File:  [local] / rpl / lapack / lapack / dgelsd.f
Revision 1.19: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:48 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> DGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGELSD + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsd.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsd.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsd.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
   22: *                          WORK, LWORK, IWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
   26: *       DOUBLE PRECISION   RCOND
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IWORK( * )
   30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DGELSD computes the minimum-norm solution to a real linear least
   40: *> squares problem:
   41: *>     minimize 2-norm(| b - A*x |)
   42: *> using the singular value decomposition (SVD) of A. A is an M-by-N
   43: *> matrix which may be rank-deficient.
   44: *>
   45: *> Several right hand side vectors b and solution vectors x can be
   46: *> handled in a single call; they are stored as the columns of the
   47: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   48: *> matrix X.
   49: *>
   50: *> The problem is solved in three steps:
   51: *> (1) Reduce the coefficient matrix A to bidiagonal form with
   52: *>     Householder transformations, reducing the original problem
   53: *>     into a "bidiagonal least squares problem" (BLS)
   54: *> (2) Solve the BLS using a divide and conquer approach.
   55: *> (3) Apply back all the Householder transformations to solve
   56: *>     the original least squares problem.
   57: *>
   58: *> The effective rank of A is determined by treating as zero those
   59: *> singular values which are less than RCOND times the largest singular
   60: *> value.
   61: *>
   62: *> The divide and conquer algorithm makes very mild assumptions about
   63: *> floating point arithmetic. It will work on machines with a guard
   64: *> digit in add/subtract, or on those binary machines without guard
   65: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
   66: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
   67: *> without guard digits, but we know of none.
   68: *> \endverbatim
   69: *
   70: *  Arguments:
   71: *  ==========
   72: *
   73: *> \param[in] M
   74: *> \verbatim
   75: *>          M is INTEGER
   76: *>          The number of rows of A. M >= 0.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is INTEGER
   82: *>          The number of columns of A. N >= 0.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] NRHS
   86: *> \verbatim
   87: *>          NRHS is INTEGER
   88: *>          The number of right hand sides, i.e., the number of columns
   89: *>          of the matrices B and X. NRHS >= 0.
   90: *> \endverbatim
   91: *>
   92: *> \param[in,out] A
   93: *> \verbatim
   94: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   95: *>          On entry, the M-by-N matrix A.
   96: *>          On exit, A has been destroyed.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] LDA
  100: *> \verbatim
  101: *>          LDA is INTEGER
  102: *>          The leading dimension of the array A.  LDA >= max(1,M).
  103: *> \endverbatim
  104: *>
  105: *> \param[in,out] B
  106: *> \verbatim
  107: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  108: *>          On entry, the M-by-NRHS right hand side matrix B.
  109: *>          On exit, B is overwritten by the N-by-NRHS solution
  110: *>          matrix X.  If m >= n and RANK = n, the residual
  111: *>          sum-of-squares for the solution in the i-th column is given
  112: *>          by the sum of squares of elements n+1:m in that column.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] LDB
  116: *> \verbatim
  117: *>          LDB is INTEGER
  118: *>          The leading dimension of the array B. LDB >= max(1,max(M,N)).
  119: *> \endverbatim
  120: *>
  121: *> \param[out] S
  122: *> \verbatim
  123: *>          S is DOUBLE PRECISION array, dimension (min(M,N))
  124: *>          The singular values of A in decreasing order.
  125: *>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
  126: *> \endverbatim
  127: *>
  128: *> \param[in] RCOND
  129: *> \verbatim
  130: *>          RCOND is DOUBLE PRECISION
  131: *>          RCOND is used to determine the effective rank of A.
  132: *>          Singular values S(i) <= RCOND*S(1) are treated as zero.
  133: *>          If RCOND < 0, machine precision is used instead.
  134: *> \endverbatim
  135: *>
  136: *> \param[out] RANK
  137: *> \verbatim
  138: *>          RANK is INTEGER
  139: *>          The effective rank of A, i.e., the number of singular values
  140: *>          which are greater than RCOND*S(1).
