File:  [local] / rpl / lapack / lapack / dgelss.f
Revision 1.17: download - view: text, annotated - select for diffs - revision graph
Tue May 29 07:17:51 2018 UTC (6 years ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_33, rpl-4_1_32, rpl-4_1_31, rpl-4_1_30, rpl-4_1_29, rpl-4_1_28, HEAD
Mise à jour de Lapack.

    1: *> \brief <b> DGELSS solves overdetermined or underdetermined systems for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGELSS + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelss.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelss.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelss.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
   22: *                          WORK, LWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
   26: *       DOUBLE PRECISION   RCOND
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
   30: *       ..
   31: *
   32: *
   33: *> \par Purpose:
   34: *  =============
   35: *>
   36: *> \verbatim
   37: *>
   38: *> DGELSS computes the minimum norm solution to a real linear least
   39: *> squares problem:
   40: *>
   41: *> Minimize 2-norm(| b - A*x |).
   42: *>
   43: *> using the singular value decomposition (SVD) of A. A is an M-by-N
   44: *> matrix which may be rank-deficient.
   45: *>
   46: *> Several right hand side vectors b and solution vectors x can be
   47: *> handled in a single call; they are stored as the columns of the
   48: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix
   49: *> X.
   50: *>
   51: *> The effective rank of A is determined by treating as zero those
   52: *> singular values which are less than RCOND times the largest singular
   53: *> value.
   54: *> \endverbatim
   55: *
   56: *  Arguments:
   57: *  ==========
   58: *
   59: *> \param[in] M
   60: *> \verbatim
   61: *>          M is INTEGER
   62: *>          The number of rows of the matrix A. M >= 0.
   63: *> \endverbatim
   64: *>
   65: *> \param[in] N
   66: *> \verbatim
   67: *>          N is INTEGER
   68: *>          The number of columns of the matrix A. N >= 0.
   69: *> \endverbatim
   70: *>
   71: *> \param[in] NRHS
   72: *> \verbatim
   73: *>          NRHS is INTEGER
   74: *>          The number of right hand sides, i.e., the number of columns
   75: *>          of the matrices B and X. NRHS >= 0.
   76: *> \endverbatim
   77: *>
   78: *> \param[in,out] A
   79: *> \verbatim
   80: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   81: *>          On entry, the M-by-N matrix A.
   82: *>          On exit, the first min(m,n) rows of A are overwritten with
   83: *>          its right singular vectors, stored rowwise.
   84: *> \endverbatim
   85: *>
   86: *> \param[in] LDA
   87: *> \verbatim
   88: *>          LDA is INTEGER
   89: *>          The leading dimension of the array A.  LDA >= max(1,M).
   90: *> \endverbatim
   91: *>
   92: *> \param[in,out] B
   93: *> \verbatim
   94: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
   95: *>          On entry, the M-by-NRHS right hand side matrix B.
   96: *>          On exit, B is overwritten by the N-by-NRHS solution
   97: *>          matrix X.  If m >= n and RANK = n, the residual
   98: *>          sum-of-squares for the solution in the i-th column is given
   99: *>          by the sum of squares of elements n+1:m in that column.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] LDB
  103: *> \verbatim
  104: *>          LDB is INTEGER
  105: *>          The leading dimension of the array B. LDB >= max(1,max(M,N)).
  106: *> \endverbatim
  107: *>
  108: *> \param[out] S
  109: *> \verbatim
  110: *>          S is DOUBLE PRECISION array, dimension (min(M,N))
  111: *>          The singular values of A in decreasing order.
  112: *>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
  113: *> \endverbatim
  114: *>
  115: *> \param[in] RCOND
  116: *> \verbatim
  117: *>          RCOND is DOUBLE PRECISION
  118: *>          RCOND is used to determine the effective rank of A.
  119: *>          Singular values S(i) <= RCOND*S(1) are treated as zero.
  120: *>          If RCOND < 0, machine precision is used instead.
