 ) THEN
  230:          INFO = -3
  231:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  232:          INFO = -5
  233:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
  234:          INFO = -7
  235:       END IF
  236: *
  237: *     Compute workspace
  238: *      (Note: Comments in the code beginning "Workspace:" describe the
  239: *       minimal amount of workspace needed at that point in the code,
  240: *       as well as the preferred amount for good performance.
  241: *       NB refers to the optimal block size for the immediately
  242: *       following subroutine, as returned by ILAENV.)
  243: *
  244:       IF( INFO.EQ.0 ) THEN
  245:          MINWRK = 1
  246:          MAXWRK = 1
  247:          IF( MINMN.GT.0 ) THEN
  248:             MM = M
  249:             MNTHR = ILAENV( 6, 'DGELSS', ' ', M, N, NRHS, -1 )
  250:             IF( M.GE.N .AND. M.GE.MNTHR ) THEN
  251: *
  252: *              Path 1a - overdetermined, with many more rows than
  253: *                        columns
  254: *
  255: *              Compute space needed for DGEQRF
  256:                CALL DGEQRF( M, N, A, LDA, DUM(1), DUM(1), -1, INFO )
  257:                LWORK_DGEQRF = INT( DUM(1) )
  258: *              Compute space needed for DORMQR
  259:                CALL DORMQR( 'L', 'T', M, NRHS, N, A, LDA, DUM(1), B,
  260:      $                   LDB, DUM(1), -1, INFO )
  261:                LWORK_DORMQR = INT( DUM(1) )
  262:                MM = N
  263:                MAXWRK = MAX( MAXWRK, N + LWORK_DGEQRF )
  264:                MAXWRK = MAX( MAXWRK, N + LWORK_DORMQR )
  265:             END IF
  266:             IF( M.GE.N ) THEN
  267: *
  268: *              Path 1 - overdetermined or exactly determined
  269: *
  270: *              Compute workspace needed for DBDSQR
  271: *
  272:                BDSPAC = MAX( 1, 5*N )
  273: *              Compute space needed for DGEBRD
  274:                CALL DGEBRD( MM, N, A, LDA, S, DUM(1), DUM(1),
  275:      $                      DUM(1), DUM(1), -1, INFO )
  276:                LWORK_DGEBRD = INT( DUM(1) )
  277: *              Compute space needed for DORMBR
  278:                CALL DORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, DUM(1),
  279:      $                B, LDB, DUM(1), -1, INFO )
  280:                LWORK_DORMBR = INT( DUM(1) )
  281: *              Compute space needed for DORGBR
  282:                CALL DORGBR( 'P', N, N, N, A, LDA, DUM(1),
  283:      $                   DUM(1), -1, INFO )
  284:                LWORK_DORGBR = INT( DUM(1) )
  285: *              Compute total workspace needed
  286:                MAXWRK = MAX( MAXWRK, 3*N + LWORK_DGEBRD )
  287:                MAXWRK = MAX( MAXWRK, 3*N + LWORK_DORMBR )
  288:                MAXWRK = MAX( MAXWRK, 3*N + LWORK_DORGBR )
  289:                MAXWRK = MAX( MAXWRK, BDSPAC )
  290:                MAXWRK = MAX( MAXWRK, N*NRHS )
  291:                MINWRK = MAX( 3*N + MM, 3*N + NRHS, BDSPAC )
  292:                MAXWRK = MAX( MINWRK, MAXWRK )
  293:             END IF
  294:             IF( N.GT.M ) THEN
  295: *
  296: *              Compute workspace needed for DBDSQR
  297: *
  298:                BDSPAC = MAX( 1, 5*M )
  299:                MINWRK = MAX( 3*M+NRHS, 3*M+N, BDSPAC )
  300:                IF( N.GE.MNTHR ) THEN
  301: *
  302: *                 Path 2a - underdetermined, with many more columns
  303: *                 than rows
  304: *
  305: *                 Compute space needed for DGELQF
  306:                   CALL DGELQF( M, N, A, LDA, DUM(1), DUM(1),
  307:      $                -1, INFO )
  308:                   LWORK_DGELQF = INT( DUM(1) )
  309: *                 Compute space needed for DGEBRD
  310:                   CALL DGEBRD( M, M, A, LDA, S, DUM(1), DUM(1),
  311:      $                      DUM(1), DUM(1), -1, INFO )
  312:                   LWORK_DGEBRD = INT( DUM(1) )
  313: *                 Compute space needed for DORMBR
  314:                   CALL DORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA,
