File:  [local] / rpl / lapack / lapack / dgelsd.f
Revision 1.15: download - view: text, annotated - select for diffs - revision graph
Sat Jun 17 10:53:48 2017 UTC (6 years, 11 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack.

    1: *> \brief <b> DGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGELSD + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsd.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsd.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsd.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
   22: *                          WORK, LWORK, IWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
   26: *       DOUBLE PRECISION   RCOND
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       INTEGER            IWORK( * )
   30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DGELSD computes the minimum-norm solution to a real linear least
   40: *> squares problem:
   41: *>     minimize 2-norm(| b - A*x |)
   42: *> using the singular value decomposition (SVD) of A. A is an M-by-N
   43: *> matrix which may be rank-deficient.
   44: *>
   45: *> Several right hand side vectors b and solution vectors x can be
   46: *> handled in a single call; they are stored as the columns of the
   47: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
   48: *> matrix X.
   49: *>
   50: *> The problem is solved in three steps:
   51: *> (1) Reduce the coefficient matrix A to bidiagonal form with
   52: *>     Householder transformations, reducing the original problem
   53: *>     into a "bidiagonal least squares problem" (BLS)
   54: *> (2) Solve the BLS using a divide and conquer approach.
   55: *> (3) Apply back all the Householder transformations to solve
   56: *>     the original least squares problem.
   57: *>
   58: *> The effective rank of A is determined by treating as zero those
   59: *> singular values which are less than RCOND times the largest singular
   60: *> value.
   61: *>
   62: *> The divide and conquer algorithm makes very mild assumptions about
   63: *> floating point arithmetic. It will work on machines with a guard
   64: *> digit in add/subtract, or on those binary machines without guard
   65: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
   66: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
   67: *> without guard digits, but we know of none.
   68: *> \endverbatim
   69: *
   70: *  Arguments:
   71: *  ==========
   72: *
   73: *> \param[in] M
   74: *> \verbatim
   75: *>          M is INTEGER
   76: *>          The number of rows of A. M >= 0.
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is INTEGER
   82: *>          The number of columns of A. N >= 0.
   83: *> \endverbatim
   84: *>
   85: *> \param[in] NRHS
   86: *> \verbatim
   87: *>          NRHS is INTEGER
   88: *>          The number of right hand sides, i.e., the number of columns
   89: *>          of the matrices B and X. NRHS >= 0.
   90: *> \endverbatim
   91: *>
   92: *> \param[in] A
   93: *> \verbatim
   94: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   95: *>          On entry, the M-by-N matrix A.
   96: *>          On exit, A has been destroyed.
   97: *> \endverbatim
   98: *>
   99: *> \param[in] LDA
  100: *> \verbatim
  101: *>          LDA is INTEGER
  102: *>          The leading dimension of the array A.  LDA >= max(1,M).
  103: *> \endverbatim
  104: *>
  105: *> \param[in,out] B
  106: *> \verbatim
  107: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  108: *>          On entry, the M-by-NRHS right hand side matrix B.
  109: *>          On exit, B is overwritten by the N-by-NRHS solution
  110: *>          matrix X.  If m >= n and RANK = n, the residual
  111: *>          sum-of-squares for the solution in the i-th column is given
  112: *>          by the sum of squares of elements n+1:m in that column.
  113: *> \endverbatim
  114: *>
  115: *> \param[in] LDB
  116: *> \verbatim
  117: *>          LDB is INTEGER
  118: *>          The leading dimension of the array B. LDB >= max(1,max(M,N)).
  119: *> \endverbatim
  120: *>
  121: *> \param[out] S
  122: *> \verbatim
  123: *>          S is DOUBLE PRECISION array, dimension (min(M,N))
  124: *>          The singular values of A in decreasing order.
  125: *>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
  126: *> \endverbatim
  127: *>
  128: *> \param[in] RCOND
  129: *> \verbatim
  130: *>          RCOND is DOUBLE PRECISION
  131: *>          RCOND is used to determine the effective rank of A.