  121: *> \endverbatim
  122: *>
  123: *> \param[out] RANK
  124: *> \verbatim
  125: *>          RANK is INTEGER
  126: *>          The effective rank of A, i.e., the number of singular values
  127: *>          which are greater than RCOND*S(1).
  128: *> \endverbatim
  129: *>
  130: *> \param[out] WORK
  131: *> \verbatim
  132: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  133: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  134: *> \endverbatim
  135: *>
  136: *> \param[in] LWORK
  137: *> \verbatim
  138: *>          LWORK is INTEGER
  139: *>          The dimension of the array WORK. LWORK >= 1, and also:
  140: *>          LWORK >= 3*min(M,N) + max( 2*min(M,N), max(M,N), NRHS )
  141: *>          For good performance, LWORK should generally be larger.
  142: *>
  143: *>          If LWORK = -1, then a workspace query is assumed; the routine
  144: *>          only calculates the optimal size of the WORK array, returns
  145: *>          this value as the first entry of the WORK array, and no error
  146: *>          message related to LWORK is issued by XERBLA.
  147: *> \endverbatim
  148: *>
  149: *> \param[out] INFO
  150: *> \verbatim
  151: *>          INFO is INTEGER
  152: *>          = 0:  successful exit
  153: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  154: *>          > 0:  the algorithm for computing the SVD failed to converge;
  155: *>                if INFO = i, i off-diagonal elements of an intermediate
  156: *>                bidiagonal form did not converge to zero.
  157: *> \endverbatim
  158: *
  159: *  Authors:
  160: *  ========
  161: *
  162: *> \author Univ. of Tennessee
  163: *> \author Univ. of California Berkeley
  164: *> \author Univ. of Colorado Denver
  165: *> \author NAG Ltd.
  166: *
  167: *> \date December 2016
  168: *
  169: *> \ingroup doubleGEsolve
  170: *
  171: *  =====================================================================
  172:       SUBROUTINE DGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
  173:      $                   WORK, LWORK, INFO )
  174: *
  175: *  -- LAPACK driver routine (version 3.7.0) --
  176: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  177: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  178: *     December 2016
  179: *
  180: *     .. Scalar Arguments ..
  181:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
  182:       DOUBLE PRECISION   RCOND
  183: *     ..
  184: *     .. Array Arguments ..
  185:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
  186: *     ..
  187: *
  188: *  =====================================================================
  189: *
  190: *     .. Parameters ..
  191:       DOUBLE PRECISION   ZERO, ONE
  192:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  193: *     ..
  194: *     .. Local Scalars ..
  195:       LOGICAL            LQUERY
  196:       INTEGER            BDSPAC, BL, CHUNK, I, IASCL, IBSCL, IE, IL,
  197:      $                   ITAU, ITAUP, ITAUQ, IWORK, LDWORK, MAXMN,
  198:      $                   MAXWRK, MINMN, MINWRK, MM, MNTHR
  199:       INTEGER            LWORK_DGEQRF, LWORK_DORMQR, LWORK_DGEBRD,
  200:      $                   LWORK_DORMBR, LWORK_DORGBR, LWORK_DORMLQ,
  201:      $                   LWORK_DGELQF
  202:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM, THR
  203: *     ..
  204: *     .. Local Arrays ..
  205:       DOUBLE PRECISION   DUM( 1 )
  206: *     ..
  207: *     .. External Subroutines ..
  208:       EXTERNAL           DBDSQR, DCOPY, DGEBRD, DGELQF, DGEMM, DGEMV,
  209:      $                   DGEQRF, DLABAD, DLACPY, DLASCL, DLASET, DORGBR,
  210:      $                   DORMBR, DORMLQ, DORMQR, DRSCL, XERBLA
  211: *     ..
  212: *     .. External Functions ..
  213:       INTEGER            ILAENV
  214:       DOUBLE PRECISION   DLAMCH, DLANGE
  215:       EXTERNAL           ILAENV, DLAMCH, DLANGE
  216: *     ..