  315:      $                DUM(1), B, LDB, DUM(1), -1, INFO )
  316:                   LWORK_DORMBR = INT( DUM(1) )
  317: *                 Compute space needed for DORGBR
  318:                   CALL DORGBR( 'P', M, M, M, A, LDA, DUM(1),
  319:      $                   DUM(1), -1, INFO )
  320:                   LWORK_DORGBR = INT( DUM(1) )
  321: *                 Compute space needed for DORMLQ
  322:                   CALL DORMLQ( 'L', 'T', N, NRHS, M, A, LDA, DUM(1),
  323:      $                 B, LDB, DUM(1), -1, INFO )
  324:                   LWORK_DORMLQ = INT( DUM(1) )
  325: *                 Compute total workspace needed
  326:                   MAXWRK = M + LWORK_DGELQF
  327:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + LWORK_DGEBRD )
  328:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + LWORK_DORMBR )
  329:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + LWORK_DORGBR )
  330:                   MAXWRK = MAX( MAXWRK, M*M + M + BDSPAC )
  331:                   IF( NRHS.GT.1 ) THEN
  332:                      MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
  333:                   ELSE
  334:                      MAXWRK = MAX( MAXWRK, M*M + 2*M )
  335:                   END IF
  336:                   MAXWRK = MAX( MAXWRK, M + LWORK_DORMLQ )
  337:                ELSE
  338: *
  339: *                 Path 2 - underdetermined
  340: *
  341: *                 Compute space needed for DGEBRD
  342:                   CALL DGEBRD( M, N, A, LDA, S, DUM(1), DUM(1),
  343:      $                      DUM(1), DUM(1), -1, INFO )
  344:                   LWORK_DGEBRD = INT( DUM(1) )
  345: *                 Compute space needed for DORMBR
  346:                   CALL DORMBR( 'Q', 'L', 'T', M, NRHS, M, A, LDA,
  347:      $                DUM(1), B, LDB, DUM(1), -1, INFO )
  348:                   LWORK_DORMBR = INT( DUM(1) )
  349: *                 Compute space needed for DORGBR
  350:                   CALL DORGBR( 'P', M, N, M, A, LDA, DUM(1),
  351:      $                   DUM(1), -1, INFO )
  352:                   LWORK_DORGBR = INT( DUM(1) )
  353:                   MAXWRK = 3*M + LWORK_DGEBRD
  354:                   MAXWRK = MAX( MAXWRK, 3*M + LWORK_DORMBR )
  355:                   MAXWRK = MAX( MAXWRK, 3*M + LWORK_DORGBR )
  356:                   MAXWRK = MAX( MAXWRK, BDSPAC )
  357:                   MAXWRK = MAX( MAXWRK, N*NRHS )
  358:                END IF
  359:             END IF
  360:             MAXWRK = MAX( MINWRK, MAXWRK )
  361:          END IF
  362:          WORK( 1 ) = MAXWRK
  363: *
  364:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
  365:      $      INFO = -12
  366:       END IF
  367: *
  368:       IF( INFO.NE.0 ) THEN
  369:          CALL XERBLA( 'DGELSS', -INFO )
  370:          RETURN
  371:       ELSE IF( LQUERY ) THEN
  372:          RETURN
  373:       END IF
  374: *
  375: *     Quick return if possible
  376: *
  377:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  378:          RANK = 0
  379:          RETURN
  380:       END IF
  381: *
  382: *     Get machine parameters
  383: *
  384:       EPS = DLAMCH( 'P' )
  385:       SFMIN = DLAMCH( 'S' )
  386:       SMLNUM = SFMIN / EPS
  387:       BIGNUM = ONE / SMLNUM
  388:       CALL DLABAD( SMLNUM, BIGNUM )
  389: *
  390: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  391: *
  392:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
  393:       IASCL = 0
  394:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  395: *
  396: *        Scale matrix norm up to SMLNUM
  397: *
  398:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  399:          IASCL = 1
  400:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  401: *
  402: *        Scale matrix norm down to BIGNUM
  403: *
  404:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  405:          IASCL = 2
  406:       ELSE IF( ANRM.EQ.ZERO ) THEN
  407: *
  408: *        Matrix all zero. Return zero solution.