  141: *> \endverbatim
  142: *>
  143: *> \param[out] WORK
  144: *> \verbatim
  145: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  146: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  147: *> \endverbatim
  148: *>
  149: *> \param[in] LWORK
  150: *> \verbatim
  151: *>          LWORK is INTEGER
  152: *>          The dimension of the array WORK. LWORK must be at least 1.
  153: *>          The exact minimum amount of workspace needed depends on M,
  154: *>          N and NRHS. As long as LWORK is at least
  155: *>              12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
  156: *>          if M is greater than or equal to N or
  157: *>              12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
  158: *>          if M is less than N, the code will execute correctly.
  159: *>          SMLSIZ is returned by ILAENV and is equal to the maximum
  160: *>          size of the subproblems at the bottom of the computation
  161: *>          tree (usually about 25), and
  162: *>             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
  163: *>          For good performance, LWORK should generally be larger.
  164: *>
  165: *>          If LWORK = -1, then a workspace query is assumed; the routine
  166: *>          only calculates the optimal size of the WORK array, returns
  167: *>          this value as the first entry of the WORK array, and no error
  168: *>          message related to LWORK is issued by XERBLA.
  169: *> \endverbatim
  170: *>
  171: *> \param[out] IWORK
  172: *> \verbatim
  173: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  174: *>          LIWORK >= max(1, 3 * MINMN * NLVL + 11 * MINMN),
  175: *>          where MINMN = MIN( M,N ).
  176: *>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
  177: *> \endverbatim
  178: *>
  179: *> \param[out] INFO
  180: *> \verbatim
  181: *>          INFO is INTEGER
  182: *>          = 0:  successful exit
  183: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  184: *>          > 0:  the algorithm for computing the SVD failed to converge;
  185: *>                if INFO = i, i off-diagonal elements of an intermediate
  186: *>                bidiagonal form did not converge to zero.
  187: *> \endverbatim
  188: *
  189: *  Authors:
  190: *  ========
  191: *
  192: *> \author Univ. of Tennessee
  193: *> \author Univ. of California Berkeley
  194: *> \author Univ. of Colorado Denver
  195: *> \author NAG Ltd.
  196: *
  197: *> \ingroup doubleGEsolve
  198: *
  199: *> \par Contributors:
  200: *  ==================
  201: *>
  202: *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
  203: *>       California at Berkeley, USA \n
  204: *>     Osni Marques, LBNL/NERSC, USA \n
  205: *
  206: *  =====================================================================
  207:       SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
  208:      $                   WORK, LWORK, IWORK, INFO )
  209: *
  210: *  -- LAPACK driver routine --
  211: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  212: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  213: *
  214: *     .. Scalar Arguments ..
  215:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
  216:       DOUBLE PRECISION   RCOND
  217: *     ..
  218: *     .. Array Arguments ..
  219:       INTEGER            IWORK( * )
  220:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
  221: *     ..
  222: *
  223: *  =====================================================================
  224: *
  225: *     .. Parameters ..
  226:       DOUBLE PRECISION   ZERO, ONE, TWO
  227:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
  228: *     ..
  229: *     .. Local Scalars ..
  230:       LOGICAL            LQUERY
  231:       INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
  232:      $                   LDWORK, LIWORK, MAXMN, MAXWRK, MINMN, MINWRK,
  233:      $                   MM, MNTHR, NLVL, NWORK, SMLSIZ, WLALSD
  234:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
  235: *     ..
  236: *     .. External Subroutines ..
  237:       EXTERNAL           DGEBRD, DGELQF, DGEQRF, DLABAD, DLACPY, DLALSD,
  238:      $                   DLASCL, DLASET, DORMBR, DORMLQ, DORMQR, XERBLA
  239: *     ..
  240: *     .. External Functions ..
