Annotation of rpl/lapack/lapack/dgelsd.f, revision 1.19

1.9       bertrand    1: *> \brief <b> DGELSD computes the minimum-norm solution to a linear least squares problem for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DGELSD + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelsd.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelsd.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelsd.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
                     22: *                          WORK, LWORK, IWORK, INFO )
1.15      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                     26: *       DOUBLE PRECISION   RCOND
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       INTEGER            IWORK( * )
                     30: *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
                     31: *       ..
1.15      bertrand   32: *
1.9       bertrand   33: *
                     34: *> \par Purpose:
                     35: *  =============
                     36: *>
                     37: *> \verbatim
                     38: *>
                     39: *> DGELSD computes the minimum-norm solution to a real linear least
                     40: *> squares problem:
                     41: *>     minimize 2-norm(| b - A*x |)
                     42: *> using the singular value decomposition (SVD) of A. A is an M-by-N
                     43: *> matrix which may be rank-deficient.
                     44: *>
                     45: *> Several right hand side vectors b and solution vectors x can be
                     46: *> handled in a single call; they are stored as the columns of the
                     47: *> M-by-NRHS right hand side matrix B and the N-by-NRHS solution
                     48: *> matrix X.
                     49: *>
                     50: *> The problem is solved in three steps:
                     51: *> (1) Reduce the coefficient matrix A to bidiagonal form with
                     52: *>     Householder transformations, reducing the original problem
                     53: *>     into a "bidiagonal least squares problem" (BLS)
                     54: *> (2) Solve the BLS using a divide and conquer approach.
1.15      bertrand   55: *> (3) Apply back all the Householder transformations to solve
1.9       bertrand   56: *>     the original least squares problem.
                     57: *>
                     58: *> The effective rank of A is determined by treating as zero those
                     59: *> singular values which are less than RCOND times the largest singular
                     60: *> value.
                     61: *>
                     62: *> The divide and conquer algorithm makes very mild assumptions about
                     63: *> floating point arithmetic. It will work on machines with a guard
                     64: *> digit in add/subtract, or on those binary machines without guard
                     65: *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
                     66: *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
                     67: *> without guard digits, but we know of none.
                     68: *> \endverbatim
                     69: *
                     70: *  Arguments:
                     71: *  ==========
                     72: *
                     73: *> \param[in] M
                     74: *> \verbatim
                     75: *>          M is INTEGER
                     76: *>          The number of rows of A. M >= 0.
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[in] N
                     80: *> \verbatim
                     81: *>          N is INTEGER
                     82: *>          The number of columns of A. N >= 0.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] NRHS
                     86: *> \verbatim
                     87: *>          NRHS is INTEGER
                     88: *>          The number of right hand sides, i.e., the number of columns
                     89: *>          of the matrices B and X. NRHS >= 0.
                     90: *> \endverbatim
                     91: *>
1.17      bertrand   92: *> \param[in,out] A
1.9       bertrand   93: *> \verbatim
                     94: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     95: *>          On entry, the M-by-N matrix A.
                     96: *>          On exit, A has been destroyed.
                     97: *> \endverbatim
                     98: *>
                     99: *> \param[in] LDA
                    100: *> \verbatim
                    101: *>          LDA is INTEGER
                    102: *>          The leading dimension of the array A.  LDA >= max(1,M).
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in,out] B
                    106: *> \verbatim
                    107: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    108: *>          On entry, the M-by-NRHS right hand side matrix B.
                    109: *>          On exit, B is overwritten by the N-by-NRHS solution
                    110: *>          matrix X.  If m >= n and RANK = n, the residual
                    111: *>          sum-of-squares for the solution in the i-th column is given
                    112: *>          by the sum of squares of elements n+1:m in that column.
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in] LDB
                    116: *> \verbatim
                    117: *>          LDB is INTEGER
                    118: *>          The leading dimension of the array B. LDB >= max(1,max(M,N)).
                    119: *> \endverbatim
                    120: *>
                    121: *> \param[out] S
                    122: *> \verbatim
                    123: *>          S is DOUBLE PRECISION array, dimension (min(M,N))
                    124: *>          The singular values of A in decreasing order.