  217: *     .. Intrinsic Functions ..
  218:       INTRINSIC          MAX, MIN
  219: *     ..
  220: *     .. Executable Statements ..
  221: *
  222: *     Test the input arguments
  223: *
  224:       INFO = 0
  225:       MINMN = MIN( M, N )
  226:       MAXMN = MAX( M, N )
  227:       LQUERY = ( LWORK.EQ.-1 )
  228:       IF( M.LT.0 ) THEN
  229:          INFO = -1
  230:       ELSE IF( N.LT.0 ) THEN
  231:          INFO = -2
  232:       ELSE IF( NRHS.LT.0 ) THEN
  233:          INFO = -3
  234:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  235:          INFO = -5
  236:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
  237:          INFO = -7
  238:       END IF
  239: *
  240: *     Compute workspace
  241: *      (Note: Comments in the code beginning "Workspace:" describe the
  242: *       minimal amount of workspace needed at that point in the code,
  243: *       as well as the preferred amount for good performance.
  244: *       NB refers to the optimal block size for the immediately
  245: *       following subroutine, as returned by ILAENV.)
  246: *
  247:       IF( INFO.EQ.0 ) THEN
  248:          MINWRK = 1
  249:          MAXWRK = 1
  250:          IF( MINMN.GT.0 ) THEN
  251:             MM = M
  252:             MNTHR = ILAENV( 6, 'DGELSS', ' ', M, N, NRHS, -1 )
  253:             IF( M.GE.N .AND. M.GE.MNTHR ) THEN
  254: *
  255: *              Path 1a - overdetermined, with many more rows than
  256: *                        columns
  257: *
  258: *              Compute space needed for DGEQRF
  259:                CALL DGEQRF( M, N, A, LDA, DUM(1), DUM(1), -1, INFO )
  260:                LWORK_DGEQRF=DUM(1)
  261: *              Compute space needed for DORMQR
  262:                CALL DORMQR( 'L', 'T', M, NRHS, N, A, LDA, DUM(1), B,
  263:      $                   LDB, DUM(1), -1, INFO )
  264:                LWORK_DORMQR=DUM(1)
  265:                MM = N
  266:                MAXWRK = MAX( MAXWRK, N + LWORK_DGEQRF )
  267:                MAXWRK = MAX( MAXWRK, N + LWORK_DORMQR )
  268:             END IF
  269:             IF( M.GE.N ) THEN
  270: *
  271: *              Path 1 - overdetermined or exactly determined
  272: *
  273: *              Compute workspace needed for DBDSQR
  274: *
  275:                BDSPAC = MAX( 1, 5*N )
  276: *              Compute space needed for DGEBRD
  277:                CALL DGEBRD( MM, N, A, LDA, S, DUM(1), DUM(1),
  278:      $                      DUM(1), DUM(1), -1, INFO )
  279:                LWORK_DGEBRD=DUM(1)
  280: *              Compute space needed for DORMBR
  281:                CALL DORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, DUM(1),
  282:      $                B, LDB, DUM(1), -1, INFO )
  283:                LWORK_DORMBR=DUM(1)
  284: *              Compute space needed for DORGBR
  285:                CALL DORGBR( 'P', N, N, N, A, LDA, DUM(1),
  286:      $                   DUM(1), -1, INFO )
  287:                LWORK_DORGBR=DUM(1)
  288: *              Compute total workspace needed
  289:                MAXWRK = MAX( MAXWRK, 3*N + LWORK_DGEBRD )
  290:                MAXWRK = MAX( MAXWRK, 3*N + LWORK_DORMBR )
  291:                MAXWRK = MAX( MAXWRK, 3*N + LWORK_DORGBR )
  292:                MAXWRK = MAX( MAXWRK, BDSPAC )
  293:                MAXWRK = MAX( MAXWRK, N*NRHS )
  294:                MINWRK = MAX( 3*N + MM, 3*N + NRHS, BDSPAC )
  295:                MAXWRK = MAX( MINWRK, MAXWRK )
  296:             END IF
  297:             IF( N.GT.M ) THEN
  298: *
  299: *              Compute workspace needed for DBDSQR
  300: *
  301:                BDSPAC = MAX( 1, 5*M )
  302:                MINWRK = MAX( 3*M+NRHS, 3*M+N, BDSPAC )