  241:       INTEGER            ILAENV
  242:       DOUBLE PRECISION   DLAMCH, DLANGE
  243:       EXTERNAL           ILAENV, DLAMCH, DLANGE
  244: *     ..
  245: *     .. Intrinsic Functions ..
  246:       INTRINSIC          DBLE, INT, LOG, MAX, MIN
  247: *     ..
  248: *     .. Executable Statements ..
  249: *
  250: *     Test the input arguments.
  251: *
  252:       INFO = 0
  253:       MINMN = MIN( M, N )
  254:       MAXMN = MAX( M, N )
  255:       MNTHR = ILAENV( 6, 'DGELSD', ' ', M, N, NRHS, -1 )
  256:       LQUERY = ( LWORK.EQ.-1 )
  257:       IF( M.LT.0 ) THEN
  258:          INFO = -1
  259:       ELSE IF( N.LT.0 ) THEN
  260:          INFO = -2
  261:       ELSE IF( NRHS.LT.0 ) THEN
  262:          INFO = -3
  263:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  264:          INFO = -5
  265:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
  266:          INFO = -7
  267:       END IF
  268: *
  269:       SMLSIZ = ILAENV( 9, 'DGELSD', ' ', 0, 0, 0, 0 )
  270: *
  271: *     Compute workspace.
  272: *     (Note: Comments in the code beginning "Workspace:" describe the
  273: *     minimal amount of workspace needed at that point in the code,
  274: *     as well as the preferred amount for good performance.
  275: *     NB refers to the optimal block size for the immediately
  276: *     following subroutine, as returned by ILAENV.)
  277: *
  278:       MINWRK = 1
  279:       LIWORK = 1
  280:       MINMN = MAX( 1, MINMN )
  281:       NLVL = MAX( INT( LOG( DBLE( MINMN ) / DBLE( SMLSIZ+1 ) ) /
  282:      $       LOG( TWO ) ) + 1, 0 )
  283: *
  284:       IF( INFO.EQ.0 ) THEN
  285:          MAXWRK = 0
  286:          LIWORK = 3*MINMN*NLVL + 11*MINMN
  287:          MM = M
  288:          IF( M.GE.N .AND. M.GE.MNTHR ) THEN
  289: *
  290: *           Path 1a - overdetermined, with many more rows than columns.
  291: *
  292:             MM = N
  293:             MAXWRK = MAX( MAXWRK, N+N*ILAENV( 1, 'DGEQRF', ' ', M, N,
  294:      $               -1, -1 ) )
  295:             MAXWRK = MAX( MAXWRK, N+NRHS*
  296:      $               ILAENV( 1, 'DORMQR', 'LT', M, NRHS, N, -1 ) )
  297:          END IF
  298:          IF( M.GE.N ) THEN
  299: *
  300: *           Path 1 - overdetermined or exactly determined.
  301: *
  302:             MAXWRK = MAX( MAXWRK, 3*N+( MM+N )*
  303:      $               ILAENV( 1, 'DGEBRD', ' ', MM, N, -1, -1 ) )
  304:             MAXWRK = MAX( MAXWRK, 3*N+NRHS*
  305:      $               ILAENV( 1, 'DORMBR', 'QLT', MM, NRHS, N, -1 ) )
  306:             MAXWRK = MAX( MAXWRK, 3*N+( N-1 )*
  307:      $               ILAENV( 1, 'DORMBR', 'PLN', N, NRHS, N, -1 ) )
  308:             WLALSD = 9*N+2*N*SMLSIZ+8*N*NLVL+N*NRHS+(SMLSIZ+1)**2
  309:             MAXWRK = MAX( MAXWRK, 3*N+WLALSD )
  310:             MINWRK = MAX( 3*N+MM, 3*N+NRHS, 3*N+WLALSD )
  311:          END IF
  312:          IF( N.GT.M ) THEN
  313:             WLALSD = 9*M+2*M*SMLSIZ+8*M*NLVL+M*NRHS+(SMLSIZ+1)**2
  314:             IF( N.GE.MNTHR ) THEN
  315: *
  316: *              Path 2a - underdetermined, with many more columns
  317: *              than rows.
