Annotation of rpl/lapack/lapack/dgelsd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK,
        !             2:      $                   WORK, LWORK, IWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK
        !            11:       DOUBLE PRECISION   RCOND
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       INTEGER            IWORK( * )
        !            15:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), S( * ), WORK( * )
        !            16: *     ..
        !            17: *
        !            18: *  Purpose
        !            19: *  =======
        !            20: *
        !            21: *  DGELSD computes the minimum-norm solution to a real linear least
        !            22: *  squares problem:
        !            23: *      minimize 2-norm(| b - A*x |)
        !            24: *  using the singular value decomposition (SVD) of A. A is an M-by-N
        !            25: *  matrix which may be rank-deficient.
        !            26: *
        !            27: *  Several right hand side vectors b and solution vectors x can be
        !            28: *  handled in a single call; they are stored as the columns of the
        !            29: *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
        !            30: *  matrix X.
        !            31: *
        !            32: *  The problem is solved in three steps:
        !            33: *  (1) Reduce the coefficient matrix A to bidiagonal form with
        !            34: *      Householder transformations, reducing the original problem
        !            35: *      into a "bidiagonal least squares problem" (BLS)
        !            36: *  (2) Solve the BLS using a divide and conquer approach.
        !            37: *  (3) Apply back all the Householder tranformations to solve
        !            38: *      the original least squares problem.
        !            39: *
        !            40: *  The effective rank of A is determined by treating as zero those
        !            41: *  singular values which are less than RCOND times the largest singular
        !            42: *  value.
        !            43: *
        !            44: *  The divide and conquer algorithm makes very mild assumptions about
        !            45: *  floating point arithmetic. It will work on machines with a guard
        !            46: *  digit in add/subtract, or on those binary machines without guard
        !            47: *  digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
        !            48: *  Cray-2. It could conceivably fail on hexadecimal or decimal machines
        !            49: *  without guard digits, but we know of none.
        !            50: *
        !            51: *  Arguments
        !            52: *  =========
        !            53: *
        !            54: *  M       (input) INTEGER
        !            55: *          The number of rows of A. M >= 0.
        !            56: *
        !            57: *  N       (input) INTEGER
        !            58: *          The number of columns of A. N >= 0.
        !            59: *
        !            60: *  NRHS    (input) INTEGER
        !            61: *          The number of right hand sides, i.e., the number of columns
        !            62: *          of the matrices B and X. NRHS >= 0.
        !            63: *
        !            64: *  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
        !            65: *          On entry, the M-by-N matrix A.
        !            66: *          On exit, A has been destroyed.
        !            67: *
        !            68: *  LDA     (input) INTEGER
        !            69: *          The leading dimension of the array A.  LDA >= max(1,M).
        !            70: *
        !            71: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
        !            72: *          On entry, the M-by-NRHS right hand side matrix B.
        !            73: *          On exit, B is overwritten by the N-by-NRHS solution
        !            74: *          matrix X.  If m >= n and RANK = n, the residual
        !            75: *          sum-of-squares for the solution in the i-th column is given
        !            76: *          by the sum of squares of elements n+1:m in that column.
        !            77: *
        !            78: *  LDB     (input) INTEGER
        !            79: *          The leading dimension of the array B. LDB >= max(1,max(M,N)).
        !            80: *
        !            81: *  S       (output) DOUBLE PRECISION array, dimension (min(M,N))
        !            82: *          The singular values of A in decreasing order.
        !            83: *          The condition number of A in the 2-norm = S(1)/S(min(m,n)).
        !            84: *
        !            85: *  RCOND   (input) DOUBLE PRECISION
        !            86: *          RCOND is used to determine the effective rank of A.
        !            87: *          Singular values S(i) <= RCOND*S(1) are treated as zero.
        !            88: *          If RCOND < 0, machine precision is used instead.
        !            89: *
        !            90: *  RANK    (output) INTEGER
        !            91: *          The effective rank of A, i.e., the number of singular values
        !            92: *          which are greater than RCOND*S(1).
        !            93: *
        !            94: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !            95: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            96: *
        !            97: *  LWORK   (input) INTEGER
        !            98: *          The dimension of the array WORK. LWORK must be at least 1.