  303:                IF( N.GE.MNTHR ) THEN
  304: *
  305: *                 Path 2a - underdetermined, with many more columns
  306: *                 than rows
  307: *
  308: *                 Compute space needed for DGELQF
  309:                   CALL DGELQF( M, N, A, LDA, DUM(1), DUM(1),
  310:      $                -1, INFO )
  311:                   LWORK_DGELQF=DUM(1)
  312: *                 Compute space needed for DGEBRD
  313:                   CALL DGEBRD( M, M, A, LDA, S, DUM(1), DUM(1),
  314:      $                      DUM(1), DUM(1), -1, INFO )
  315:                   LWORK_DGEBRD=DUM(1)
  316: *                 Compute space needed for DORMBR
  317:                   CALL DORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA,
  318:      $                DUM(1), B, LDB, DUM(1), -1, INFO )
  319:                   LWORK_DORMBR=DUM(1)
  320: *                 Compute space needed for DORGBR
  321:                   CALL DORGBR( 'P', M, M, M, A, LDA, DUM(1),
  322:      $                   DUM(1), -1, INFO )
  323:                   LWORK_DORGBR=DUM(1)
  324: *                 Compute space needed for DORMLQ
  325:                   CALL DORMLQ( 'L', 'T', N, NRHS, M, A, LDA, DUM(1),
  326:      $                 B, LDB, DUM(1), -1, INFO )
  327:                   LWORK_DORMLQ=DUM(1)
  328: *                 Compute total workspace needed
  329:                   MAXWRK = M + LWORK_DGELQF
  330:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + LWORK_DGEBRD )
  331:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + LWORK_DORMBR )
  332:                   MAXWRK = MAX( MAXWRK, M*M + 4*M + LWORK_DORGBR )
  333:                   MAXWRK = MAX( MAXWRK, M*M + M + BDSPAC )
  334:                   IF( NRHS.GT.1 ) THEN
  335:                      MAXWRK = MAX( MAXWRK, M*M + M + M*NRHS )
  336:                   ELSE
  337:                      MAXWRK = MAX( MAXWRK, M*M + 2*M )
  338:                   END IF
  339:                   MAXWRK = MAX( MAXWRK, M + LWORK_DORMLQ )
  340:                ELSE
  341: *
  342: *                 Path 2 - underdetermined
  343: *
  344: *                 Compute space needed for DGEBRD
  345:                   CALL DGEBRD( M, N, A, LDA, S, DUM(1), DUM(1),
  346:      $                      DUM(1), DUM(1), -1, INFO )
  347:                   LWORK_DGEBRD=DUM(1)
  348: *                 Compute space needed for DORMBR
  349:                   CALL DORMBR( 'Q', 'L', 'T', M, NRHS, M, A, LDA,
  350:      $                DUM(1), B, LDB, DUM(1), -1, INFO )
  351:                   LWORK_DORMBR=DUM(1)
  352: *                 Compute space needed for DORGBR
  353:                   CALL DORGBR( 'P', M, N, M, A, LDA, DUM(1),
  354:      $                   DUM(1), -1, INFO )
  355:                   LWORK_DORGBR=DUM(1)
  356:                   MAXWRK = 3*M + LWORK_DGEBRD
  357:                   MAXWRK = MAX( MAXWRK, 3*M + LWORK_DORMBR )
  358:                   MAXWRK = MAX( MAXWRK, 3*M + LWORK_DORGBR )
  359:                   MAXWRK = MAX( MAXWRK, BDSPAC )
  360:                   MAXWRK = MAX( MAXWRK, N*NRHS )
  361:                END IF
  362:             END IF
  363:             MAXWRK = MAX( MINWRK, MAXWRK )
  364:          END IF
  365:          WORK( 1 ) = MAXWRK
  366: *
  367:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY )
  368:      $      INFO = -12
  369:       END IF
  370: *
  371:       IF( INFO.NE.0 ) THEN
  372:          CALL XERBLA( 'DGELSS', -INFO )
  373:          RETURN
  374:       ELSE IF( LQUERY ) THEN
  375:          RETURN
  376:       END IF
  377: *
  378: *     Quick return if possible
  379: *
  380:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  381:          RANK = 0