  318: *
  319:                MAXWRK = M + M*ILAENV( 1, 'DGELQF', ' ', M, N, -1, -1 )
  320:                MAXWRK = MAX( MAXWRK, M*M+4*M+2*M*
  321:      $                  ILAENV( 1, 'DGEBRD', ' ', M, M, -1, -1 ) )
  322:                MAXWRK = MAX( MAXWRK, M*M+4*M+NRHS*
  323:      $                  ILAENV( 1, 'DORMBR', 'QLT', M, NRHS, M, -1 ) )
  324:                MAXWRK = MAX( MAXWRK, M*M+4*M+( M-1 )*
  325:      $                  ILAENV( 1, 'DORMBR', 'PLN', M, NRHS, M, -1 ) )
  326:                IF( NRHS.GT.1 ) THEN
  327:                   MAXWRK = MAX( MAXWRK, M*M+M+M*NRHS )
  328:                ELSE
  329:                   MAXWRK = MAX( MAXWRK, M*M+2*M )
  330:                END IF
  331:                MAXWRK = MAX( MAXWRK, M+NRHS*
  332:      $                  ILAENV( 1, 'DORMLQ', 'LT', N, NRHS, M, -1 ) )
  333:                MAXWRK = MAX( MAXWRK, M*M+4*M+WLALSD )
  334: !     XXX: Ensure the Path 2a case below is triggered.  The workspace
  335: !     calculation should use queries for all routines eventually.
  336:                MAXWRK = MAX( MAXWRK,
  337:      $              4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
  338:             ELSE
  339: *
  340: *              Path 2 - remaining underdetermined cases.
  341: *
  342:                MAXWRK = 3*M + ( N+M )*ILAENV( 1, 'DGEBRD', ' ', M, N,
  343:      $                  -1, -1 )
  344:                MAXWRK = MAX( MAXWRK, 3*M+NRHS*
  345:      $                  ILAENV( 1, 'DORMBR', 'QLT', M, NRHS, N, -1 ) )
  346:                MAXWRK = MAX( MAXWRK, 3*M+M*
  347:      $                  ILAENV( 1, 'DORMBR', 'PLN', N, NRHS, M, -1 ) )
  348:                MAXWRK = MAX( MAXWRK, 3*M+WLALSD )
  349:             END IF
  350:             MINWRK = MAX( 3*M+NRHS, 3*M+M, 3*M+WLALSD )
  351:          END IF
  352:          MINWRK = MIN( MINWRK, MAXWRK )
  353:          WORK( 1 ) = MAXWRK
  354:          IWORK( 1 ) = LIWORK
  355: 
  356:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  357:             INFO = -12
  358:          END IF
  359:       END IF
  360: *
  361:       IF( INFO.NE.0 ) THEN
  362:          CALL XERBLA( 'DGELSD', -INFO )
  363:          RETURN
  364:       ELSE IF( LQUERY ) THEN
  365:          GO TO 10
  366:       END IF
  367: *
  368: *     Quick return if possible.
  369: *
  370:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  371:          RANK = 0
  372:          RETURN
  373:       END IF
  374: *
  375: *     Get machine parameters.
  376: *
  377:       EPS = DLAMCH( 'P' )
  378:       SFMIN = DLAMCH( 'S' )
  379:       SMLNUM = SFMIN / EPS
  380:       BIGNUM = ONE / SMLNUM
  381:       CALL DLABAD( SMLNUM, BIGNUM )
  382: *
  383: *     Scale A if max entry outside range [SMLNUM,BIGNUM].
  384: *
  385:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
  386:       IASCL = 0
  387:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  388: *
  389: *        Scale matrix norm up to SMLNUM.