        !            99: *          The exact minimum amount of workspace needed depends on M,
        !           100: *          N and NRHS. As long as LWORK is at least
        !           101: *              12*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2,
        !           102: *          if M is greater than or equal to N or
        !           103: *              12*M + 2*M*SMLSIZ + 8*M*NLVL + M*NRHS + (SMLSIZ+1)**2,
        !           104: *          if M is less than N, the code will execute correctly.
        !           105: *          SMLSIZ is returned by ILAENV and is equal to the maximum
        !           106: *          size of the subproblems at the bottom of the computation
        !           107: *          tree (usually about 25), and
        !           108: *             NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
        !           109: *          For good performance, LWORK should generally be larger.
        !           110: *
        !           111: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           112: *          only calculates the optimal size of the WORK array, returns
        !           113: *          this value as the first entry of the WORK array, and no error
        !           114: *          message related to LWORK is issued by XERBLA.
        !           115: *
        !           116: *  IWORK   (workspace) INTEGER array, dimension (MAX(1,LIWORK))
        !           117: *          LIWORK >= 3 * MINMN * NLVL + 11 * MINMN,
        !           118: *          where MINMN = MIN( M,N ).
        !           119: *
        !           120: *  INFO    (output) INTEGER
        !           121: *          = 0:  successful exit
        !           122: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           123: *          > 0:  the algorithm for computing the SVD failed to converge;
        !           124: *                if INFO = i, i off-diagonal elements of an intermediate
        !           125: *                bidiagonal form did not converge to zero.
        !           126: *
        !           127: *  Further Details
        !           128: *  ===============
        !           129: *
        !           130: *  Based on contributions by
        !           131: *     Ming Gu and Ren-Cang Li, Computer Science Division, University of
        !           132: *       California at Berkeley, USA
        !           133: *     Osni Marques, LBNL/NERSC, USA
        !           134: *
        !           135: *  =====================================================================
        !           136: *
        !           137: *     .. Parameters ..
        !           138:       DOUBLE PRECISION   ZERO, ONE, TWO
        !           139:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
        !           140: *     ..
        !           141: *     .. Local Scalars ..
        !           142:       LOGICAL            LQUERY
        !           143:       INTEGER            IASCL, IBSCL, IE, IL, ITAU, ITAUP, ITAUQ,
        !           144:      $                   LDWORK, MAXMN, MAXWRK, MINMN, MINWRK, MM,
        !           145:      $                   MNTHR, NLVL, NWORK, SMLSIZ, WLALSD
        !           146:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM
        !           147: *     ..
        !           148: *     .. External Subroutines ..
        !           149:       EXTERNAL           DGEBRD, DGELQF, DGEQRF, DLABAD, DLACPY, DLALSD,
        !           150:      $                   DLASCL, DLASET, DORMBR, DORMLQ, DORMQR, XERBLA
        !           151: *     ..
        !           152: *     .. External Functions ..
        !           153:       INTEGER            ILAENV
        !           154:       DOUBLE PRECISION   DLAMCH, DLANGE
        !           155:       EXTERNAL           ILAENV, DLAMCH, DLANGE
        !           156: *     ..
        !           157: *     .. Intrinsic Functions ..
        !           158:       INTRINSIC          DBLE, INT, LOG, MAX, MIN
        !           159: *     ..
        !           160: *     .. Executable Statements ..
        !           161: *
        !           162: *     Test the input arguments.
        !           163: *
        !           164:       INFO = 0
        !           165:       MINMN = MIN( M, N )
        !           166:       MAXMN = MAX( M, N )
        !           167:       MNTHR = ILAENV( 6, 'DGELSD', ' ', M, N, NRHS, -1 )
        !           168:       LQUERY = ( LWORK.EQ.-1 )
        !           169:       IF( M.LT.0 ) THEN
        !           170:          INFO = -1
        !           171:       ELSE IF( N.LT.0 ) THEN
        !           172:          INFO = -2
        !           173:       ELSE IF( NRHS.LT.0 ) THEN
        !           174:          INFO = -3
        !           175:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           176:          INFO = -5
        !           177:       ELSE IF( LDB.LT.MAX( 1, MAXMN ) ) THEN
        !           178:          INFO = -7
        !           179:       END IF
        !           180: *
        !           181:       SMLSIZ = ILAENV( 9, 'DGELSD', ' ', 0, 0, 0, 0 )
        !           182: *
        !           183: *     Compute workspace.
