Annotation of rpl/lapack/lapack/dgelsd.f, revision 1.9

1.9     ! bertrand    1: *> \brief <b> DGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DGELSD + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsd.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsd.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsd.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
        !            22: *                          WORK, LWORK, IWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
        !            26: *       DOUBLE PRECISION   RCOND
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       INTEGER            IWORK( * )
        !            30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
        !            31: *       ..
        !            32: *  
        !            33: *
        !            34: *> \par Purpose:
        !            35: *  =============
        !            36: *>
        !            37: *> \verbatim
        !            38: *>
        !            39: *> DGELSD computes the minimum-norm solution to a real linear least
        !            40: *> squares problem:
        !            41: *>     minimize 2-norm(| b - A*x |)
        !            42: *> using the singular value decomposition (SVD) of A. A is an M-by-N
        !            43: *> matrix which may be rank-deficient.
        !            44: *>
        !            45: *> Several right hand side vectors b and solution vectors x can be
        !            46: *> handled in a single call; they are stored as the columns of the
        !            47: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
        !            48: *> matrix X.
        !            49: *>
        !            50: *> The problem is solved in three steps:
        !            51: *> (1) Reduce the coefficient matrix A to bidiagonal form with
        !            52: *>     Householder transformations, reducing the original problem
        !            53: *>     into a "bidiagonal least squares problem" (BLS)
        !            54: *> (2) Solve the BLS using a divide and conquer approach.
        !            55: *> (3) Apply back all the Householder tranformations to solve
        !            56: *>     the original least squares problem.
        !            57: *>
        !            58: *> The effective rank of A is determined by treating as zero those
        !            59: *> singular values which are less than RCOND times the largest singular
        !            60: *> value.
        !            61: *>
        !            62: *> The divide and conquer algorithm makes very mild assumptions about
        !            63: *> floating point arithmetic. It will work on machines with a guard
        !            64: *> digit in add/subtract, or on those binary machines without guard
        !            65: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            66: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            67: *> without guard digits, but we know of none.
        !            68: *> \endverbatim
        !            69: *
        !            70: *  Arguments:
        !            71: *  ==========
        !            72: *
        !            73: *> \param[in] M
        !            74: *> \verbatim
        !            75: *>          M is INTEGER
        !            76: *>          The number of rows of A. M >= 0.
        !            77: *> \endverbatim
        !            78: *>
        !            79: *> \param[in] N
        !            80: *> \verbatim
        !            81: *>          N is INTEGER
        !            82: *>          The number of columns of A. N >= 0.
        !            83: *> \endverbatim
        !            84: *>
        !            85: *> \param[in] NRHS
        !            86: *> \verbatim
        !            87: *>          NRHS is INTEGER
        !            88: *>          The number of right hand sides, i.e., the number of columns
        !            89: *>          of the matrices B and X. NRHS >= 0.
        !            90: *> \endverbatim
        !            91: *>
        !            92: *> \param[in] A
        !            93: *> \verbatim
        !            94: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
        !            95: *>          On entry, the M-by-N matrix A.
        !            96: *>          On exit, A has been destroyed.
        !            97: *> \endverbatim
        !            98: *>
        !            99: *> \param[in] LDA
        !           100: *> \verbatim
        !           101: *>          LDA is INTEGER
        !           102: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !           103: *> \endverbatim
        !           104: *>
        !           105: *> \param[in,out] B
        !           106: *> \verbatim
        !           107: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           108: *>          On entry, the M-by-NRHS right hand side matrix B.
        !           109: *>          On exit, B is overwritten by the N-by-NRHS solution
        !           110: *>          matrix X.  If m >= n and RANK = n, the residual
        !           111: *>          sum-of-squares for the solution in the i-th column is given
        !           112: *>          by the sum of squares of elements n+1:m in that column.
        !           113: *> \endverbatim
        !           114: *>
        !           115: *> \param[in] LDB
        !           116: *> \verbatim
        !           117: *>          LDB is INTEGER
        !           118: *>          The leading dimension of the array B. LDB >= max(1,max(M,N)).
        !           119: *> \endverbatim
        !           120: *>
        !           121: *> \param[out] S
        !           122: *> \verbatim
        !           123: *>          S is DOUBLE PRECISION array, dimension (min(M,N))
        !           124: *>          The singular values of A in decreasing order.