  390: *
  391:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  392:          IASCL = 1
  393:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  394: *
  395: *        Scale matrix norm down to BIGNUM.
  396: *
  397:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  398:          IASCL = 2
  399:       ELSE IF( ANRM.EQ.ZERO ) THEN
  400: *
  401: *        Matrix all zero. Return zero solution.
  402: *
  403:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
  404:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
  405:          RANK = 0
  406:          GO TO 10
  407:       END IF
  408: *
  409: *     Scale B if max entry outside range [SMLNUM,BIGNUM].
  410: *
  411:       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
  412:       IBSCL = 0
  413:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  414: *
  415: *        Scale matrix norm up to SMLNUM.
  416: *
  417:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
  418:          IBSCL = 1
  419:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  420: *
  421: *        Scale matrix norm down to BIGNUM.
  422: *
  423:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
  424:          IBSCL = 2
  425:       END IF
  426: *
  427: *     If M < N make sure certain entries of B are zero.
  428: *
  429:       IF( M.LT.N )
  430:      $   CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
  431: *
  432: *     Overdetermined case.
  433: *
  434:       IF( M.GE.N ) THEN
  435: *
  436: *        Path 1 - overdetermined or exactly determined.
  437: *
  438:          MM = M
  439:          IF( M.GE.MNTHR ) THEN
  440: *
  441: *           Path 1a - overdetermined, with many more rows than columns.
  442: *
  443:             MM = N
  444:             ITAU = 1
  445:             NWORK = ITAU + N
  446: *
  447: *           Compute A=Q*R.
  448: *           (Workspace: need 2*N, prefer N+N*NB)
  449: *
  450:             CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  451:      $                   LWORK-NWORK+1, INFO )
  452: *
  453: *           Multiply B by transpose(Q).
  454: *           (Workspace: need N+NRHS, prefer N+NRHS*NB)
  455: *
  456:             CALL DORMQR( 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAU ), B,
  457:      $                   LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  458: *
  459: *           Zero out below R.
  460: *
  461:             IF( N.GT.1 ) THEN
  462:                CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
  463:             END IF
  464:          END IF
  465: *
  466:          IE = 1
  467:          ITAUQ = IE + N
  468:          ITAUP = ITAUQ + N
  469:          NWORK = ITAUP + N
  470: *
  471: *        Bidiagonalize R in A.
  472: *        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
  473: *
  474:          CALL DGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  475:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  476:      $                INFO )
  477: *
  478: *        Multiply B by transpose of left bidiagonalizing vectors of R.
  479: *        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
  480: *
  481:          CALL DORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
  482:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  483: *
  484: *        Solve the bidiagonal least squares problem.
  485: *
  486:          CALL DLALSD( 'U', SMLSIZ, N, NRHS, S, WORK( IE ), B, LDB,
  487:      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
  488:          IF( INFO.NE.0 ) THEN
  489:             GO TO 10
  490:          END IF
  491: *
  492: *        Multiply B by right bidiagonalizing vectors of R.
  493: *
  494:          CALL DORMBR( 'P', 'L', 'N', N, NRHS, N, A, LDA, WORK( ITAUP ),
  495:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  496: *
  497:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
  498:      $         MAX( M, 2*M-4, NRHS, N-3*M, WLALSD ) ) THEN
  499: *
  500: *        Path 2a - underdetermined, with many more columns than rows
  501: *        and sufficient workspace for an efficient algorithm.
  502: *
  503:          LDWORK = M
  504:          IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
  505:      $       M*LDA+M+M*NRHS, 4*M+M*LDA+WLALSD ) )LDWORK = LDA
  506:          ITAU = 1
  507:          NWORK = M + 1
  508: *
  509: *        Compute A=L*Q.
  510: *        (Workspace: need 2*M, prefer M+M*NB)
  511: *
  512:          CALL DGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  513:      $                LWORK-NWORK+1, INFO )
  514:          IL = NWORK
  515: *
  516: *        Copy L to WORK(IL), zeroing out above its diagonal.