        !           184: *     (Note: Comments in the code beginning "Workspace:" describe the
        !           185: *     minimal amount of workspace needed at that point in the code,
        !           186: *     as well as the preferred amount for good performance.
        !           187: *     NB refers to the optimal block size for the immediately
        !           188: *     following subroutine, as returned by ILAENV.)
        !           189: *
        !           190:       MINWRK = 1
        !           191:       MINMN = MAX( 1, MINMN )
        !           192:       NLVL = MAX( INT( LOG( DBLE( MINMN ) / DBLE( SMLSIZ+1 ) ) /
        !           193:      $       LOG( TWO ) ) + 1, 0 )
        !           194: *
        !           195:       IF( INFO.EQ.0 ) THEN
        !           196:          MAXWRK = 0
        !           197:          MM = M
        !           198:          IF( M.GE.N .AND. M.GE.MNTHR ) THEN
        !           199: *
        !           200: *           Path 1a - overdetermined, with many more rows than columns.
        !           201: *
        !           202:             MM = N
        !           203:             MAXWRK = MAX( MAXWRK, N+N*ILAENV( 1, 'DGEQRF', ' ', M, N,
        !           204:      $               -1, -1 ) )
        !           205:             MAXWRK = MAX( MAXWRK, N+NRHS*
        !           206:      $               ILAENV( 1, 'DORMQR', 'LT', M, NRHS, N, -1 ) )
        !           207:          END IF
        !           208:          IF( M.GE.N ) THEN
        !           209: *
        !           210: *           Path 1 - overdetermined or exactly determined.
        !           211: *
        !           212:             MAXWRK = MAX( MAXWRK, 3*N+( MM+N )*
        !           213:      $               ILAENV( 1, 'DGEBRD', ' ', MM, N, -1, -1 ) )
        !           214:             MAXWRK = MAX( MAXWRK, 3*N+NRHS*
        !           215:      $               ILAENV( 1, 'DORMBR', 'QLT', MM, NRHS, N, -1 ) )
        !           216:             MAXWRK = MAX( MAXWRK, 3*N+( N-1 )*
        !           217:      $               ILAENV( 1, 'DORMBR', 'PLN', N, NRHS, N, -1 ) )
        !           218:             WLALSD = 9*N+2*N*SMLSIZ+8*N*NLVL+N*NRHS+(SMLSIZ+1)**2
        !           219:             MAXWRK = MAX( MAXWRK, 3*N+WLALSD )
        !           220:             MINWRK = MAX( 3*N+MM, 3*N+NRHS, 3*N+WLALSD )
        !           221:          END IF
        !           222:          IF( N.GT.M ) THEN
        !           223:             WLALSD = 9*M+2*M*SMLSIZ+8*M*NLVL+M*NRHS+(SMLSIZ+1)**2
        !           224:             IF( N.GE.MNTHR ) THEN
        !           225: *
        !           226: *              Path 2a - underdetermined, with many more columns
        !           227: *              than rows.
        !           228: *
        !           229:                MAXWRK = M + M*ILAENV( 1, 'DGELQF', ' ', M, N, -1, -1 )
        !           230:                MAXWRK = MAX( MAXWRK, M*M+4*M+2*M*
        !           231:      $                  ILAENV( 1, 'DGEBRD', ' ', M, M, -1, -1 ) )
        !           232:                MAXWRK = MAX( MAXWRK, M*M+4*M+NRHS*
        !           233:      $                  ILAENV( 1, 'DORMBR', 'QLT', M, NRHS, M, -1 ) )
        !           234:                MAXWRK = MAX( MAXWRK, M*M+4*M+( M-1 )*
        !           235:      $                  ILAENV( 1, 'DORMBR', 'PLN', M, NRHS, M, -1 ) )
        !           236:                IF( NRHS.GT.1 ) THEN
        !           237:                   MAXWRK = MAX( MAXWRK, M*M+M+M*NRHS )
        !           238:                ELSE
        !           239:                   MAXWRK = MAX( MAXWRK, M*M+2*M )
        !           240:                END IF
        !           241:                MAXWRK = MAX( MAXWRK, M+NRHS*
        !           242:      $                  ILAENV( 1, 'DORMLQ', 'LT', N, NRHS, M, -1 ) )
        !           243:                MAXWRK = MAX( MAXWRK, M*M+4*M+WLALSD )
        !           244: !     XXX: Ensure the Path 2a case below is triggered.  The workspace
        !           245: !     calculation should use queries for all routines eventually.
