Annotation of rpl/lapack/lapack/dgels.f, revision 1.6

1.1       bertrand    1:       SUBROUTINE DGELS( TRANS, M, N, NRHS, A, LDA, B, LDB, WORK, LWORK,
                      2:      $                  INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          TRANS
                     11:       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
                     15: *     ..
                     16: *
                     17: *  Purpose
                     18: *  =======
                     19: *
                     20: *  DGELS solves overdetermined or underdetermined real linear systems
                     21: *  involving an M-by-N matrix A, or its transpose, using a QR or LQ
                     22: *  factorization of A.  It is assumed that A has full rank.
                     23: *
                     24: *  The following options are provided:
                     25: *
                     26: *  1. If TRANS = 'N' and m >= n:  find the least squares solution of
                     27: *     an overdetermined system, i.e., solve the least squares problem
                     28: *                  minimize || B - A*X ||.
                     29: *
                     30: *  2. If TRANS = 'N' and m < n:  find the minimum norm solution of
                     31: *     an underdetermined system A * X = B.
                     32: *
                     33: *  3. If TRANS = 'T' and m >= n:  find the minimum norm solution of
                     34: *     an undetermined system A**T * X = B.
                     35: *
                     36: *  4. If TRANS = 'T' and m < n:  find the least squares solution of
                     37: *     an overdetermined system, i.e., solve the least squares problem
                     38: *                  minimize || B - A**T * X ||.
                     39: *
                     40: *  Several right hand side vectors b and solution vectors x can be
                     41: *  handled in a single call; they are stored as the columns of the
                     42: *  M-by-NRHS right hand side matrix B and the N-by-NRHS solution
                     43: *  matrix X.
                     44: *
                     45: *  Arguments
                     46: *  =========
                     47: *
                     48: *  TRANS   (input) CHARACTER*1
                     49: *          = 'N': the linear system involves A;
                     50: *          = 'T': the linear system involves A**T.
                     51: *
                     52: *  M       (input) INTEGER
                     53: *          The number of rows of the matrix A.  M >= 0.
                     54: *
                     55: *  N       (input) INTEGER
                     56: *          The number of columns of the matrix A.  N >= 0.
                     57: *
                     58: *  NRHS    (input) INTEGER
                     59: *          The number of right hand sides, i.e., the number of
                     60: *          columns of the matrices B and X. NRHS >=0.
                     61: *
                     62: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
                     63: *          On entry, the M-by-N matrix A.
                     64: *          On exit,
                     65: *            if M >= N, A is overwritten by details of its QR
                     66: *                       factorization as returned by DGEQRF;
                     67: *            if M <  N, A is overwritten by details of its LQ
                     68: *                       factorization as returned by DGELQF.
                     69: *
                     70: *  LDA     (input) INTEGER
                     71: *          The leading dimension of the array A.  LDA >= max(1,M).
                     72: *
                     73: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
                     74: *          On entry, the matrix B of right hand side vectors, stored
                     75: *          columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS
                     76: *          if TRANS = 'T'.
                     77: *          On exit, if INFO = 0, B is overwritten by the solution
                     78: *          vectors, stored columnwise:
                     79: *          if TRANS = 'N' and m >= n, rows 1 to n of B contain the least
                     80: *          squares solution vectors; the residual sum of squares for the
                     81: *          solution in each column is given by the sum of squares of
                     82: *          elements N+1 to M in that column;
                     83: *          if TRANS = 'N' and m < n, rows 1 to N of B contain the
                     84: *          minimum norm solution vectors;
                     85: *          if TRANS = 'T' and m >= n, rows 1 to M of B contain the
                     86: *          minimum norm solution vectors;
                     87: *          if TRANS = 'T' and m < n, rows 1 to M of B contain the
                     88: *          least squares solution vectors; the residual sum of squares
                     89: *          for the solution in each column is given by the sum of
                     90: *          squares of elements M+1 to N in that column.
                     91: *
                     92: *  LDB     (input) INTEGER
                     93: *          The leading dimension of the array B. LDB >= MAX(1,M,N).
                     94: *
                     95: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     96: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     97: *
                     98: *  LWORK   (input) INTEGER
                     99: *          The dimension of the array WORK.
                    100: *          LWORK >= max( 1, MN + max( MN, NRHS ) ).
                    101: *          For optimal performance,
                    102: *          LWORK >= max( 1, MN + max( MN, NRHS )*NB ).
                    103: *          where MN = min(M,N) and NB is the optimum block size.