  382:          RETURN
  383:       END IF
  384: *
  385: *     Get machine parameters
  386: *
  387:       EPS = DLAMCH( 'P' )
  388:       SFMIN = DLAMCH( 'S' )
  389:       SMLNUM = SFMIN / EPS
  390:       BIGNUM = ONE / SMLNUM
  391:       CALL DLABAD( SMLNUM, BIGNUM )
  392: *
  393: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  394: *
  395:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
  396:       IASCL = 0
  397:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  398: *
  399: *        Scale matrix norm up to SMLNUM
  400: *
  401:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  402:          IASCL = 1
  403:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  404: *
  405: *        Scale matrix norm down to BIGNUM
  406: *
  407:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  408:          IASCL = 2
  409:       ELSE IF( ANRM.EQ.ZERO ) THEN
  410: *
  411: *        Matrix all zero. Return zero solution.
  412: *
  413:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
  414:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, MINMN )
  415:          RANK = 0
  416:          GO TO 70
  417:       END IF
  418: *
  419: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  420: *
  421:       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
  422:       IBSCL = 0
  423:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  424: *
  425: *        Scale matrix norm up to SMLNUM
  426: *
  427:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
  428:          IBSCL = 1
  429:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  430: *
  431: *        Scale matrix norm down to BIGNUM
  432: *
  433:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
  434:          IBSCL = 2
  435:       END IF
  436: *
  437: *     Overdetermined case
  438: *
  439:       IF( M.GE.N ) THEN
  440: *
  441: *        Path 1 - overdetermined or exactly determined
  442: *
  443:          MM = M
  444:          IF( M.GE.MNTHR ) THEN
  445: *
  446: *           Path 1a - overdetermined, with many more rows than columns
  447: *
  448:             MM = N
  449:             ITAU = 1
  450:             IWORK = ITAU + N
  451: *
  452: *           Compute A=Q*R
  453: *           (Workspace: need 2*N, prefer N+N*NB)
  454: *
  455:             CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
  456:      $                   LWORK-IWORK+1, INFO )
  457: *
  458: *           Multiply B by transpose(Q)
  459: *           (Workspace: need N+NRHS, prefer N+NRHS*NB)
  460: *
  461:             CALL DORMQR( 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAU ), B,
  462:      $                   LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
  463: *
  464: *           Zero out below R
  465: *
  466:             IF( N.GT.1 )
  467:      $         CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
  468:          END IF
  469: *
  470:          IE = 1
  471:          ITAUQ = IE + N
  472:          ITAUP = ITAUQ + N
  473:          IWORK = ITAUP + N
  474: *
  475: *        Bidiagonalize R in A
  476: *        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
  477: *
  478:          CALL DGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  479:      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  480:      $                INFO )
  481: *
  482: *        Multiply B by transpose of left bidiagonalizing vectors of R
  483: *        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
  484: *
  485:          CALL DORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
  486:      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
  487: *