  132: *>          Singular values S(i) <= RCOND*S(1) are treated as zero.
  133: *>          If RCOND < 0, machine precision is used instead.
  134: *> \endverbatim
  135: *>
  136: *> \param[out] RANK
  137: *> \verbatim
  138: *>          RANK is INTEGER
  139: *>          The effective rank of A, i.e., the number of singular values
  140: *>          which are greater than RCOND*S(1).
  141: *> \endverbatim
  142: *>
  143: *> \param[out] WORK
  144: *> \verbatim
  145: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  146: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  147: *> \endverbatim
  148: *>
  149: *> \param[in] LWORK
  150: *> \verbatim
  151: *>          LWORK is INTEGER
  152: *>          The dimension of the array WORK. LWORK must be at least 1.
  153: *>          The exact minimum amount of workspace needed depends on M,
  154: *>          N and NRHS. As long as LWORK is at least
  155: *>              12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
  156: *>          if M is greater than or equal to N or
  157: *>              12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
  158: *>          if M is less than N, the code will execute correctly.
  159: *>          SMLSIZ is returned by ILAENV and is equal to the maximum
  160: *>          size of the subproblems at the bottom of the computation
  161: *>          tree (usually about 25), and
  162: *>             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
  163: *>          For good performance, LWORK should generally be larger.
  164: *>
  165: *>          If LWORK = -1, then a workspace query is assumed; the routine
  166: *>          only calculates the optimal size of the WORK array, returns
  167: *>          this value as the first entry of the WORK array, and no error
  168: *>          message related to LWORK is issued by XERBLA.
  169: *> \endverbatim
  170: *>
  171: *> \param[out] IWORK
  172: *> \verbatim
  173: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
  174: *>          LIWORK >= max(1, 3 * MINMN * NLVL + 11 * MINMN),
  175: *>          where MINMN = MIN( M,N ).
  176: *>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
  177: *> \endverbatim
  178: *>
  179: *> \param[out] INFO
  180: *> \verbatim
  181: *>          INFO is INTEGER
  182: *>          = 0:  successful exit
  183: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  184: *>          > 0:  the algorithm for computing the SVD failed to converge;
  185: *>                if INFO = i, i off-diagonal elements of an intermediate
  186: *>                bidiagonal form did not converge to zero.
  187: *> \endverbatim
  188: *
  189: *  Authors:
  190: *  ========
  191: *
  192: *> \author Univ. of Tennessee
  193: *> \author Univ. of California Berkeley
  194: *> \author Univ. of Colorado Denver
  195: *> \author NAG Ltd.
  196: *
  197: *> \date December 2016
  198: *
  199: *> \ingroup doubleGEsolve
  200: *
  201: *> \par Contributors:
  202: *  ==================
  203: *>
  204: *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
  205: *>       California at Berkeley, USA \n
  206: *>     Osni Marques, LBNL/NERSC, USA \n
  207: *
  208: *  =====================================================================
  209:       SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
  210:      $                   WORK, LWORK, IWORK, INFO )
  211: *
  212: *  -- LAPACK driver routine (version 3.7.0) --
  213: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  214: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  215: *     December 2016
  216: *
  217: *     .. Scalar Arguments ..
  218:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
  219:       DOUBLE PRECISION   RCOND
  220: *     ..
  221: *     .. Array Arguments ..
  222:       INTEGER            IWORK( * )
  223:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
  224: *     ..
  225: *
  226: *  =====================================================================
  227: *
  228: *     .. Parameters ..
  229:       DOUBLE PRECISION   ZERO, ONE, TWO
  230:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
  231: *     ..
  232: *     .. Local Scalars ..
  233:       LOGICAL            LQUERY
  234:       INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
  235:      $                   LDWORK, LIWORK, MAXMN, MAXWRK, MINMN, MINWRK,
  236:      $                   MM, MNTHR, NLVL, NWORK, SMLSIZ, WLALSD
  237:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
  238: *     ..
  239: *     .. External Subroutines ..