                    125: *>          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
                    126: *> \endverbatim
                    127: *>
                    128: *> \param[in] RCOND
                    129: *> \verbatim
                    130: *>          RCOND is DOUBLE PRECISION
                    131: *>          RCOND is used to determine the effective rank of A.
                    132: *>          Singular values S(i) <= RCOND*S(1) are treated as zero.
                    133: *>          If RCOND < 0, machine precision is used instead.
                    134: *> \endverbatim
                    135: *>
                    136: *> \param[out] RANK
                    137: *> \verbatim
                    138: *>          RANK is INTEGER
                    139: *>          The effective rank of A, i.e., the number of singular values
                    140: *>          which are greater than RCOND*S(1).
                    141: *> \endverbatim
                    142: *>
                    143: *> \param[out] WORK
                    144: *> \verbatim
                    145: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    146: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    147: *> \endverbatim
                    148: *>
                    149: *> \param[in] LWORK
                    150: *> \verbatim
                    151: *>          LWORK is INTEGER
                    152: *>          The dimension of the array WORK. LWORK must be at least 1.
                    153: *>          The exact minimum amount of workspace needed depends on M,
                    154: *>          N and NRHS. As long as LWORK is at least
                    155: *>              12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
                    156: *>          if M is greater than or equal to N or
                    157: *>              12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
                    158: *>          if M is less than N, the code will execute correctly.
                    159: *>          SMLSIZ is returned by ILAENV and is equal to the maximum
                    160: *>          size of the subproblems at the bottom of the computation
                    161: *>          tree (usually about 25), and
                    162: *>             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
                    163: *>          For good performance, LWORK should generally be larger.
                    164: *>
                    165: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    166: *>          only calculates the optimal size of the WORK array, returns
                    167: *>          this value as the first entry of the WORK array, and no error
                    168: *>          message related to LWORK is issued by XERBLA.
                    169: *> \endverbatim
                    170: *>
                    171: *> \param[out] IWORK
                    172: *> \verbatim
                    173: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    174: *>          LIWORK >= max(1, 3 * MINMN * NLVL + 11 * MINMN),
                    175: *>          where MINMN = MIN( M,N ).
                    176: *>          On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK.
                    177: *> \endverbatim
                    178: *>
                    179: *> \param[out] INFO
                    180: *> \verbatim
                    181: *>          INFO is INTEGER
                    182: *>          = 0:  successful exit
                    183: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    184: *>          > 0:  the algorithm for computing the SVD failed to converge;
                    185: *>                if INFO = i, i off-diagonal elements of an intermediate
                    186: *>                bidiagonal form did not converge to zero.
                    187: *> \endverbatim
                    188: *
                    189: *  Authors:
                    190: *  ========
                    191: *
1.15      bertrand  192: *> \author Univ. of Tennessee
                    193: *> \author Univ. of California Berkeley
                    194: *> \author Univ. of Colorado Denver
                    195: *> \author NAG Ltd.
1.9       bertrand  196: *
                    197: *> \ingroup doubleGEsolve
                    198: *
                    199: *> \par Contributors:
                    200: *  ==================
                    201: *>
                    202: *>     Ming Gu and Ren-Cang Li, Computer Science Division, University of
                    203: *>       California at Berkeley, USA \n
                    204: *>     Osni Marques, LBNL/NERSC, USA \n
                    205: *
                    206: *  =====================================================================
1.1       bertrand  207:       SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
                    208:      $                   WORK, LWORK, IWORK, INFO )
                    209: *
1.19    ! bertrand  210: *  -- LAPACK driver routine --
1.1       bertrand  211: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    212: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    213: *
                    214: *     .. Scalar Arguments ..
                    215:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
                    216:       DOUBLE PRECISION   RCOND
                    217: *     ..
                    218: *     .. Array Arguments ..
                    219:       INTEGER            IWORK( * )
                    220:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
                    221: *     ..
                    222: *
                    223: *  =====================================================================
                    224: *
                    225: *     .. Parameters ..
                    226:       DOUBLE PRECISION   ZERO, ONE, TWO
                    227:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
                    228: *     ..
                    229: *     .. Local Scalars ..
                    230:       LOGICAL            LQUERY
                    231:       INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
1.5       bertrand  232:      $                   LDWORK, LIWORK, MAXMN, MAXWRK, MINMN, MINWRK,
                    233:      $                   MM, MNTHR, NLVL, NWORK, SMLSIZ, WLALSD
1.1       bertrand  234:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
                    235: *     ..