  409: *
  410:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
  411:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, MINMN )
  412:          RANK = 0
  413:          GO TO 70
  414:       END IF
  415: *
  416: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  417: *
  418:       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
  419:       IBSCL = 0
  420:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  421: *
  422: *        Scale matrix norm up to SMLNUM
  423: *
  424:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
  425:          IBSCL = 1
  426:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  427: *
  428: *        Scale matrix norm down to BIGNUM
  429: *
  430:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
  431:          IBSCL = 2
  432:       END IF
  433: *
  434: *     Overdetermined case
  435: *
  436:       IF( M.GE.N ) THEN
  437: *
  438: *        Path 1 - overdetermined or exactly determined
  439: *
  440:          MM = M
  441:          IF( M.GE.MNTHR ) THEN
  442: *
  443: *           Path 1a - overdetermined, with many more rows than columns
  444: *
  445:             MM = N
  446:             ITAU = 1
  447:             IWORK = ITAU + N
  448: *
  449: *           Compute A=Q*R
  450: *           (Workspace: need 2*N, prefer N+N*NB)
  451: *
  452:             CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
  453:      $                   LWORK-IWORK+1, INFO )
  454: *
  455: *           Multiply B by transpose(Q)
  456: *           (Workspace: need N+NRHS, prefer N+NRHS*NB)
  457: *
  458:             CALL DORMQR( 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAU ), B,
  459:      $                   LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
  460: *
  461: *           Zero out below R
  462: *
  463:             IF( N.GT.1 )
  464:      $         CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
  465:          END IF
  466: *
  467:          IE = 1
  468:          ITAUQ = IE + N
  469:          ITAUP = ITAUQ + N
  470:          IWORK = ITAUP + N
  471: *
  472: *        Bidiagonalize R in A
  473: *        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
  474: *
  475:          CALL DGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  476:      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  477:      $                INFO )
  478: *
  479: *        Multiply B by transpose of left bidiagonalizing vectors of R
  480: *        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
  481: *
  482:          CALL DORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
  483:      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
  484: *
  485: *        Generate right bidiagonalizing vectors of R in A
  486: *        (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  487: *
  488:          CALL DORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
  489:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
  490:          IWORK = IE + N
  491: *
  492: *        Perform bidiagonal QR iteration
  493: *          multiply B by transpose of left singular vectors
  494: *          compute right singular vectors in A
  495: *        (Workspace: need BDSPAC)
  496: *
  497:          CALL DBDSQR( 'U', N, N, 0, NRHS, S, WORK( IE ), A, LDA, DUM,
  498:      $                1, B, LDB, WORK( IWORK ), INFO )
  499:          IF( INFO.NE.0 )
  500:      $      GO TO 70
  501: *
  502: *        Multiply B by reciprocals of singular values
  503: *
  504:          THR = MAX( RCOND*S( 1 ), SFMIN )
  505:          IF( RCOND.LT.ZERO )
  506:      $      THR = MAX( EPS*S( 1 ), SFMIN )
  507:          RANK = 0
  508:          DO 10 I = 1, N
  509:             IF( S( I ).GT.THR ) THEN
  510:                CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB )
  511:                RANK = RANK + 1
  512:             ELSE
  513:                CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
  514:             END IF
  515:    10    CONTINUE
  516: *
  517: *        Multiply B by right singular vectors
  518: *        (Workspace: need N, prefer N*NRHS)
  519: *
  520:          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
  521:             CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, A, LDA, B, LDB, ZERO,
  522:      $                  WORK, LDB )
  523:             CALL DLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
  524:          ELSE IF( NRHS.GT.1 ) THEN
  525:             CHUNK = LWORK / N
  526:             DO 20 I = 1, NRHS, CHUNK
  527:                BL = MIN( NRHS-I+1, CHUNK )