  240:       EXTERNAL           DGEBRD, DGELQF, DGEQRF, DLABAD, DLACPY, DLALSD,
  241:      $                   DLASCL, DLASET, DORMBR, DORMLQ, DORMQR, XERBLA
  242: *     ..
  243: *     .. External Functions ..
  244:       INTEGER            ILAENV
  245:       DOUBLE PRECISION   DLAMCH, DLANGE
  246:       EXTERNAL           ILAENV, DLAMCH, DLANGE
  247: *     ..
  248: *     .. Intrinsic Functions ..
  249:       INTRINSIC          DBLE, INT, LOG, MAX, MIN
  250: *     ..
  251: *     .. Executable Statements ..
  252: *
  253: *     Test the input arguments.
  254: *
  255:       INFO = 0
  256:       MINMN = MIN( M, N )
  257:       MAXMN = MAX( M, N )
  258:       MNTHR = ILAENV( 6, 'DGELSD', ' ', M, N, NRHS, -1 )
  259:       LQUERY = ( LWORK.EQ.-1 )
  260:       IF( M.LT.0 ) THEN
  261:          INFO = -1
  262:       ELSE IF( N.LT.0 ) THEN
  263:          INFO = -2
  264:       ELSE IF( NRHS.LT.0 ) THEN
  265:          INFO = -3
  266:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  267:          INFO = -5
  268:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
  269:          INFO = -7
  270:       END IF
  271: *
  272:       SMLSIZ = ILAENV( 9, 'DGELSD', ' ', 0, 0, 0, 0 )
  273: *
  274: *     Compute workspace.
  275: *     (Note: Comments in the code beginning "Workspace:" describe the
  276: *     minimal amount of workspace needed at that point in the code,
  277: *     as well as the preferred amount for good performance.
  278: *     NB refers to the optimal block size for the immediately
  279: *     following subroutine, as returned by ILAENV.)
  280: *
  281:       MINWRK = 1
  282:       LIWORK = 1
  283:       MINMN = MAX( 1, MINMN )
  284:       NLVL = MAX( INT( LOG( DBLE( MINMN ) / DBLE( SMLSIZ+1 ) ) /
  285:      $       LOG( TWO ) ) + 1, 0 )
  286: *
  287:       IF( INFO.EQ.0 ) THEN
  288:          MAXWRK = 0
  289:          LIWORK = 3*MINMN*NLVL + 11*MINMN
  290:          MM = M
  291:          IF( M.GE.N .AND. M.GE.MNTHR ) THEN
  292: *
  293: *           Path 1a - overdetermined, with many more rows than columns.
  294: *
  295:             MM = N
  296:             MAXWRK = MAX( MAXWRK, N+N*ILAENV( 1, 'DGEQRF', ' ', M, N,
  297:      $               -1, -1 ) )
  298:             MAXWRK = MAX( MAXWRK, N+NRHS*
  299:      $               ILAENV( 1, 'DORMQR', 'LT', M, NRHS, N, -1 ) )
  300:          END IF
  301:          IF( M.GE.N ) THEN
  302: *
  303: *           Path 1 - overdetermined or exactly determined.
  304: *
  305:             MAXWRK = MAX( MAXWRK, 3*N+( MM+N )*
  306:      $               ILAENV( 1, 'DGEBRD', ' ', MM, N, -1, -1 ) )
  307:             MAXWRK = MAX( MAXWRK, 3*N+NRHS*
  308:      $               ILAENV( 1, 'DORMBR', 'QLT', MM, NRHS, N, -1 ) )
  309:             MAXWRK = MAX( MAXWRK, 3*N+( N-1 )*
  310:      $               ILAENV( 1, 'DORMBR', 'PLN', N, NRHS, N, -1 ) )
  311:             WLALSD = 9*N+2*N*SMLSIZ+8*N*NLVL+N*NRHS+(SMLSIZ+1)**2
  312:             MAXWRK = MAX( MAXWRK, 3*N+WLALSD )
  313:             MINWRK = MAX( 3*N+MM, 3*N+NRHS, 3*N+WLALSD )
  314:          END IF
  315:          IF( N.GT.M ) THEN
  316:             WLALSD = 9*M+2*M*SMLSIZ+8*M*NLVL+M*NRHS+(SMLSIZ+1)**2
  317:             IF( N.GE.MNTHR ) THEN
  318: *
  319: *              Path 2a - underdetermined, with many more columns
  320: *              than rows.