        !           246:                MAXWRK = MAX( MAXWRK,
        !           247:      $              4*M+M*M+MAX( M, 2*M-4, NRHS, N-3*M ) )
        !           248:             ELSE
        !           249: *
        !           250: *              Path 2 - remaining underdetermined cases.
        !           251: *
        !           252:                MAXWRK = 3*M + ( N+M )*ILAENV( 1, 'DGEBRD', ' ', M, N,
        !           253:      $                  -1, -1 )
        !           254:                MAXWRK = MAX( MAXWRK, 3*M+NRHS*
        !           255:      $                  ILAENV( 1, 'DORMBR', 'QLT', M, NRHS, N, -1 ) )
        !           256:                MAXWRK = MAX( MAXWRK, 3*M+M*
        !           257:      $                  ILAENV( 1, 'DORMBR', 'PLN', N, NRHS, M, -1 ) )
        !           258:                MAXWRK = MAX( MAXWRK, 3*M+WLALSD )
        !           259:             END IF
        !           260:             MINWRK = MAX( 3*M+NRHS, 3*M+M, 3*M+WLALSD )
        !           261:          END IF
        !           262:          MINWRK = MIN( MINWRK, MAXWRK )
        !           263:          WORK( 1 ) = MAXWRK
        !           264:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
        !           265:             INFO = -12
        !           266:          END IF
        !           267:       END IF
        !           268: *
        !           269:       IF( INFO.NE.0 ) THEN
        !           270:          CALL XERBLA( 'DGELSD', -INFO )
        !           271:          RETURN
        !           272:       ELSE IF( LQUERY ) THEN
        !           273:          GO TO 10
        !           274:       END IF
        !           275: *
        !           276: *     Quick return if possible.
        !           277: *
        !           278:       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
        !           279:          RANK = 0
        !           280:          RETURN
        !           281:       END IF
        !           282: *
        !           283: *     Get machine parameters.
        !           284: *
        !           285:       EPS = DLAMCH( 'P' )
        !           286:       SFMIN = DLAMCH( 'S' )
        !           287:       SMLNUM = SFMIN / EPS
        !           288:       BIGNUM = ONE / SMLNUM
        !           289:       CALL DLABAD( SMLNUM, BIGNUM )
        !           290: *
        !           291: *     Scale A if max entry outside range [SMLNUM,BIGNUM].
        !           292: *
        !           293:       ANRM = DLANGE( 'M', M, N, A, LDA, WORK )
        !           294:       IASCL = 0
        !           295:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           296: *
        !           297: *        Scale matrix norm up to SMLNUM.
        !           298: *
        !           299:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
        !           300:          IASCL = 1
        !           301:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           302: *
        !           303: *        Scale matrix norm down to BIGNUM.
        !           304: *
        !           305:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
        !           306:          IASCL = 2
        !           307:       ELSE IF( ANRM.EQ.ZERO ) THEN
        !           308: *
        !           309: *        Matrix all zero. Return zero solution.
        !           310: *
        !           311:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
        !           312:          CALL DLASET( 'F', MINMN, 1, ZERO, ZERO, S, 1 )
        !           313:          RANK = 0
        !           314:          GO TO 10
        !           315:       END IF
        !           316: *
        !           317: *     Scale B if max entry outside range [SMLNUM,BIGNUM].
        !           318: *
        !           319:       BNRM = DLANGE( 'M', M, NRHS, B, LDB, WORK )
        !           320:       IBSCL = 0
        !           321:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
        !           322: *
        !           323: *        Scale matrix norm up to SMLNUM.
        !           324: *
        !           325:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO )
        !           326:          IBSCL = 1
        !           327:       ELSE IF( BNRM.GT.BIGNUM ) THEN
        !           328: *
        !           329: *        Scale matrix norm down to BIGNUM.
        !           330: *
        !           331:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO )
        !           332:          IBSCL = 2
        !           333:       END IF
        !           334: *
        !           335: *     If M < N make sure certain entries of B are zero.
        !           336: *
        !           337:       IF( M.LT.N )
        !           338:      $   CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
        !           339: *
        !           340: *     Overdetermined case.
        !           341: *
        !           342:       IF( M.GE.N ) THEN
        !           343: *
        !           344: *        Path 1 - overdetermined or exactly determined.