  528:                CALL DGEMM( 'T', 'N', N, BL, N, ONE, A, LDA, B( 1, I ),
  529:      $                     LDB, ZERO, WORK, N )
  530:                CALL DLACPY( 'G', N, BL, WORK, N, B( 1, I ), LDB )
  531:    20       CONTINUE
  532:          ELSE
  533:             CALL DGEMV( 'T', N, N, ONE, A, LDA, B, 1, ZERO, WORK, 1 )
  534:             CALL DCOPY( N, WORK, 1, B, 1 )
  535:          END IF
  536: *
  537:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
  538:      $         MAX( M, 2*M-4, NRHS, N-3*M ) ) THEN
  539: *
  540: *        Path 2a - underdetermined, with many more columns than rows
  541: *        and sufficient workspace for an efficient algorithm
  542: *
  543:          LDWORK = M
  544:          IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
  545:      $       M*LDA+M+M*NRHS ) )LDWORK = LDA
  546:          ITAU = 1
  547:          IWORK = M + 1
  548: *
  549: *        Compute A=L*Q
  550: *        (Workspace: need 2*M, prefer M+M*NB)
  551: *
  552:          CALL DGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
  553:      $                LWORK-IWORK+1, INFO )
  554:          IL = IWORK
  555: *
  556: *        Copy L to WORK(IL), zeroing out above it
  557: *
  558:          CALL DLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
  559:          CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ),
  560:      $                LDWORK )
  561:          IE = IL + LDWORK*M
  562:          ITAUQ = IE + M
  563:          ITAUP = ITAUQ + M
  564:          IWORK = ITAUP + M
  565: *
  566: *        Bidiagonalize L in WORK(IL)
  567: *        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
  568: *
  569:          CALL DGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ),
  570:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( IWORK ),
  571:      $                LWORK-IWORK+1, INFO )
  572: *
  573: *        Multiply B by transpose of left bidiagonalizing vectors of L
  574: *        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
  575: *
  576:          CALL DORMBR( 'Q', 'L', 'T', M, NRHS, M, WORK( IL ), LDWORK,
  577:      $                WORK( ITAUQ ), B, LDB, WORK( IWORK ),
  578:      $                LWORK-IWORK+1, INFO )
  579: *
  580: *        Generate right bidiagonalizing vectors of R in WORK(IL)
  581: *        (Workspace: need M*M+5*M-1, prefer M*M+4*M+(M-1)*NB)
  582: *
  583:          CALL DORGBR( 'P', M, M, M, WORK( IL ), LDWORK, WORK( ITAUP ),
  584:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
  585:          IWORK = IE + M
  586: *
  587: *        Perform bidiagonal QR iteration,
  588: *           computing right singular vectors of L in WORK(IL) and
  589: *           multiplying B by transpose of left singular vectors
  590: *        (Workspace: need M*M+M+BDSPAC)
  591: *
  592:          CALL DBDSQR( 'U', M, M, 0, NRHS, S, WORK( IE ), WORK( IL ),
  593:      $                LDWORK, A, LDA, B, LDB, WORK( IWORK ), INFO )
  594:          IF( INFO.NE.0 )
  595:      $      GO TO 70
  596: *
  597: *        Multiply B by reciprocals of singular values
  598: *
  599:          THR = MAX( RCOND*S( 1 ), SFMIN )
  600:          IF( RCOND.LT.ZERO )
  601:      $      THR = MAX( EPS*S( 1 ), SFMIN )
  602:          RANK = 0
  603:          DO 30 I = 1, M
  604:             IF( S( I ).GT.THR ) THEN
  605:                CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB )
  606:                RANK = RANK + 1
  607:             ELSE
  608:                CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
  609:             END IF
  610:    30    CONTINUE
  611:          IWORK = IE
  612: *
  613: *        Multiply B by right singular vectors of L in WORK(IL)
  614: *        (Workspace: need M*M+2*M, prefer M*M+M+M*NRHS)
  615: *
  616:          IF( LWORK.GE.LDB*NRHS+IWORK-1 .AND. NRHS.GT.1 ) THEN
  617:             CALL DGEMM( 'T', 'N', M, NRHS, M, ONE, WORK( IL ), LDWORK,
  618:      $                  B, LDB, ZERO, WORK( IWORK ), LDB )
  619:             CALL DLACPY( 'G', M, NRHS, WORK( IWORK ), LDB, B, LDB )
  620:          ELSE IF( NRHS.GT.1 ) THEN
  621:             CHUNK = ( LWORK-IWORK+1 ) / M
  622:             DO 40 I = 1, NRHS, CHUNK
  623:                BL = MIN( NRHS-I+1, CHUNK )
  624:                CALL DGEMM( 'T', 'N', M, BL, M, ONE, WORK( IL ), LDWORK,
  625:      $                     B( 1, I ), LDB, ZERO, WORK( IWORK ), M )
  626:                CALL DLACPY( 'G', M, BL, WORK( IWORK ), M, B( 1, I ),
  627:      $                      LDB )
  628:    40       CONTINUE
  629:          ELSE
  630:             CALL DGEMV( 'T', M, M, ONE, WORK( IL ), LDWORK, B( 1, 1 ),