  321: *
  322:                MAXWRK = M + M*ILAENV( 1, 'DGELQF', ' ', M, N, -1, -1 )
  323:                MAXWRK = MAX( MAXWRK, M*M+4*M+2*M*
  324:      $                  ILAENV( 1, 'DGEBRD', ' ', M, M, -1, -1 ) )
  325:                MAXWRK = MAX( MAXWRK, M*M+4*M+NRHS*
  326:      $                  ILAENV( 1, 'DORMBR', 'QLT', M, NRHS, M, -1 ) )
  327:                MAXWRK = MAX( MAXWRK, M*M+4*M+( M-1 )*
  328:      $                  ILAENV( 1, 'DORMBR', 'PLN', M, NRHS, M, -1 ) )
  329:                IF( NRHS.GT.1 ) THEN
  330:                   MAXWRK = MAX( MAXWRK, M*M+M+M*NRHS )
  331:                ELSE
  332:                   MAXWRK = MAX( MAXWRK, M*M+2*M )
  333:                END IF
  334:                MAXWRK = MAX( MAXWRK, M+NRHS*
  335:      $                  ILAENV( 1, 'DORMLQ', 'LT', N, NRHS, M, -1 ) )
  336:                MAXWRK = MAX( MAXWRK, M*M+4*M+WLALSD )
  337: !     XXX: Ensure the Path 2a case below is triggered.  The workspace
  338: !     calculation should use queries for all routines eventually.
  339:                MAXWRK = MAX( MAXWRK,
  340:      $              4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
  341:             ELSE
  342: *
  343: *              Path 2 - remaining underdetermined cases.
  344: *
  345:                MAXWRK = 3*M + ( N+M )*ILAENV( 1, 'DGEBRD', ' ', M, N,
  346:      $                  -1, -1 )
  347:                MAXWRK = MAX( MAXWRK, 3*M+NRHS*
  348:      $                  ILAENV( 1, 'DORMBR', 'QLT', M, NRHS, N, -1 ) )
  349:                MAXWRK = MAX( MAXWRK, 3*M+M*
  350:      $                  ILAENV( 1, 'DORMBR', 'PLN', N, NRHS, M, -1 ) )
  351:                MAXWRK = MAX( MAXWRK, 3*M+WLALSD )
  352:             END IF
  353:             MINWRK = MAX( 3*M+NRHS, 3*M+M, 3*M+WLALSD )
  354:          END IF
  355:          MINWRK = MIN( MINWRK, MAXWRK )
  356:          WORK( 1 ) = MAXWRK
  357:          IWORK( 1 ) = LIWORK
  358: 
  359:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  360:             INFO = -12
  361:          END IF
  362:       END IF
  363: *
  364:       IF( INFO.NE.0 ) THEN
  365:          CALL XERBLA( 'DGELSD', -INFO )
  366:          RETURN
  367:       ELSE IF( LQUERY ) THEN
  368:          GO TO 10
  369:       END IF
  370: *
  371: *     Quick return if possible.
  372: *
  373:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  374:          RANK = 0
  375:          RETURN
  376:       END IF
  377: *
  378: *     Get machine parameters.
  379: *
  380:       EPS = DLAMCH( 'P' )
  381:       SFMIN = DLAMCH( 'S' )
  382:       SMLNUM = SFMIN / EPS
  383:       BIGNUM = ONE / SMLNUM
  384:       CALL DLABAD( SMLNUM, BIGNUM )
  385: *
  386: *     Scale A if max entry outside range [SMLNUM,BIGNUM].