        !           345: *
        !           346:          MM = M
        !           347:          IF( M.GE.MNTHR ) THEN
        !           348: *
        !           349: *           Path 1a - overdetermined, with many more rows than columns.
        !           350: *
        !           351:             MM = N
        !           352:             ITAU = 1
        !           353:             NWORK = ITAU + N
        !           354: *
        !           355: *           Compute A=Q*R.
        !           356: *           (Workspace: need 2*N, prefer N+N*NB)
        !           357: *
        !           358:             CALL DGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
        !           359:      $                   LWORK-NWORK+1, INFO )
        !           360: *
        !           361: *           Multiply B by transpose(Q).
        !           362: *           (Workspace: need N+NRHS, prefer N+NRHS*NB)
        !           363: *
        !           364:             CALL DORMQR( 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAU ), B,
        !           365:      $                   LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
        !           366: *
        !           367: *           Zero out below R.
        !           368: *
        !           369:             IF( N.GT.1 ) THEN
        !           370:                CALL DLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
        !           371:             END IF
        !           372:          END IF
        !           373: *
        !           374:          IE = 1
        !           375:          ITAUQ = IE + N
        !           376:          ITAUP = ITAUQ + N
        !           377:          NWORK = ITAUP + N
        !           378: *
        !           379: *        Bidiagonalize R in A.
        !           380: *        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB)
        !           381: *
        !           382:          CALL DGEBRD( MM, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
        !           383:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
        !           384:      $                INFO )
        !           385: *
        !           386: *        Multiply B by transpose of left bidiagonalizing vectors of R.
        !           387: *        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB)
        !           388: *
        !           389:          CALL DORMBR( 'Q', 'L', 'T', MM, NRHS, N, A, LDA, WORK( ITAUQ ),
        !           390:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
        !           391: *
        !           392: *        Solve the bidiagonal least squares problem.
        !           393: *
        !           394:          CALL DLALSD( 'U', SMLSIZ, N, NRHS, S, WORK( IE ), B, LDB,
        !           395:      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
        !           396:          IF( INFO.NE.0 ) THEN
        !           397:             GO TO 10
        !           398:          END IF
        !           399: *
        !           400: *        Multiply B by right bidiagonalizing vectors of R.
        !           401: *
        !           402:          CALL DORMBR( 'P', 'L', 'N', N, NRHS, N, A, LDA, WORK( ITAUP ),
        !           403:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
        !           404: *
        !           405:       ELSE IF( N.GE.MNTHR .AND. LWORK.GE.4*M+M*M+
        !           406:      $         MAX( M, 2*M-4, NRHS, N-3*M, WLALSD ) ) THEN
        !           407: *
        !           408: *        Path 2a - underdetermined, with many more columns than rows
        !           409: *        and sufficient workspace for an efficient algorithm.
        !           410: *
        !           411:          LDWORK = M
        !           412:          IF( LWORK.GE.MAX( 4*M+M*LDA+MAX( M, 2*M-4, NRHS, N-3*M ),
        !           413:      $       M*LDA+M+M*NRHS, 4*M+M*LDA+WLALSD ) )LDWORK = LDA
        !           414:          ITAU = 1
        !           415:          NWORK = M + 1
        !           416: *
        !           417: *        Compute A=L*Q.
        !           418: *        (Workspace: need 2*M, prefer M+M*NB)
        !           419: *
        !           420:          CALL DGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
        !           421:      $                LWORK-NWORK+1, INFO )
        !           422:          IL = NWORK
        !           423: *
        !           424: *        Copy L to WORK(IL), zeroing out above its diagonal.
        !           425: *
        !           426:          CALL DLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWORK )
        !           427:          CALL DLASET( 'U', M-1, M-1, ZERO, ZERO, WORK( IL+LDWORK ),
        !           428:      $                LDWORK )
        !           429:          IE = IL + LDWORK*M
        !           430:          ITAUQ = IE + M
        !           431:          ITAUP = ITAUQ + M
        !           432:          NWORK = ITAUP + M
        !           433: *
        !           434: *        Bidiagonalize L in WORK(IL).
        !           435: *        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB)
        !           436: *
        !           437:          CALL DGEBRD( M, M, WORK( IL ), LDWORK, S, WORK( IE ),
        !           438:      $                WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
        !           439:      $                LWORK-NWORK+1, INFO )
        !           440: *
        !           441: *        Multiply B by transpose of left bidiagonalizing vectors of L.