        !           125: *>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
        !           126: *> \endverbatim
        !           127: *>
        !           128: *> \param[in] RCOND
        !           129: *> \verbatim
        !           130: *>          RCOND is DOUBLE PRECISION
        !           131: *>          RCOND is used to determine the effective rank of A.
        !           132: *>          Singular values S(i) <= RCOND*S(1) are treated as zero.
        !           133: *>          If RCOND < 0, machine precision is used instead.
        !           134: *> \endverbatim
        !           135: *>
        !           136: *> \param[out] RANK
        !           137: *> \verbatim
        !           138: *>          RANK is INTEGER
        !           139: *>          The effective rank of A, i.e., the number of singular values
        !           140: *>          which are greater than RCOND*S(1).
        !           141: *> \endverbatim
        !           142: *>
        !           143: *> \param[out] WORK
        !           144: *> \verbatim
        !           145: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           146: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           147: *> \endverbatim
        !           148: *>
        !           149: *> \param[in] LWORK
        !           150: *> \verbatim
        !           151: *>          LWORK is INTEGER
        !           152: *>          The dimension of the array WORK. LWORK must be at least 1.
        !           153: *>          The exact minimum amount of workspace needed depends on M,
        !           154: *>          N and NRHS. As long as LWORK is at least
        !           155: *>              12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
        !           156: *>          if M is greater than or equal to N or
        !           157: *>              12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
        !           158: *>          if M is less than N, the code will execute correctly.
        !           159: *>          SMLSIZ is returned by ILAENV and is equal to the maximum
        !           160: *>          size of the subproblems at the bottom of the computation
        !           161: *>          tree (usually about 25), and
        !           162: *>             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
        !           163: *>          For good performance, LWORK should generally be larger.
        !           164: *>
        !           165: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           166: *>          only calculates the optimal size of the WORK array, returns
        !           167: *>          this value as the first entry of the WORK array, and no error
        !           168: *>          message related to LWORK is issued by XERBLA.
        !           169: *> \endverbatim
        !           170: *>
        !           171: *> \param[out] IWORK
        !           172: *> \verbatim
        !           173: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
        !           174: *>          LIWORK >= max(1, 3 * MINMN * NLVL + 11 * MINMN),
        !           175: *>          where MINMN = MIN( M,N ).
        !           176: *>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
        !           177: *> \endverbatim
        !           178: *>
        !           179: *> \param[out] INFO
        !           180: *> \verbatim
        !           181: *>          INFO is INTEGER
        !           182: *>          = 0:  successful exit
        !           183: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           184: *>          > 0:  the algorithm for computing the SVD failed to converge;
        !           185: *>                if INFO = i, i off-diagonal elements of an intermediate
        !           186: *>                bidiagonal form did not converge to zero.
        !           187: *> \endverbatim
        !           188: *
        !           189: *  Authors:
        !           190: *  ========
        !           191: *
        !           192: *> \author Univ. of Tennessee 
        !           193: *> \author Univ. of California Berkeley 
        !           194: *> \author Univ. of Colorado Denver 
        !           195: *> \author NAG Ltd. 
        !           196: *
        !           197: *> \date November 2011
        !           198: *
        !           199: *> \ingroup doubleGEsolve
        !           200: *
        !           201: *> \par Contributors:
        !           202: *  ==================
        !           203: *>
        !           204: *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
        !           205: *>       California at Berkeley, USA \n
        !           206: *>     Osni Marques, LBNL/NERSC, USA \n
        !           207: *
        !           208: *  =====================================================================
1.1       bertrand  209:       SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
                    210:      $                   WORK, LWORK, IWORK, INFO )
                    211: *
1.9     ! bertrand  212: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  213: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    214: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  215: *     November 2011
1.1       bertrand  216: *
                    217: *     .. Scalar Arguments ..
                    218:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                    219:       DOUBLE PRECISION   RCOND
                    220: *     ..
                    221: *     .. Array Arguments ..
                    222:       INTEGER            IWORK( * )
                    223:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
                    224: *     ..
                    225: *
                    226: *  =====================================================================
                    227: *
                    228: *     .. Parameters ..
                    229:       DOUBLE PRECISION   ZERO, ONE, TWO
                    230:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
                    231: *     ..
                    232: *     .. Local Scalars ..