  488: *        Generate right bidiagonalizing vectors of R in A
  489: *        (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB)
  490: *
  491:          CALL DORGBR( 'P', N, N, N, A, LDA, WORK( ITAUP ),
  492:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
  493:          IWORK = IE + N
  494: *
  495: *        Perform bidiagonal QR iteration
  496: *          multiply B by transpose of left singular vectors
  497: *          compute right singular vectors in A
  498: *        (Workspace: need BDSPAC)
  499: *
  500:          CALL DBDSQR( 'U', N, N, 0, NRHS, S, WORK( IE ), A, LDA, DUM,
  501:      $                1, B, LDB, WORK( IWORK ), INFO )
  502:          IF( INFO.NE.0 )
  503:      $      GO TO 70
  504: *
  505: *        Multiply B by reciprocals of singular values
  506: *
  507:          THR = MAX( RCOND*S( 1 ), SFMIN )
  508:          IF( RCOND.LT.ZERO )
  509:      $      THR = MAX( EPS*S( 1 ), SFMIN )
  510:          RANK = 0
  511:          DO 10 I = 1, N
  512:             IF( S( I ).GT.THR ) THEN
  513:                CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB )
  514:                RANK = RANK + 1
  515:             ELSE
  516:                CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
  517:             END IF
  518:    10    CONTINUE
  519: *
  520: *        Multiply B by right singular vectors
  521: *        (Workspace: need N, prefer N*NRHS)
  522: *
  523:          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
  524:             CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, A, LDA, B, LDB, ZERO,
  525:      $                  WORK, LDB )
  526:             CALL DLACPY( 'G', N, NRHS, WORK, LDB, B, LDB )
  527:          ELSE IF( NRHS.GT.1 ) THEN
  528:             CHUNK = LWORK / N
  529:             DO 20 I = 1, NRHS, CHUNK
  530:                BL = MIN( NRHS-I+1, CHUNK )
  531:                CALL DGEMM( 'T', 'N', N, BL, N, ONE, A, LDA, B( 1, I ),
  532:      $                     LDB, ZERO, WORK, N )
  533:                CALL DLACPY( 'G', N, BL, WORK, N, B( 1, I ), LDB )
  534:    20       CONTINUE
  535:          ELSE
  536:             CALL DGEMV( 'T', N, N, ONE, A, LDA, B, 1, ZERO, WORK, 1 )
  537:             CALL DCOPY( N, WORK, 1, B, 1 )
  538:          END IF
  539: *
  540:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
  541:      $         MAX( M, 2*M-4, NRHS, N-3*M ) ) THEN
  542: *
  543: *        Path 2a - underdetermined, with many more columns than rows
  544: *        and sufficient workspace for an efficient algorithm
  545: *
  546:          LDWORK = M
  547:          IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
  548:      $       M*LDA+M+M*NRHS ) )LDWORK = LDA
  549:          ITAU = 1
  550:          IWORK = M + 1
  551: *
  552: *        Compute A=L*Q
  553: *        (Workspace: need 2*M, prefer M+M*NB)
  554: *
  555:          CALL DGELQF( M, N, A, LDA, WORK( ITAU ), WORK( IWORK ),
  556:      $                LWORK-IWORK+1, INFO )
  557:          IL = IWORK
  558: *
  559: *        Copy L to WORK(IL), zeroing out above it
  560: *
  561:          CALL DLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
  562:          CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ),
  563:      $                LDWORK )
  564:          IE = IL + LDWORK*M
  565:          ITAUQ = IE + M
  566:          ITAUP = ITAUQ + M
  567:          IWORK = ITAUP + M
  568: *
  569: *        Bidiagonalize L in WORK(IL)
  570: *        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
  571: *
  572:          CALL DGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ),
  573:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( IWORK ),