        !           442: *        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB)
        !           443: *
        !           444:          CALL DORMBR( 'Q', 'L', 'T', M, NRHS, M, WORK( IL ), LDWORK,
        !           445:      $                WORK( ITAUQ ), B, LDB, WORK( NWORK ),
        !           446:      $                LWORK-NWORK+1, INFO )
        !           447: *
        !           448: *        Solve the bidiagonal least squares problem.
        !           449: *
        !           450:          CALL DLALSD( 'U', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
        !           451:      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
        !           452:          IF( INFO.NE.0 ) THEN
        !           453:             GO TO 10
        !           454:          END IF
        !           455: *
        !           456: *        Multiply B by right bidiagonalizing vectors of L.
        !           457: *
        !           458:          CALL DORMBR( 'P', 'L', 'N', M, NRHS, M, WORK( IL ), LDWORK,
        !           459:      $                WORK( ITAUP ), B, LDB, WORK( NWORK ),
        !           460:      $                LWORK-NWORK+1, INFO )
        !           461: *
        !           462: *        Zero out below first M rows of B.
        !           463: *
        !           464:          CALL DLASET( 'F', N-M, NRHS, ZERO, ZERO, B( M+1, 1 ), LDB )
        !           465:          NWORK = ITAU + M
        !           466: *
        !           467: *        Multiply transpose(Q) by B.
        !           468: *        (Workspace: need M+NRHS, prefer M+NRHS*NB)
        !           469: *
        !           470:          CALL DORMLQ( 'L', 'T', N, NRHS, M, A, LDA, WORK( ITAU ), B,
        !           471:      $                LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
        !           472: *
        !           473:       ELSE
        !           474: *
        !           475: *        Path 2 - remaining underdetermined cases.
        !           476: *
        !           477:          IE = 1
        !           478:          ITAUQ = IE + M
        !           479:          ITAUP = ITAUQ + M
        !           480:          NWORK = ITAUP + M
        !           481: *
        !           482: *        Bidiagonalize A.
        !           483: *        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB)
        !           484: *
        !           485:          CALL DGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
        !           486:      $                WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
        !           487:      $                INFO )
        !           488: *
        !           489: *        Multiply B by transpose of left bidiagonalizing vectors.
        !           490: *        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB)
        !           491: *
        !           492:          CALL DORMBR( 'Q', 'L', 'T', M, NRHS, N, A, LDA, WORK( ITAUQ ),
        !           493:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
        !           494: *
        !           495: *        Solve the bidiagonal least squares problem.
        !           496: *
        !           497:          CALL DLALSD( 'L', SMLSIZ, M, NRHS, S, WORK( IE ), B, LDB,
        !           498:      $                RCOND, RANK, WORK( NWORK ), IWORK, INFO )
        !           499:          IF( INFO.NE.0 ) THEN
        !           500:             GO TO 10
        !           501:          END IF
        !           502: *
        !           503: *        Multiply B by right bidiagonalizing vectors of A.
        !           504: *
        !           505:          CALL DORMBR( 'P', 'L', 'N', N, NRHS, M, A, LDA, WORK( ITAUP ),
        !           506:      $                B, LDB, WORK( NWORK ), LWORK-NWORK+1, INFO )
        !           507: *
        !           508:       END IF
        !           509: *
        !           510: *     Undo scaling.
        !           511: *
        !           512:       IF( IASCL.EQ.1 ) THEN
        !           513:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO )
        !           514:          CALL DLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
        !           515:      $                INFO )
        !           516:       ELSE IF( IASCL.EQ.2 ) THEN
        !           517:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO )
        !           518:          CALL DLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
        !           519:      $                INFO )
        !           520:       END IF
        !           521:       IF( IBSCL.EQ.1 ) THEN
        !           522:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO )
        !           523:       ELSE IF( IBSCL.EQ.2 ) THEN
        !           524:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO )
        !           525:       END IF
        !           526: *
        !           527:    10 CONTINUE
        !           528:       WORK( 1 ) = MAXWRK
        !           529:       RETURN
        !           530: *
        !           531: *     End of DGELSD
        !           532: *
        !           533:       END

CVSweb interface <joel.bertrand@systella.fr>