                    236: *     .. External Subroutines ..
                    237:       EXTERNAL           DGEBRD, DGELQF, DGEQRF, DLABAD, DLACPY, DLALSD,
                    238:      $                   DLASCL, DLASET, DORMBR, DORMLQ, DORMQR, XERBLA
                    239: *     ..
                    240: *     .. External Functions ..
                    241:       INTEGER            ILAENV
                    242:       DOUBLE PRECISION   DLAMCH, DLANGE
                    243:       EXTERNAL           ILAENV, DLAMCH, DLANGE
                    244: *     ..
                    245: *     .. Intrinsic Functions ..
                    246:       INTRINSIC          DBLE, INT, LOG, MAX, MIN
                    247: *     ..
                    248: *     .. Executable Statements ..
                    249: *
                    250: *     Test the input arguments.
                    251: *
                    252:       INFO = 0
                    253:       MINMN = MIN( M, N )
                    254:       MAXMN = MAX( M, N )
                    255:       MNTHR = ILAENV( 6, 'DGELSD', ' ', M, N, NRHS, -1 )
                    256:       LQUERY = ( LWORK.EQ.-1 )
                    257:       IF( M.LT.0 ) THEN
                    258:          INFO = -1
                    259:       ELSE IF( N.LT.0 ) THEN
                    260:          INFO = -2
                    261:       ELSE IF( NRHS.LT.0 ) THEN
                    262:          INFO = -3
                    263:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    264:          INFO = -5
                    265:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
                    266:          INFO = -7
                    267:       END IF
                    268: *
                    269:       SMLSIZ = ILAENV( 9, 'DGELSD', ' ', 0, 0, 0, 0 )
                    270: *
                    271: *     Compute workspace.
                    272: *     (Note: Comments in the code beginning "Workspace:" describe the
                    273: *     minimal amount of workspace needed at that point in the code,
                    274: *     as well as the preferred amount for good performance.
                    275: *     NB refers to the optimal block size for the immediately
                    276: *     following subroutine, as returned by ILAENV.)
                    277: *
                    278:       MINWRK = 1
1.5       bertrand  279:       LIWORK = 1
1.1       bertrand  280:       MINMN = MAX( 1, MINMN )
                    281:       NLVL = MAX( INT( LOG( DBLE( MINMN ) / DBLE( SMLSIZ+1 ) ) /
                    282:      $       LOG( TWO ) ) + 1, 0 )
                    283: *
                    284:       IF( INFO.EQ.0 ) THEN
                    285:          MAXWRK = 0
1.5       bertrand  286:          LIWORK = 3*MINMN*NLVL + 11*MINMN
1.1       bertrand  287:          MM = M
                    288:          IF( M.GE.N .AND. M.GE.MNTHR ) THEN
                    289: *
                    290: *           Path 1a - overdetermined, with many more rows than columns.
                    291: *
                    292:             MM = N
                    293:             MAXWRK = MAX( MAXWRK, N+N*ILAENV( 1, 'DGEQRF', ' ', M, N,
                    294:      $               -1, -1 ) )
                    295:             MAXWRK = MAX( MAXWRK, N+NRHS*
                    296:      $               ILAENV( 1, 'DORMQR', 'LT', M, NRHS, N, -1 ) )
                    297:          END IF
                    298:          IF( M.GE.N ) THEN
                    299: *
                    300: *           Path 1 - overdetermined or exactly determined.
                    301: *
                    302:             MAXWRK = MAX( MAXWRK, 3*N+( MM+N )*
                    303:      $               ILAENV( 1, 'DGEBRD', ' ', MM, N, -1, -1 ) )
                    304:             MAXWRK = MAX( MAXWRK, 3*N+NRHS*
                    305:      $               ILAENV( 1, 'DORMBR', 'QLT', MM, NRHS, N, -1 ) )
                    306:             MAXWRK = MAX( MAXWRK, 3*N+( N-1 )*
                    307:      $               ILAENV( 1, 'DORMBR', 'PLN', N, NRHS, N, -1 ) )
                    308:             WLALSD = 9*N+2*N*SMLSIZ+8*N*NLVL+N*NRHS+(SMLSIZ+1)**2
                    309:             MAXWRK = MAX( MAXWRK, 3*N+WLALSD )
                    310:             MINWRK = MAX( 3*N+MM, 3*N+NRHS, 3*N+WLALSD )
                    311:          END IF
                    312:          IF( N.GT.M ) THEN
                    313:             WLALSD = 9*M+2*M*SMLSIZ+8*M*NLVL+M*NRHS+(SMLSIZ+1)**2
                    314:             IF( N.GE.MNTHR ) THEN
                    315: *
                    316: *              Path 2a - underdetermined, with many more columns
                    317: *              than rows.