  387: *
  388:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
  389:       IASCL = 0
  390:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  391: *
  392: *        Scale matrix norm up to SMLNUM.
  393: *
  394:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
  395:          IASCL = 1
  396:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  397: *
  398: *        Scale matrix norm down to BIGNUM.
  399: *
  400:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
  401:          IASCL = 2
  402:       ELSE IF( ANRM.EQ.ZERO ) THEN
  403: *
  404: *        Matrix all zero. Return zero solution.
  405: *
  406:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
  407:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
  408:          RANK = 0
  409:          GO TO 10
  410:       END IF
  411: *
  412: *     Scale B if max entry outside range [SMLNUM,BIGNUM].
  413: *
  414:       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
  415:       IBSCL = 0
  416:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  417: *
  418: *        Scale matrix norm up to SMLNUM.
  419: *
  420:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
  421:          IBSCL = 1
  422:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  423: *
  424: *        Scale matrix norm down to BIGNUM.
  425: *
  426:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
  427:          IBSCL = 2
  428:       END IF
  429: *
  430: *     If M < N make sure certain entries of B are zero.
  431: *
  432:       IF( M.LT.N )
  433:      $   CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
  434: *
  435: *     Overdetermined case.
  436: *
  437:       IF( M.GE.N ) THEN
  438: *
  439: *        Path 1 - overdetermined or exactly determined.
  440: *
  441:          MM = M
  442:          IF( M.GE.MNTHR ) THEN
  443: *
  444: *           Path 1a - overdetermined, with many more rows than columns.
  445: *
  446:             MM = N
  447:             ITAU = 1
  448:             NWORK = ITAU + N
  449: *
  450: *           Compute A=Q*R.
  451: *           (Workspace: need 2*N, prefer N+N*NB)
  452: *
  453:             CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  454:      $                   LWORK-NWORK+1, INFO )
  455: *
  456: *           Multiply B by transpose(Q).
  457: *           (Workspace: need N+NRHS, prefer N+NRHS*NB)
  458: *
  459:             CALL DORMQR( 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAU ), B,
  460:      $                   LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  461: *
  462: *           Zero out below R.
  463: *
  464:             IF( N.GT.1 ) THEN
  465:                CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
  466:             END IF
  467:          END IF
  468: *
  469:          IE = 1
  470:          ITAUQ = IE + N
  471:          ITAUP = ITAUQ + N
  472:          NWORK = ITAUP + N
  473: *
  474: *        Bidiagonalize R in A.
  475: *        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
  476: *
  477:          CALL DGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  478:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  479:      $                INFO )
  480: *
  481: *        Multiply B by transpose of left bidiagonalizing vectors of R.
  482: *        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
  483: *
  484:          CALL DORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
  485:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  486: *
  487: *        Solve the bidiagonal least squares problem.
  488: *
  489:          CALL DLALSD( 'U', SMLSIZ, N, NRHS, S, WORK( IE ), B, LDB,
  490:      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
  491:          IF( INFO.NE.0 ) THEN
  492:             GO TO 10
  493:          END IF
  494: *
  495: *        Multiply B by right bidiagonalizing vectors of R.
  496: *
  497:          CALL DORMBR( 'P', 'L', 'N', N, NRHS, N, A, LDA, WORK( ITAUP ),
  498:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  499: *
  500:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
  501:      $         MAX( M, 2*M-4, NRHS, N-3*M, WLALSD ) ) THEN
  502: *
  503: *        Path 2a - underdetermined, with many more columns than rows
  504: *        and sufficient workspace for an efficient algorithm.
  505: *
  506:          LDWORK = M
  507:          IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
  508:      $       M*LDA+M+M*NRHS, 4*M+M*LDA+WLALSD ) )LDWORK = LDA
  509:          ITAU = 1
  510:          NWORK = M + 1
  511: *
  512: *        Compute A=L*Q.