  574:      $                LWORK-IWORK+1, INFO )
  575: *
  576: *        Multiply B by transpose of left bidiagonalizing vectors of L
  577: *        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
  578: *
  579:          CALL DORMBR( 'Q', 'L', 'T', M, NRHS, M, WORK( IL ), LDWORK,
  580:      $                WORK( ITAUQ ), B, LDB, WORK( IWORK ),
  581:      $                LWORK-IWORK+1, INFO )
  582: *
  583: *        Generate right bidiagonalizing vectors of R in WORK(IL)
  584: *        (Workspace: need M*M+5*M-1, prefer M*M+4*M+(M-1)*NB)
  585: *
  586:          CALL DORGBR( 'P', M, M, M, WORK( IL ), LDWORK, WORK( ITAUP ),
  587:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
  588:          IWORK = IE + M
  589: *
  590: *        Perform bidiagonal QR iteration,
  591: *           computing right singular vectors of L in WORK(IL) and
  592: *           multiplying B by transpose of left singular vectors
  593: *        (Workspace: need M*M+M+BDSPAC)
  594: *
  595:          CALL DBDSQR( 'U', M, M, 0, NRHS, S, WORK( IE ), WORK( IL ),
  596:      $                LDWORK, A, LDA, B, LDB, WORK( IWORK ), INFO )
  597:          IF( INFO.NE.0 )
  598:      $      GO TO 70
  599: *
  600: *        Multiply B by reciprocals of singular values
  601: *
  602:          THR = MAX( RCOND*S( 1 ), SFMIN )
  603:          IF( RCOND.LT.ZERO )
  604:      $      THR = MAX( EPS*S( 1 ), SFMIN )
  605:          RANK = 0
  606:          DO 30 I = 1, M
  607:             IF( S( I ).GT.THR ) THEN
  608:                CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB )
  609:                RANK = RANK + 1
  610:             ELSE
  611:                CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
  612:             END IF
  613:    30    CONTINUE
  614:          IWORK = IE
  615: *
  616: *        Multiply B by right singular vectors of L in WORK(IL)
  617: *        (Workspace: need M*M+2*M, prefer M*M+M+M*NRHS)
  618: *
  619:          IF( LWORK.GE.LDB*NRHS+IWORK-1 .AND. NRHS.GT.1 ) THEN
  620:             CALL DGEMM( 'T', 'N', M, NRHS, M, ONE, WORK( IL ), LDWORK,
  621:      $                  B, LDB, ZERO, WORK( IWORK ), LDB )
  622:             CALL DLACPY( 'G', M, NRHS, WORK( IWORK ), LDB, B, LDB )
  623:          ELSE IF( NRHS.GT.1 ) THEN
  624:             CHUNK = ( LWORK-IWORK+1 ) / M
  625:             DO 40 I = 1, NRHS, CHUNK
  626:                BL = MIN( NRHS-I+1, CHUNK )
  627:                CALL DGEMM( 'T', 'N', M, BL, M, ONE, WORK( IL ), LDWORK,
  628:      $                     B( 1, I ), LDB, ZERO, WORK( IWORK ), M )
  629:                CALL DLACPY( 'G', M, BL, WORK( IWORK ), M, B( 1, I ),
  630:      $                      LDB )
  631:    40       CONTINUE
  632:          ELSE
  633:             CALL DGEMV( 'T', M, M, ONE, WORK( IL ), LDWORK, B( 1, 1 ),
  634:      $                  1, ZERO, WORK( IWORK ), 1 )
  635:             CALL DCOPY( M, WORK( IWORK ), 1, B( 1, 1 ), 1 )
  636:          END IF
  637: *
  638: *        Zero out below first M rows of B
  639: *
  640:          CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
  641:          IWORK = ITAU + M
  642: *
  643: *        Multiply transpose(Q) by B
  644: *        (Workspace: need M+NRHS, prefer M+NRHS*NB)
  645: *
  646:          CALL DORMLQ( 'L', 'T', N, NRHS, M, A, LDA, WORK( ITAU ), B,
  647:      $                LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
  648: *
  649:       ELSE
  650: *
  651: *        Path 2 - remaining underdetermined cases
  652: *
  653:          IE = 1
  654:          ITAUQ = IE + M
  655:          ITAUP = ITAUQ + M
  656:          IWORK = ITAUP + M
  657: *
  658: *        Bidiagonalize A