                    318: *
                    319:                MAXWRK = M + M*ILAENV( 1, 'DGELQF', ' ', M, N, -1, -1 )
                    320:                MAXWRK = MAX( MAXWRK, M*M+4*M+2*M*
                    321:      $                  ILAENV( 1, 'DGEBRD', ' ', M, M, -1, -1 ) )
                    322:                MAXWRK = MAX( MAXWRK, M*M+4*M+NRHS*
                    323:      $                  ILAENV( 1, 'DORMBR', 'QLT', M, NRHS, M, -1 ) )
                    324:                MAXWRK = MAX( MAXWRK, M*M+4*M+( M-1 )*
                    325:      $                  ILAENV( 1, 'DORMBR', 'PLN', M, NRHS, M, -1 ) )
                    326:                IF( NRHS.GT.1 ) THEN
                    327:                   MAXWRK = MAX( MAXWRK, M*M+M+M*NRHS )
                    328:                ELSE
                    329:                   MAXWRK = MAX( MAXWRK, M*M+2*M )
                    330:                END IF
                    331:                MAXWRK = MAX( MAXWRK, M+NRHS*
                    332:      $                  ILAENV( 1, 'DORMLQ', 'LT', N, NRHS, M, -1 ) )
                    333:                MAXWRK = MAX( MAXWRK, M*M+4*M+WLALSD )
                    334: !     XXX: Ensure the Path 2a case below is triggered.  The workspace
                    335: !     calculation should use queries for all routines eventually.
                    336:                MAXWRK = MAX( MAXWRK,
                    337:      $              4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
                    338:             ELSE
                    339: *
                    340: *              Path 2 - remaining underdetermined cases.
                    341: *
                    342:                MAXWRK = 3*M + ( N+M )*ILAENV( 1, 'DGEBRD', ' ', M, N,
                    343:      $                  -1, -1 )
                    344:                MAXWRK = MAX( MAXWRK, 3*M+NRHS*
                    345:      $                  ILAENV( 1, 'DORMBR', 'QLT', M, NRHS, N, -1 ) )
                    346:                MAXWRK = MAX( MAXWRK, 3*M+M*
                    347:      $                  ILAENV( 1, 'DORMBR', 'PLN', N, NRHS, M, -1 ) )
                    348:                MAXWRK = MAX( MAXWRK, 3*M+WLALSD )
                    349:             END IF
                    350:             MINWRK = MAX( 3*M+NRHS, 3*M+M, 3*M+WLALSD )
                    351:          END IF
                    352:          MINWRK = MIN( MINWRK, MAXWRK )
                    353:          WORK( 1 ) = MAXWRK
1.5       bertrand  354:          IWORK( 1 ) = LIWORK
                    355: 
1.1       bertrand  356:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    357:             INFO = -12
                    358:          END IF
                    359:       END IF
                    360: *
                    361:       IF( INFO.NE.0 ) THEN
                    362:          CALL XERBLA( 'DGELSD', -INFO )
                    363:          RETURN
                    364:       ELSE IF( LQUERY ) THEN
                    365:          GO TO 10
                    366:       END IF
                    367: *
                    368: *     Quick return if possible.
                    369: *
                    370:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
                    371:          RANK = 0
                    372:          RETURN
                    373:       END IF
                    374: *
                    375: *     Get machine parameters.
                    376: *
                    377:       EPS = DLAMCH( 'P' )
                    378:       SFMIN = DLAMCH( 'S' )
                    379:       SMLNUM = SFMIN / EPS
                    380:       BIGNUM = ONE / SMLNUM
                    381:       CALL DLABAD( SMLNUM, BIGNUM )
                    382: *
                    383: *     Scale A if max entry outside range [SMLNUM,BIGNUM].