                    233:       LOGICAL            LQUERY
                    234:       INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
1.5       bertrand  235:      $                   LDWORK, LIWORK, MAXMN, MAXWRK, MINMN, MINWRK,
                    236:      $                   MM, MNTHR, NLVL, NWORK, SMLSIZ, WLALSD
1.1       bertrand  237:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
                    238: *     ..
                    239: *     .. External Subroutines ..
                    240:       EXTERNAL           DGEBRD, DGELQF, DGEQRF, DLABAD, DLACPY, DLALSD,
                    241:      $                   DLASCL, DLASET, DORMBR, DORMLQ, DORMQR, XERBLA
                    242: *     ..
                    243: *     .. External Functions ..
                    244:       INTEGER            ILAENV
                    245:       DOUBLE PRECISION   DLAMCH, DLANGE
                    246:       EXTERNAL           ILAENV, DLAMCH, DLANGE
                    247: *     ..
                    248: *     .. Intrinsic Functions ..
                    249:       INTRINSIC          DBLE, INT, LOG, MAX, MIN
                    250: *     ..
                    251: *     .. Executable Statements ..
                    252: *
                    253: *     Test the input arguments.
                    254: *
                    255:       INFO = 0
                    256:       MINMN = MIN( M, N )
                    257:       MAXMN = MAX( M, N )
                    258:       MNTHR = ILAENV( 6, 'DGELSD', ' ', M, N, NRHS, -1 )
                    259:       LQUERY = ( LWORK.EQ.-1 )
                    260:       IF( M.LT.0 ) THEN
                    261:          INFO = -1
                    262:       ELSE IF( N.LT.0 ) THEN
                    263:          INFO = -2
                    264:       ELSE IF( NRHS.LT.0 ) THEN
                    265:          INFO = -3
                    266:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    267:          INFO = -5
                    268:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
                    269:          INFO = -7
                    270:       END IF
                    271: *
                    272:       SMLSIZ = ILAENV( 9, 'DGELSD', ' ', 0, 0, 0, 0 )
                    273: *
                    274: *     Compute workspace.
                    275: *     (Note: Comments in the code beginning "Workspace:" describe the
                    276: *     minimal amount of workspace needed at that point in the code,
                    277: *     as well as the preferred amount for good performance.
                    278: *     NB refers to the optimal block size for the immediately
                    279: *     following subroutine, as returned by ILAENV.)
                    280: *
                    281:       MINWRK = 1
1.5       bertrand  282:       LIWORK = 1
1.1       bertrand  283:       MINMN = MAX( 1, MINMN )
                    284:       NLVL = MAX( INT( LOG( DBLE( MINMN ) / DBLE( SMLSIZ+1 ) ) /
                    285:      $       LOG( TWO ) ) + 1, 0 )
                    286: *
                    287:       IF( INFO.EQ.0 ) THEN
                    288:          MAXWRK = 0
1.5       bertrand  289:          LIWORK = 3*MINMN*NLVL + 11*MINMN
1.1       bertrand  290:          MM = M
                    291:          IF( M.GE.N .AND. M.GE.MNTHR ) THEN
                    292: *
                    293: *           Path 1a - overdetermined, with many more rows than columns.
                    294: *
                    295:             MM = N
                    296:             MAXWRK = MAX( MAXWRK, N+N*ILAENV( 1, 'DGEQRF', ' ', M, N,
                    297:      $               -1, -1 ) )
                    298:             MAXWRK = MAX( MAXWRK, N+NRHS*
                    299:      $               ILAENV( 1, 'DORMQR', 'LT', M, NRHS, N, -1 ) )
                    300:          END IF
                    301:          IF( M.GE.N ) THEN
                    302: *
                    303: *           Path 1 - overdetermined or exactly determined.