                    104: *
                    105: *          If LWORK = -1, then a workspace query is assumed; the routine
                    106: *          only calculates the optimal size of the WORK array, returns
                    107: *          this value as the first entry of the WORK array, and no error
                    108: *          message related to LWORK is issued by XERBLA.
                    109: *
                    110: *  INFO    (output) INTEGER
                    111: *          = 0:  successful exit
                    112: *          < 0:  if INFO = -i, the i-th argument had an illegal value
                    113: *          > 0:  if INFO =  i, the i-th diagonal element of the
                    114: *                triangular factor of A is zero, so that A does not have
                    115: *                full rank; the least squares solution could not be
                    116: *                computed.
                    117: *
                    118: *  =====================================================================
                    119: *
                    120: *     .. Parameters ..
                    121:       DOUBLE PRECISION   ZERO, ONE
                    122:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    123: *     ..
                    124: *     .. Local Scalars ..
                    125:       LOGICAL            LQUERY, TPSD
                    126:       INTEGER            BROW, I, IASCL, IBSCL, J, MN, NB, SCLLEN, WSIZE
                    127:       DOUBLE PRECISION   ANRM, BIGNUM, BNRM, SMLNUM
                    128: *     ..
                    129: *     .. Local Arrays ..
                    130:       DOUBLE PRECISION   RWORK( 1 )
                    131: *     ..
                    132: *     .. External Functions ..
                    133:       LOGICAL            LSAME
                    134:       INTEGER            ILAENV
                    135:       DOUBLE PRECISION   DLAMCH, DLANGE
                    136:       EXTERNAL           LSAME, ILAENV, DLABAD, DLAMCH, DLANGE
                    137: *     ..
                    138: *     .. External Subroutines ..
                    139:       EXTERNAL           DGELQF, DGEQRF, DLASCL, DLASET, DORMLQ, DORMQR,
                    140:      $                   DTRTRS, XERBLA
                    141: *     ..
                    142: *     .. Intrinsic Functions ..
                    143:       INTRINSIC          DBLE, MAX, MIN
                    144: *     ..
                    145: *     .. Executable Statements ..
                    146: *
                    147: *     Test the input arguments.
                    148: *
                    149:       INFO = 0
                    150:       MN = MIN( M, N )
                    151:       LQUERY = ( LWORK.EQ.-1 )
                    152:       IF( .NOT.( LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' ) ) ) THEN
                    153:          INFO = -1
                    154:       ELSE IF( M.LT.0 ) THEN
                    155:          INFO = -2
                    156:       ELSE IF( N.LT.0 ) THEN
                    157:          INFO = -3
                    158:       ELSE IF( NRHS.LT.0 ) THEN
                    159:          INFO = -4
                    160:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    161:          INFO = -6
                    162:       ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN
                    163:          INFO = -8
                    164:       ELSE IF( LWORK.LT.MAX( 1, MN+MAX( MN, NRHS ) ) .AND. .NOT.LQUERY )
                    165:      $          THEN
                    166:          INFO = -10
                    167:       END IF
                    168: *
                    169: *     Figure out optimal block size
                    170: *
                    171:       IF( INFO.EQ.0 .OR. INFO.EQ.-10 ) THEN
                    172: *
                    173:          TPSD = .TRUE.
                    174:          IF( LSAME( TRANS, 'N' ) )
                    175:      $      TPSD = .FALSE.