                    384: *
                    385:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
                    386:       IASCL = 0
                    387:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    388: *
                    389: *        Scale matrix norm up to SMLNUM.
                    390: *
                    391:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    392:          IASCL = 1
                    393:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    394: *
                    395: *        Scale matrix norm down to BIGNUM.
                    396: *
                    397:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    398:          IASCL = 2
                    399:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    400: *
                    401: *        Matrix all zero. Return zero solution.
                    402: *
                    403:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
                    404:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
                    405:          RANK = 0
                    406:          GO TO 10
                    407:       END IF
                    408: *
                    409: *     Scale B if max entry outside range [SMLNUM,BIGNUM].
                    410: *
                    411:       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
                    412:       IBSCL = 0
                    413:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    414: *
                    415: *        Scale matrix norm up to SMLNUM.
                    416: *
                    417:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
                    418:          IBSCL = 1
                    419:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    420: *
                    421: *        Scale matrix norm down to BIGNUM.
                    422: *
                    423:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
                    424:          IBSCL = 2
                    425:       END IF
                    426: *
                    427: *     If M < N make sure certain entries of B are zero.
                    428: *
                    429:       IF( M.LT.N )
                    430:      $   CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
                    431: *
                    432: *     Overdetermined case.
                    433: *
                    434:       IF( M.GE.N ) THEN
                    435: *
                    436: *        Path 1 - overdetermined or exactly determined.
                    437: *
                    438:          MM = M
                    439:          IF( M.GE.MNTHR ) THEN
                    440: *
                    441: *           Path 1a - overdetermined, with many more rows than columns.
                    442: *
                    443:             MM = N
                    444:             ITAU = 1
                    445:             NWORK = ITAU + N
                    446: *
                    447: *           Compute A=Q*R.
                    448: *           (Workspace: need 2*N, prefer N+N*NB)
                    449: *
                    450:             CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
                    451:      $                   LWORK-NWORK+1, INFO )
                    452: *
                    453: *           Multiply B by transpose(Q).
                    454: *           (Workspace: need N+NRHS, prefer N+NRHS*NB)
                    455: *
                    456:             CALL DORMQR( 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAU ), B,
                    457:      $                   LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    458: *
                    459: *           Zero out below R.
                    460: *
                    461:             IF( N.GT.1 ) THEN
                    462:                CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
                    463:             END IF
                    464:          END IF
                    465: *
                    466:          IE = 1
                    467:          ITAUQ = IE + N
                    468:          ITAUP = ITAUQ + N
                    469:          NWORK = ITAUP + N
                    470: *
                    471: *        Bidiagonalize R in A.
                    472: *        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
                    473: *
                    474:          CALL DGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
                    475:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
                    476:      $                INFO )
                    477: *
                    478: *        Multiply B by transpose of left bidiagonalizing vectors of R.
                    479: *        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
                    480: *
                    481:          CALL DORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
                    482:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    483: *
                    484: *        Solve the bidiagonal least squares problem.
                    485: *
                    486:          CALL DLALSD( 'U', SMLSIZ, N, NRHS, S, WORK( IE ), B, LDB,
                    487:      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
                    488:          IF( INFO.NE.0 ) THEN
                    489:             GO TO 10
                    490:          END IF
                    491: *
                    492: *        Multiply B by right bidiagonalizing vectors of R.
                    493: *
                    494:          CALL DORMBR( 'P', 'L', 'N', N, NRHS, N, A, LDA, WORK( ITAUP ),
                    495:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    496: *
                    497:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
                    498:      $         MAX( M, 2*M-4, NRHS, N-3*M, WLALSD ) ) THEN
                    499: *
                    500: *        Path 2a - underdetermined, with many more columns than rows
                    501: *        and sufficient workspace for an efficient algorithm.
                    502: *
                    503:          LDWORK = M
                    504:          IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
                    505:      $       M*LDA+M+M*NRHS, 4*M+M*LDA+WLALSD ) )LDWORK = LDA
                    506:          ITAU = 1
                    507:          NWORK = M + 1
                    508: *
                    509: *        Compute A=L*Q.