                    304: *
                    305:             MAXWRK = MAX( MAXWRK, 3*N+( MM+N )*
                    306:      $               ILAENV( 1, 'DGEBRD', ' ', MM, N, -1, -1 ) )
                    307:             MAXWRK = MAX( MAXWRK, 3*N+NRHS*
                    308:      $               ILAENV( 1, 'DORMBR', 'QLT', MM, NRHS, N, -1 ) )
                    309:             MAXWRK = MAX( MAXWRK, 3*N+( N-1 )*
                    310:      $               ILAENV( 1, 'DORMBR', 'PLN', N, NRHS, N, -1 ) )
                    311:             WLALSD = 9*N+2*N*SMLSIZ+8*N*NLVL+N*NRHS+(SMLSIZ+1)**2
                    312:             MAXWRK = MAX( MAXWRK, 3*N+WLALSD )
                    313:             MINWRK = MAX( 3*N+MM, 3*N+NRHS, 3*N+WLALSD )
                    314:          END IF
                    315:          IF( N.GT.M ) THEN
                    316:             WLALSD = 9*M+2*M*SMLSIZ+8*M*NLVL+M*NRHS+(SMLSIZ+1)**2
                    317:             IF( N.GE.MNTHR ) THEN
                    318: *
                    319: *              Path 2a - underdetermined, with many more columns
                    320: *              than rows.
                    321: *
                    322:                MAXWRK = M + M*ILAENV( 1, 'DGELQF', ' ', M, N, -1, -1 )
                    323:                MAXWRK = MAX( MAXWRK, M*M+4*M+2*M*
                    324:      $                  ILAENV( 1, 'DGEBRD', ' ', M, M, -1, -1 ) )
                    325:                MAXWRK = MAX( MAXWRK, M*M+4*M+NRHS*
                    326:      $                  ILAENV( 1, 'DORMBR', 'QLT', M, NRHS, M, -1 ) )
                    327:                MAXWRK = MAX( MAXWRK, M*M+4*M+( M-1 )*
                    328:      $                  ILAENV( 1, 'DORMBR', 'PLN', M, NRHS, M, -1 ) )
                    329:                IF( NRHS.GT.1 ) THEN
                    330:                   MAXWRK = MAX( MAXWRK, M*M+M+M*NRHS )
                    331:                ELSE
                    332:                   MAXWRK = MAX( MAXWRK, M*M+2*M )
                    333:                END IF
                    334:                MAXWRK = MAX( MAXWRK, M+NRHS*
                    335:      $                  ILAENV( 1, 'DORMLQ', 'LT', N, NRHS, M, -1 ) )
                    336:                MAXWRK = MAX( MAXWRK, M*M+4*M+WLALSD )
                    337: !     XXX: Ensure the Path 2a case below is triggered.  The workspace
                    338: !     calculation should use queries for all routines eventually.
                    339:                MAXWRK = MAX( MAXWRK,
                    340:      $              4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
                    341:             ELSE
                    342: *
                    343: *              Path 2 - remaining underdetermined cases.
                    344: *
                    345:                MAXWRK = 3*M + ( N+M )*ILAENV( 1, 'DGEBRD', ' ', M, N,
                    346:      $                  -1, -1 )
                    347:                MAXWRK = MAX( MAXWRK, 3*M+NRHS*
                    348:      $                  ILAENV( 1, 'DORMBR', 'QLT', M, NRHS, N, -1 ) )
                    349:                MAXWRK = MAX( MAXWRK, 3*M+M*
                    350:      $                  ILAENV( 1, 'DORMBR', 'PLN', N, NRHS, M, -1 ) )
                    351:                MAXWRK = MAX( MAXWRK, 3*M+WLALSD )
                    352:             END IF
                    353:             MINWRK = MAX( 3*M+NRHS, 3*M+M, 3*M+WLALSD )
                    354:          END IF
                    355:          MINWRK = MIN( MINWRK, MAXWRK )
                    356:          WORK( 1 ) = MAXWRK
1.5       bertrand  357:          IWORK( 1 ) = LIWORK
                    358: 
1.1       bertrand  359:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    360:             INFO = -12
                    361:          END IF
                    362:       END IF
                    363: *
                    364:       IF( INFO.NE.0 ) THEN
                    365:          CALL XERBLA( 'DGELSD', -INFO )
                    366:          RETURN
                    367:       ELSE IF( LQUERY ) THEN
                    368:          GO TO 10
                    369:       END IF
                    370: *
                    371: *     Quick return if possible.
                    372: *
                    373:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
                    374:          RANK = 0
                    375:          RETURN
                    376:       END IF
                    377: *
                    378: *     Get machine parameters.
                    379: *
                    380:       EPS = DLAMCH( 'P' )
                    381:       SFMIN = DLAMCH( 'S' )
                    382:       SMLNUM = SFMIN / EPS
                    383:       BIGNUM = ONE / SMLNUM
                    384:       CALL DLABAD( SMLNUM, BIGNUM )
                    385: *
                    386: *     Scale A if max entry outside range [SMLNUM,BIGNUM].