                    176: *
                    177:          IF( M.GE.N ) THEN
                    178:             NB = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 )
                    179:             IF( TPSD ) THEN
                    180:                NB = MAX( NB, ILAENV( 1, 'DORMQR', 'LN', M, NRHS, N,
                    181:      $              -1 ) )
                    182:             ELSE
                    183:                NB = MAX( NB, ILAENV( 1, 'DORMQR', 'LT', M, NRHS, N,
                    184:      $              -1 ) )
                    185:             END IF
                    186:          ELSE
                    187:             NB = ILAENV( 1, 'DGELQF', ' ', M, N, -1, -1 )
                    188:             IF( TPSD ) THEN
                    189:                NB = MAX( NB, ILAENV( 1, 'DORMLQ', 'LT', N, NRHS, M,
                    190:      $              -1 ) )
                    191:             ELSE
                    192:                NB = MAX( NB, ILAENV( 1, 'DORMLQ', 'LN', N, NRHS, M,
                    193:      $              -1 ) )
                    194:             END IF
                    195:          END IF
                    196: *
                    197:          WSIZE = MAX( 1, MN+MAX( MN, NRHS )*NB )
                    198:          WORK( 1 ) = DBLE( WSIZE )
                    199: *
                    200:       END IF
                    201: *
                    202:       IF( INFO.NE.0 ) THEN
                    203:          CALL XERBLA( 'DGELS ', -INFO )
                    204:          RETURN
                    205:       ELSE IF( LQUERY ) THEN
                    206:          RETURN
                    207:       END IF
                    208: *
                    209: *     Quick return if possible
                    210: *
                    211:       IF( MIN( M, N, NRHS ).EQ.0 ) THEN
                    212:          CALL DLASET( 'Full', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
                    213:          RETURN
                    214:       END IF
                    215: *
                    216: *     Get machine parameters
                    217: *
                    218:       SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' )
                    219:       BIGNUM = ONE / SMLNUM
                    220:       CALL DLABAD( SMLNUM, BIGNUM )
                    221: *
                    222: *     Scale A, B if max element outside range [SMLNUM,BIGNUM]
                    223: *
                    224:       ANRM = DLANGE( 'M', M, N, A, LDA, RWORK )
                    225:       IASCL = 0
                    226:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    227: *
                    228: *        Scale matrix norm up to SMLNUM
                    229: *
                    230:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO )
                    231:          IASCL = 1
                    232:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    233: *
                    234: *        Scale matrix norm down to BIGNUM
                    235: *
                    236:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO )
                    237:          IASCL = 2
                    238:       ELSE IF( ANRM.EQ.ZERO ) THEN
                    239: *
                    240: *        Matrix all zero. Return zero solution.
                    241: *
                    242:          CALL DLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB )
                    243:          GO TO 50
                    244:       END IF
                    245: *
                    246:       BROW = M
                    247:       IF( TPSD )
                    248:      $   BROW = N
                    249:       BNRM = DLANGE( 'M', BROW, NRHS, B, LDB, RWORK )
                    250:       IBSCL = 0
                    251:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
                    252: *
                    253: *        Scale matrix norm up to SMLNUM
                    254: *
                    255:          CALL DLASCL( 'G', 0, 0, BNRM, SMLNUM, BROW, NRHS, B, LDB,
                    256:      $                INFO )
                    257:          IBSCL = 1
                    258:       ELSE IF( BNRM.GT.BIGNUM ) THEN
                    259: *
                    260: *        Scale matrix norm down to BIGNUM
                    261: *
                    262:          CALL DLASCL( 'G', 0, 0, BNRM, BIGNUM, BROW, NRHS, B, LDB,
                    263:      $                INFO )
                    264:          IBSCL = 2
                    265:       END IF
                    266: *
                    267:       IF( M.GE.N ) THEN
                    268: *
                    269: *        compute QR factorization of A
                    270: *
                    271:          CALL DGEQRF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
                    272:      $                INFO )
                    273: *
                    274: *        workspace at least N, optimally N*NB
                    275: *
                    276:          IF( .NOT.TPSD ) THEN
                    277: *
                    278: *           Least-Squares Problem min || A * X - B ||
                    279: *
                    280: *           B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS)
                    281: *
                    282:             CALL DORMQR( 'Left', 'Transpose', M, NRHS, N, A, LDA,
                    283:      $                   WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
                    284:      $                   INFO )
                    285: *
                    286: *           workspace at least NRHS, optimally NRHS*NB
                    287: *
                    288: *           B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS)
                    289: *
                    290:             CALL DTRTRS( 'Upper', 'No transpose', 'Non-unit', N, NRHS,
                    291:      $                   A, LDA, B, LDB, INFO )
                    292: *
                    293:             IF( INFO.GT.0 ) THEN
                    294:                RETURN
                    295:             END IF
                    296: *
                    297:             SCLLEN = N
                    298: *
                    299:          ELSE
                    300: *
                    301: *           Overdetermined system of equations A' * X = B
                    302: *
                    303: *           B(1:N,1:NRHS) := inv(R') * B(1:N,1:NRHS)
                    304: *
                    305:             CALL DTRTRS( 'Upper', 'Transpose', 'Non-unit', N, NRHS,
                    306:      $                   A, LDA, B, LDB, INFO )
                    307: *
                    308:             IF( INFO.GT.0 ) THEN
                    309:                RETURN
                    310:             END IF
                    311: *
                    312: *           B(N+1:M,1:NRHS) = ZERO
                    313: *
                    314:             DO 20 J = 1, NRHS
                    315:                DO 10 I = N + 1, M
                    316:                   B( I, J ) = ZERO
                    317:    10          CONTINUE
                    318:    20       CONTINUE
                    319: *
                    320: *           B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS)
                    321: *
                    322:             CALL DORMQR( 'Left', 'No transpose', M, NRHS, N, A, LDA,
                    323:      $                   WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
                    324:      $                   INFO )
                    325: *
                    326: *           workspace at least NRHS, optimally NRHS*NB
                    327: *
                    328:             SCLLEN = M
                    329: *
                    330:          END IF
                    331: *
                    332:       ELSE
                    333: *
                    334: *        Compute LQ factorization of A
                    335: *
                    336:          CALL DGELQF( M, N, A, LDA, WORK( 1 ), WORK( MN+1 ), LWORK-MN,
                    337:      $                INFO )
                    338: *
                    339: *        workspace at least M, optimally M*NB.