  517: *
  518:          CALL DLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
  519:          CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ),
  520:      $                LDWORK )
  521:          IE = IL + LDWORK*M
  522:          ITAUQ = IE + M
  523:          ITAUP = ITAUQ + M
  524:          NWORK = ITAUP + M
  525: *
  526: *        Bidiagonalize L in WORK(IL).
  527: *        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
  528: *
  529:          CALL DGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ),
  530:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
  531:      $                LWORK-NWORK+1, INFO )
  532: *
  533: *        Multiply B by transpose of left bidiagonalizing vectors of L.
  534: *        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
  535: *
  536:          CALL DORMBR( 'Q', 'L', 'T', M, NRHS, M, WORK( IL ), LDWORK,
  537:      $                WORK( ITAUQ ), B, LDB, WORK( NWORK ),
  538:      $                LWORK-NWORK+1, INFO )
  539: *
  540: *        Solve the bidiagonal least squares problem.
  541: *
  542:          CALL DLALSD( 'U', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
  543:      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
  544:          IF( INFO.NE.0 ) THEN
  545:             GO TO 10
  546:          END IF
  547: *
  548: *        Multiply B by right bidiagonalizing vectors of L.
  549: *
  550:          CALL DORMBR( 'P', 'L', 'N', M, NRHS, M, WORK( IL ), LDWORK,
  551:      $                WORK( ITAUP ), B, LDB, WORK( NWORK ),
  552:      $                LWORK-NWORK+1, INFO )
  553: *
  554: *        Zero out below first M rows of B.
  555: *
  556:          CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
  557:          NWORK = ITAU + M
  558: *
  559: *        Multiply transpose(Q) by B.
  560: *        (Workspace: need M+NRHS, prefer M+NRHS*NB)
  561: *
  562:          CALL DORMLQ( 'L', 'T', N, NRHS, M, A, LDA, WORK( ITAU ), B,
  563:      $                LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  564: *
  565:       ELSE
  566: *
  567: *        Path 2 - remaining underdetermined cases.
  568: *
  569:          IE = 1
  570:          ITAUQ = IE + M
  571:          ITAUP = ITAUQ + M
  572:          NWORK = ITAUP + M
  573: *
  574: *        Bidiagonalize A.
  575: *        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
  576: *
  577:          CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  578:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  579:      $                INFO )
  580: *
  581: *        Multiply B by transpose of left bidiagonalizing vectors.
  582: *        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
  583: *
  584:          CALL DORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAUQ ),
  585:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  586: *
  587: *        Solve the bidiagonal least squares problem.
  588: *
  589:          CALL DLALSD( 'L', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
  590:      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
  591:          IF( INFO.NE.0 ) THEN
  592:             GO TO 10
  593:          END IF
  594: *
  595: *        Multiply B by right bidiagonalizing vectors of A.
  596: *
  597:          CALL DORMBR( 'P', 'L', 'N', N, NRHS, M, A, LDA, WORK( ITAUP ),
  598:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  599: *
  600:       END IF
  601: *
  602: *     Undo scaling.
  603: *
  604:       IF( IASCL.EQ.1 ) THEN
  605:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
  606:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
  607:      $                INFO )
  608:       ELSE IF( IASCL.EQ.2 ) THEN
  609:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
  610:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
  611:      $                INFO )
  612:       END IF
  613:       IF( IBSCL.EQ.1 ) THEN
  614:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
  615:       ELSE IF( IBSCL.EQ.2 ) THEN
  616:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
  617:       END IF
  618: *
  619:    10 CONTINUE
  620:       WORK( 1 ) = MAXWRK
  621:       IWORK( 1 ) = LIWORK
  622:       RETURN
  623: *
  624: *     End of DGELSD
  625: *
  626:       END

CVSweb interface <joel.bertrand@systella.fr>