                    510: *        (Workspace: need 2*M, prefer M+M*NB)
                    511: *
                    512:          CALL DGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
                    513:      $                LWORK-NWORK+1, INFO )
                    514:          IL = NWORK
                    515: *
                    516: *        Copy L to WORK(IL), zeroing out above its diagonal.
                    517: *
                    518:          CALL DLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
                    519:          CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ),
                    520:      $                LDWORK )
                    521:          IE = IL + LDWORK*M
                    522:          ITAUQ = IE + M
                    523:          ITAUP = ITAUQ + M
                    524:          NWORK = ITAUP + M
                    525: *
                    526: *        Bidiagonalize L in WORK(IL).
                    527: *        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
                    528: *
                    529:          CALL DGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ),
                    530:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
                    531:      $                LWORK-NWORK+1, INFO )
                    532: *
                    533: *        Multiply B by transpose of left bidiagonalizing vectors of L.
                    534: *        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
                    535: *
                    536:          CALL DORMBR( 'Q', 'L', 'T', M, NRHS, M, WORK( IL ), LDWORK,
                    537:      $                WORK( ITAUQ ), B, LDB, WORK( NWORK ),
                    538:      $                LWORK-NWORK+1, INFO )
                    539: *
                    540: *        Solve the bidiagonal least squares problem.
                    541: *
                    542:          CALL DLALSD( 'U', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
                    543:      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
                    544:          IF( INFO.NE.0 ) THEN
                    545:             GO TO 10
                    546:          END IF
                    547: *
                    548: *        Multiply B by right bidiagonalizing vectors of L.
                    549: *
                    550:          CALL DORMBR( 'P', 'L', 'N', M, NRHS, M, WORK( IL ), LDWORK,
                    551:      $                WORK( ITAUP ), B, LDB, WORK( NWORK ),
                    552:      $                LWORK-NWORK+1, INFO )
                    553: *
                    554: *        Zero out below first M rows of B.
                    555: *
                    556:          CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
                    557:          NWORK = ITAU + M
                    558: *
                    559: *        Multiply transpose(Q) by B.
                    560: *        (Workspace: need M+NRHS, prefer M+NRHS*NB)
                    561: *
                    562:          CALL DORMLQ( 'L', 'T', N, NRHS, M, A, LDA, WORK( ITAU ), B,
                    563:      $                LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    564: *
                    565:       ELSE
                    566: *
                    567: *        Path 2 - remaining underdetermined cases.
                    568: *
                    569:          IE = 1
                    570:          ITAUQ = IE + M
                    571:          ITAUP = ITAUQ + M
                    572:          NWORK = ITAUP + M
                    573: *
                    574: *        Bidiagonalize A.
                    575: *        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
                    576: *
                    577:          CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
                    578:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
                    579:      $                INFO )
                    580: *
                    581: *        Multiply B by transpose of left bidiagonalizing vectors.
                    582: *        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
                    583: *
                    584:          CALL DORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAUQ ),
                    585:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    586: *
                    587: *        Solve the bidiagonal least squares problem.
                    588: *
                    589:          CALL DLALSD( 'L', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
                    590:      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
                    591:          IF( INFO.NE.0 ) THEN
                    592:             GO TO 10
                    593:          END IF
                    594: *
                    595: *        Multiply B by right bidiagonalizing vectors of A.
                    596: *
                    597:          CALL DORMBR( 'P', 'L', 'N', N, NRHS, M, A, LDA, WORK( ITAUP ),
                    598:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
                    599: *
                    600:       END IF
                    601: *
                    602: *     Undo scaling.
                    603: *
                    604:       IF( IASCL.EQ.1 ) THEN
                    605:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
                    606:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
                    607:      $                INFO )
                    608:       ELSE IF( IASCL.EQ.2 ) THEN
                    609:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
                    610:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
                    611:      $                INFO )
                    612:       END IF
                    613:       IF( IBSCL.EQ.1 ) THEN
                    614:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
                    615:       ELSE IF( IBSCL.EQ.2 ) THEN
                    616:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
                    617:       END IF
                    618: *
                    619:    10 CONTINUE
                    620:       WORK( 1 ) = MAXWRK
1.5       bertrand  621:       IWORK( 1 ) = LIWORK
1.1       bertrand  622:       RETURN
                    623: *
                    624: *     End of DGELSD
                    625: *
                    626:       END

CVSweb interface <joel.bertrand@systella.fr>