                    340: *
                    341:          IF( .NOT.TPSD ) THEN
                    342: *
                    343: *           underdetermined system of equations A * X = B
                    344: *
                    345: *           B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS)
                    346: *
                    347:             CALL DTRTRS( 'Lower', 'No transpose', 'Non-unit', M, NRHS,
                    348:      $                   A, LDA, B, LDB, INFO )
                    349: *
                    350:             IF( INFO.GT.0 ) THEN
                    351:                RETURN
                    352:             END IF
                    353: *
                    354: *           B(M+1:N,1:NRHS) = 0
                    355: *
                    356:             DO 40 J = 1, NRHS
                    357:                DO 30 I = M + 1, N
                    358:                   B( I, J ) = ZERO
                    359:    30          CONTINUE
                    360:    40       CONTINUE
                    361: *
                    362: *           B(1:N,1:NRHS) := Q(1:N,:)' * B(1:M,1:NRHS)
                    363: *
                    364:             CALL DORMLQ( 'Left', 'Transpose', N, NRHS, M, A, LDA,
                    365:      $                   WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
                    366:      $                   INFO )
                    367: *
                    368: *           workspace at least NRHS, optimally NRHS*NB
                    369: *
                    370:             SCLLEN = N
                    371: *
                    372:          ELSE
                    373: *
                    374: *           overdetermined system min || A' * X - B ||
                    375: *
                    376: *           B(1:N,1:NRHS) := Q * B(1:N,1:NRHS)
                    377: *
                    378:             CALL DORMLQ( 'Left', 'No transpose', N, NRHS, M, A, LDA,
                    379:      $                   WORK( 1 ), B, LDB, WORK( MN+1 ), LWORK-MN,
                    380:      $                   INFO )
                    381: *
                    382: *           workspace at least NRHS, optimally NRHS*NB
                    383: *
                    384: *           B(1:M,1:NRHS) := inv(L') * B(1:M,1:NRHS)
                    385: *
                    386:             CALL DTRTRS( 'Lower', 'Transpose', 'Non-unit', M, NRHS,
                    387:      $                   A, LDA, B, LDB, INFO )
                    388: *
                    389:             IF( INFO.GT.0 ) THEN
                    390:                RETURN
                    391:             END IF
                    392: *
                    393:             SCLLEN = M
                    394: *
                    395:          END IF
                    396: *
                    397:       END IF
                    398: *
                    399: *     Undo scaling
                    400: *
                    401:       IF( IASCL.EQ.1 ) THEN
                    402:          CALL DLASCL( 'G', 0, 0, ANRM, SMLNUM, SCLLEN, NRHS, B, LDB,
                    403:      $                INFO )
                    404:       ELSE IF( IASCL.EQ.2 ) THEN
                    405:          CALL DLASCL( 'G', 0, 0, ANRM, BIGNUM, SCLLEN, NRHS, B, LDB,
                    406:      $                INFO )
                    407:       END IF
                    408:       IF( IBSCL.EQ.1 ) THEN
                    409:          CALL DLASCL( 'G', 0, 0, SMLNUM, BNRM, SCLLEN, NRHS, B, LDB,
                    410:      $                INFO )
                    411:       ELSE IF( IBSCL.EQ.2 ) THEN
                    412:          CALL DLASCL( 'G', 0, 0, BIGNUM, BNRM, SCLLEN, NRHS, B, LDB,
                    413:      $                INFO )
                    414:       END IF
                    415: *
                    416:    50 CONTINUE
                    417:       WORK( 1 ) = DBLE( WSIZE )
                    418: *
                    419:       RETURN
                    420: *
                    421: *     End of DGELS
                    422: *
                    423:       END

CVSweb interface <joel.bertrand@systella.fr>