                    387: *
                    388:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
                    389:       IASCL = 0
                    390:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    391: *
                    392: *        Scale matrix norm up to SMLNUM.
                    393: *
                    394:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    395:          IASCL = 1
                    396:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    397: *
                    398: *        Scale matrix norm down to BIGNUM.
                    399: *
                    400:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    401:          IASCL = 2
                    402:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    403: *
                    404: *        Matrix all zero. Return zero solution.
                    405: *
                    406:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
                    407:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
                    408:          RANK = 0
                    409:          GO TO 10
                    410:       END IF
                    411: *
                    412: *     Scale B if max entry outside range [SMLNUM,BIGNUM].
                    413: *
                    414:       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
                    415:       IBSCL = 0
                    416:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    417: *
                    418: *        Scale matrix norm up to SMLNUM.
                    419: *
                    420:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    421:          IBSCL = 1
                    422:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    423: *
                    424: *        Scale matrix norm down to BIGNUM.
                    425: *
                    426:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    427:          IBSCL = 2
                    428:       END IF
                    429: *
                    430: *     If M < N make sure certain entries of B are zero.
                    431: *
                    432:       IF( M.LT.N )
                    433:      $   CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
                    434: *
                    435: *     Overdetermined case.
                    436: *
                    437:       IF( M.GE.N ) THEN
                    438: *
                    439: *        Path 1 - overdetermined or exactly determined.
                    440: *
                    441:          MM = M
                    442:          IF( M.GE.MNTHR ) THEN
                    443: *
                    444: *           Path 1a - overdetermined, with many more rows than columns.
                    445: *
                    446:             MM = N
                    447:             ITAU = 1
                    448:             NWORK = ITAU + N
                    449: *
                    450: *           Compute A=Q*R.
                    451: *           (Workspace: need 2*N, prefer N+N*NB)
                    452: *
                    453:             CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
                    454:      $                   LWORK-NWORK+1, INFO )
                    455: *
                    456: *           Multiply B by transpose(Q).
                    457: *           (Workspace: need N+NRHS, prefer N+NRHS*NB)
                    458: *
                    459:             CALL DORMQR( 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAU ), B,
                    460:      $                   LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    461: *
                    462: *           Zero out below R.
                    463: *
                    464:             IF( N.GT.1 ) THEN
                    465:                CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
                    466:             END IF
                    467:          END IF
                    468: *
                    469:          IE = 1
                    470:          ITAUQ = IE + N
                    471:          ITAUP = ITAUQ + N
                    472:          NWORK = ITAUP + N
                    473: *
                    474: *        Bidiagonalize R in A.
                    475: *        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
                    476: *
                    477:          CALL DGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
                    478:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
                    479:      $                INFO )
                    480: *
                    481: *        Multiply B by transpose of left bidiagonalizing vectors of R.
                    482: *        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
                    483: *
                    484:          CALL DORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
                    485:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    486: *
                    487: *        Solve the bidiagonal least squares problem.
                    488: *
                    489:          CALL DLALSD( 'U', SMLSIZ, N, NRHS, S, WORK( IE ), B, LDB,
                    490:      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
                    491:          IF( INFO.NE.0 ) THEN
                    492:             GO TO 10
                    493:          END IF
                    494: *
                    495: *        Multiply B by right bidiagonalizing vectors of R.
                    496: *
                    497:          CALL DORMBR( 'P', 'L', 'N', N, NRHS, N, A, LDA, WORK( ITAUP ),
                    498:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    499: *
                    500:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
                    501:      $         MAX( M, 2*M-4, NRHS, N-3*M, WLALSD ) ) THEN
                    502: *
                    503: *        Path 2a - underdetermined, with many more columns than rows
                    504: *        and sufficient workspace for an efficient algorithm.
                    505: *
                    506:          LDWORK = M
                    507:          IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
                    508:      $       M*LDA+M+M*NRHS, 4*M+M*LDA+WLALSD ) )LDWORK = LDA
                    509:          ITAU = 1
                    510:          NWORK = M + 1
                    511: *
                    512: *        Compute A=L*Q.