  513: *        (Workspace: need 2*M, prefer M+M*NB)
  514: *
  515:          CALL DGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
  516:      $                LWORK-NWORK+1, INFO )
  517:          IL = NWORK
  518: *
  519: *        Copy L to WORK(IL), zeroing out above its diagonal.
  520: *
  521:          CALL DLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
  522:          CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ),
  523:      $                LDWORK )
  524:          IE = IL + LDWORK*M
  525:          ITAUQ = IE + M
  526:          ITAUP = ITAUQ + M
  527:          NWORK = ITAUP + M
  528: *
  529: *        Bidiagonalize L in WORK(IL).
  530: *        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
  531: *
  532:          CALL DGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ),
  533:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
  534:      $                LWORK-NWORK+1, INFO )
  535: *
  536: *        Multiply B by transpose of left bidiagonalizing vectors of L.
  537: *        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
  538: *
  539:          CALL DORMBR( 'Q', 'L', 'T', M, NRHS, M, WORK( IL ), LDWORK,
  540:      $                WORK( ITAUQ ), B, LDB, WORK( NWORK ),
  541:      $                LWORK-NWORK+1, INFO )
  542: *
  543: *        Solve the bidiagonal least squares problem.
  544: *
  545:          CALL DLALSD( 'U', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
  546:      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
  547:          IF( INFO.NE.0 ) THEN
  548:             GO TO 10
  549:          END IF
  550: *
  551: *        Multiply B by right bidiagonalizing vectors of L.
  552: *
  553:          CALL DORMBR( 'P', 'L', 'N', M, NRHS, M, WORK( IL ), LDWORK,
  554:      $                WORK( ITAUP ), B, LDB, WORK( NWORK ),
  555:      $                LWORK-NWORK+1, INFO )
  556: *
  557: *        Zero out below first M rows of B.
  558: *
  559:          CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
  560:          NWORK = ITAU + M
  561: *
  562: *        Multiply transpose(Q) by B.
  563: *        (Workspace: need M+NRHS, prefer M+NRHS*NB)
  564: *
  565:          CALL DORMLQ( 'L', 'T', N, NRHS, M, A, LDA, WORK( ITAU ), B,
  566:      $                LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  567: *
  568:       ELSE
  569: *
  570: *        Path 2 - remaining underdetermined cases.
  571: *
  572:          IE = 1
  573:          ITAUQ = IE + M
  574:          ITAUP = ITAUQ + M
  575:          NWORK = ITAUP + M
  576: *
  577: *        Bidiagonalize A.
  578: *        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
  579: *
  580:          CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
  581:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
  582:      $                INFO )
  583: *
  584: *        Multiply B by transpose of left bidiagonalizing vectors.
  585: *        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
  586: *
  587:          CALL DORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAUQ ),
  588:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  589: *
  590: *        Solve the bidiagonal least squares problem.
  591: *
  592:          CALL DLALSD( 'L', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
  593:      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
  594:          IF( INFO.NE.0 ) THEN
  595:             GO TO 10
  596:          END IF
  597: *
  598: *        Multiply B by right bidiagonalizing vectors of A.
  599: *
  600:          CALL DORMBR( 'P', 'L', 'N', N, NRHS, M, A, LDA, WORK( ITAUP ),
  601:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
  602: *
  603:       END IF
  604: *
  605: *     Undo scaling.
  606: *
  607:       IF( IASCL.EQ.1 ) THEN
  608:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
  609:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
  610:      $                INFO )
  611:       ELSE IF( IASCL.EQ.2 ) THEN
  612:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
  613:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
  614:      $                INFO )
  615:       END IF
  616:       IF( IBSCL.EQ.1 ) THEN
  617:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
  618:       ELSE IF( IBSCL.EQ.2 ) THEN
  619:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
  620:       END IF
  621: *
  622:    10 CONTINUE
  623:       WORK( 1 ) = MAXWRK
  624:       IWORK( 1 ) = LIWORK
  625:       RETURN
  626: *
  627: *     End of DGELSD
  628: *
  629:       END

CVSweb interface <joel.bertrand@systella.fr>