  631:      $                  1, ZERO, WORK( IWORK ), 1 )
  632:             CALL DCOPY( M, WORK( IWORK ), 1, B( 1, 1 ), 1 )
  633:          END IF
  634: *
  635: *        Zero out below first M rows of B
  636: *
  637:          CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
  638:          IWORK = ITAU + M
  639: *
  640: *        Multiply transpose(Q) by B
  641: *        (Workspace: need M+NRHS, prefer M+NRHS*NB)
  642: *
  643:          CALL DORMLQ( 'L', 'T', N, NRHS, M, A, LDA, WORK( ITAU ), B,
  644:      $                LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
  645: *
  646:       ELSE
  647: *
  648: *        Path 2 - remaining underdetermined cases
  649: *
  650:          IE = 1
  651:          ITAUQ = IE + M
  652:          ITAUP = ITAUQ + M
  653:          IWORK = ITAUP + M
  654: *
  655: *        Bidiagonalize A
  656: *        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
  657: *
  658:          CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  659:      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  660:      $                INFO )
  661: *
  662: *        Multiply B by transpose of left bidiagonalizing vectors
  663: *        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
  664: *
  665:          CALL DORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAUQ ),
  666:      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
  667: *
  668: *        Generate right bidiagonalizing vectors in A
  669: *        (Workspace: need 4*M, prefer 3*M+M*NB)
  670: *
  671:          CALL DORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
  672:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
  673:          IWORK = IE + M
  674: *
  675: *        Perform bidiagonal QR iteration,
  676: *           computing right singular vectors of A in A and
  677: *           multiplying B by transpose of left singular vectors
  678: *        (Workspace: need BDSPAC)
  679: *
  680:          CALL DBDSQR( 'L', M, N, 0, NRHS, S, WORK( IE ), A, LDA, DUM,
  681:      $                1, B, LDB, WORK( IWORK ), INFO )
  682:          IF( INFO.NE.0 )
  683:      $      GO TO 70
  684: *
  685: *        Multiply B by reciprocals of singular values
  686: *
  687:          THR = MAX( RCOND*S( 1 ), SFMIN )
  688:          IF( RCOND.LT.ZERO )
  689:      $      THR = MAX( EPS*S( 1 ), SFMIN )
  690:          RANK = 0
  691:          DO 50 I = 1, M
  692:             IF( S( I ).GT.THR ) THEN
  693:                CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB )
  694:                RANK = RANK + 1
  695:             ELSE
  696:                CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
  697:             END IF
  698:    50    CONTINUE
  699: *
  700: *        Multiply B by right singular vectors of A
  701: *        (Workspace: need N, prefer N*NRHS)
  702: *
  703:          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
  704:             CALL DGEMM( 'T', 'N', N, NRHS, M, ONE, A, LDA, B, LDB, ZERO,
  705:      $                  WORK, LDB )
  706:             CALL DLACPY( 'F', N, NRHS, WORK, LDB, B, LDB )
  707:          ELSE IF( NRHS.GT.1 ) THEN
  708:             CHUNK = LWORK / N
  709:             DO 60 I = 1, NRHS, CHUNK
  710:                BL = MIN( NRHS-I+1, CHUNK )
  711:                CALL DGEMM( 'T', 'N', N, BL, M, ONE, A, LDA, B( 1, I ),
  712:      $                     LDB, ZERO, WORK, N )
  713:                CALL DLACPY( 'F', N, BL, WORK, N, B( 1, I ), LDB )
  714:    60       CONTINUE
  715:          ELSE
  716:             CALL DGEMV( 'T', M, N, ONE, A, LDA, B, 1, ZERO, WORK, 1 )
  717:             CALL DCOPY( N, WORK, 1, B, 1 )
  718:          END IF
  719:       END IF
  720: *
  721: *     Undo scaling
  722: *
  723:       IF( IASCL.EQ.1 ) THEN
  724:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
  725:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
  726:      $                INFO )
  727:       ELSE IF( IASCL.EQ.2 ) THEN
  728:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
  729:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
  730:      $                INFO )
  731:       END IF
  732:       IF( IBSCL.EQ.1 ) THEN
  733:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
  734:       ELSE IF( IBSCL.EQ.2 ) THEN
  735:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
  736:       END IF
  737: *
  738:    70 CONTINUE
  739:       WORK( 1 ) = MAXWRK
  740:       RETURN
  741: *
  742: *     End of DGELSS
  743: *
  744:       END

CVSweb interface <joel.bertrand@systella.fr>