                    513: *        (Workspace: need 2*M, prefer M+M*NB)
                    514: *
                    515:          CALL DGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
                    516:      $                LWORK-NWORK+1, INFO )
                    517:          IL = NWORK
                    518: *
                    519: *        Copy L to WORK(IL), zeroing out above its diagonal.
                    520: *
                    521:          CALL DLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
                    522:          CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ),
                    523:      $                LDWORK )
                    524:          IE = IL + LDWORK*M
                    525:          ITAUQ = IE + M
                    526:          ITAUP = ITAUQ + M
                    527:          NWORK = ITAUP + M
                    528: *
                    529: *        Bidiagonalize L in WORK(IL).
                    530: *        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
                    531: *
                    532:          CALL DGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ),
                    533:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
                    534:      $                LWORK-NWORK+1, INFO )
                    535: *
                    536: *        Multiply B by transpose of left bidiagonalizing vectors of L.
                    537: *        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
                    538: *
                    539:          CALL DORMBR( 'Q', 'L', 'T', M, NRHS, M, WORK( IL ), LDWORK,
                    540:      $                WORK( ITAUQ ), B, LDB, WORK( NWORK ),
                    541:      $                LWORK-NWORK+1, INFO )
                    542: *
                    543: *        Solve the bidiagonal least squares problem.
                    544: *
                    545:          CALL DLALSD( 'U', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
                    546:      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
                    547:          IF( INFO.NE.0 ) THEN
                    548:             GO TO 10
                    549:          END IF
                    550: *
                    551: *        Multiply B by right bidiagonalizing vectors of L.
                    552: *
                    553:          CALL DORMBR( 'P', 'L', 'N', M, NRHS, M, WORK( IL ), LDWORK,
                    554:      $                WORK( ITAUP ), B, LDB, WORK( NWORK ),
                    555:      $                LWORK-NWORK+1, INFO )
                    556: *
                    557: *        Zero out below first M rows of B.
                    558: *
                    559:          CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
                    560:          NWORK = ITAU + M
                    561: *
                    562: *        Multiply transpose(Q) by B.
                    563: *        (Workspace: need M+NRHS, prefer M+NRHS*NB)
                    564: *
                    565:          CALL DORMLQ( 'L', 'T', N, NRHS, M, A, LDA, WORK( ITAU ), B,
                    566:      $                LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    567: *
                    568:       ELSE
                    569: *
                    570: *        Path 2 - remaining underdetermined cases.
                    571: *
                    572:          IE = 1
                    573:          ITAUQ = IE + M
                    574:          ITAUP = ITAUQ + M
                    575:          NWORK = ITAUP + M
                    576: *
                    577: *        Bidiagonalize A.
                    578: *        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
                    579: *
                    580:          CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
                    581:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
                    582:      $                INFO )
                    583: *
                    584: *        Multiply B by transpose of left bidiagonalizing vectors.
                    585: *        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
                    586: *
                    587:          CALL DORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAUQ ),
                    588:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    589: *
                    590: *        Solve the bidiagonal least squares problem.
                    591: *
                    592:          CALL DLALSD( 'L', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
                    593:      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
                    594:          IF( INFO.NE.0 ) THEN
                    595:             GO TO 10
                    596:          END IF
                    597: *
                    598: *        Multiply B by right bidiagonalizing vectors of A.
                    599: *
                    600:          CALL DORMBR( 'P', 'L', 'N', N, NRHS, M, A, LDA, WORK( ITAUP ),
                    601:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    602: *
                    603:       END IF
                    604: *
                    605: *     Undo scaling.
                    606: *
                    607:       IF( IASCL.EQ.1 ) THEN
                    608:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    609:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
                    610:      $                INFO )
                    611:       ELSE IF( IASCL.EQ.2 ) THEN
                    612:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    613:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
                    614:      $                INFO )
                    615:       END IF
                    616:       IF( IBSCL.EQ.1 ) THEN
                    617:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    618:       ELSE IF( IBSCL.EQ.2 ) THEN
                    619:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    620:       END IF
                    621: *
                    622:    10 CONTINUE
                    623:       WORK( 1 ) = MAXWRK
1.5       bertrand  624:       IWORK( 1 ) = LIWORK
1.1       bertrand  625:       RETURN
                    626: *
                    627: *     End of DGELSD
                    628: *
                    629:       END

CVSweb interface <joel.bertrand@systella.fr>