  659: *        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
  660: *
  661:          CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  662:      $                WORK( ITAUP ), WORK( IWORK ), LWORK-IWORK+1,
  663:      $                INFO )
  664: *
  665: *        Multiply B by transpose of left bidiagonalizing vectors
  666: *        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
  667: *
  668:          CALL DORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAUQ ),
  669:      $                B, LDB, WORK( IWORK ), LWORK-IWORK+1, INFO )
  670: *
  671: *        Generate right bidiagonalizing vectors in A
  672: *        (Workspace: need 4*M, prefer 3*M+M*NB)
  673: *
  674:          CALL DORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
  675:      $                WORK( IWORK ), LWORK-IWORK+1, INFO )
  676:          IWORK = IE + M
  677: *
  678: *        Perform bidiagonal QR iteration,
  679: *           computing right singular vectors of A in A and
  680: *           multiplying B by transpose of left singular vectors
  681: *        (Workspace: need BDSPAC)
  682: *
  683:          CALL DBDSQR( 'L', M, N, 0, NRHS, S, WORK( IE ), A, LDA, DUM,
  684:      $                1, B, LDB, WORK( IWORK ), INFO )
  685:          IF( INFO.NE.0 )
  686:      $      GO TO 70
  687: *
  688: *        Multiply B by reciprocals of singular values
  689: *
  690:          THR = MAX( RCOND*S( 1 ), SFMIN )
  691:          IF( RCOND.LT.ZERO )
  692:      $      THR = MAX( EPS*S( 1 ), SFMIN )
  693:          RANK = 0
  694:          DO 50 I = 1, M
  695:             IF( S( I ).GT.THR ) THEN
  696:                CALL DRSCL( NRHS, S( I ), B( I, 1 ), LDB )
  697:                RANK = RANK + 1
  698:             ELSE
  699:                CALL DLASET( 'F', 1, NRHS, ZERO, ZERO, B( I, 1 ), LDB )
  700:             END IF
  701:    50    CONTINUE
  702: *
  703: *        Multiply B by right singular vectors of A
  704: *        (Workspace: need N, prefer N*NRHS)
  705: *
  706:          IF( LWORK.GE.LDB*NRHS .AND. NRHS.GT.1 ) THEN
  707:             CALL DGEMM( 'T', 'N', N, NRHS, M, ONE, A, LDA, B, LDB, ZERO,
  708:      $                  WORK, LDB )
  709:             CALL DLACPY( 'F', N, NRHS, WORK, LDB, B, LDB )
  710:          ELSE IF( NRHS.GT.1 ) THEN
  711:             CHUNK = LWORK / N
  712:             DO 60 I = 1, NRHS, CHUNK
  713:                BL = MIN( NRHS-I+1, CHUNK )
  714:                CALL DGEMM( 'T', 'N', N, BL, M, ONE, A, LDA, B( 1, I ),
  715:      $                     LDB, ZERO, WORK, N )
  716:                CALL DLACPY( 'F', N, BL, WORK, N, B( 1, I ), LDB )
  717:    60       CONTINUE
  718:          ELSE
  719:             CALL DGEMV( 'T', M, N, ONE, A, LDA, B, 1, ZERO, WORK, 1 )
  720:             CALL DCOPY( N, WORK, 1, B, 1 )
  721:          END IF
  722:       END IF
  723: *
  724: *     Undo scaling
  725: *
  726:       IF( IASCL.EQ.1 ) THEN
  727:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
  728:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
  729:      $                INFO )
  730:       ELSE IF( IASCL.EQ.2 ) THEN
  731:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
  732:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
  733:      $                INFO )
  734:       END IF
  735:       IF( IBSCL.EQ.1 ) THEN
  736:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
  737:       ELSE IF( IBSCL.EQ.2 ) THEN
  738:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
  739:       END IF
  740: *
  741:    70 CONTINUE
  742:       WORK( 1 ) = MAXWRK
  743:       RETURN
  744: *
  745: *     End of DGELSS
  746: *
  747:       END

CVSweb interface <joel.bertrand@systella.fr>