Annotation of rpl/lapack/lapack/dgelqt3.f, revision 1.5

1.1       bertrand    1: *> \brief \b DGELQT3 recursively computes a LQ factorization of a general real or complex matrix using the compact WY representation of Q.
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
1.5     ! bertrand    9: *> Download DGELQT3 + dependencies
1.1       bertrand   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelqt3.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelqt3.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelqt3.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       RECURSIVE SUBROUTINE DGELQT3( M, N, A, LDA, T, LDT, INFO )
                     22: *
                     23: *       .. Scalar Arguments ..
                     24: *       INTEGER   INFO, LDA, M, N, LDT
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION   A( LDA, * ), T( LDT, * )
                     28: *       ..
                     29: *
                     30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> DGELQT3 recursively computes a LQ factorization of a real M-by-N
                     37: *> matrix A, using the compact WY representation of Q.
                     38: *>
                     39: *> Based on the algorithm of Elmroth and Gustavson,
                     40: *> IBM J. Res. Develop. Vol 44 No. 4 July 2000.
                     41: *> \endverbatim
                     42: *
                     43: *  Arguments:
                     44: *  ==========
                     45: *
                     46: *> \param[in] M
                     47: *> \verbatim
                     48: *>          M is INTEGER
                     49: *>          The number of rows of the matrix A.  M =< N.
                     50: *> \endverbatim
                     51: *>
                     52: *> \param[in] N
                     53: *> \verbatim
                     54: *>          N is INTEGER
                     55: *>          The number of columns of the matrix A.  N >= 0.
                     56: *> \endverbatim
                     57: *>
                     58: *> \param[in,out] A
                     59: *> \verbatim
                     60: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     61: *>          On entry, the real M-by-N matrix A.  On exit, the elements on and
                     62: *>          below the diagonal contain the N-by-N lower triangular matrix L; the
                     63: *>          elements above the diagonal are the rows of V.  See below for
                     64: *>          further details.
                     65: *> \endverbatim
                     66: *>
                     67: *> \param[in] LDA
                     68: *> \verbatim
                     69: *>          LDA is INTEGER
                     70: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     71: *> \endverbatim
                     72: *>
                     73: *> \param[out] T
                     74: *> \verbatim
                     75: *>          T is DOUBLE PRECISION array, dimension (LDT,N)
                     76: *>          The N-by-N upper triangular factor of the block reflector.
                     77: *>          The elements on and above the diagonal contain the block
                     78: *>          reflector T; the elements below the diagonal are not used.
                     79: *>          See below for further details.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] LDT
                     83: *> \verbatim
                     84: *>          LDT is INTEGER
                     85: *>          The leading dimension of the array T.  LDT >= max(1,N).
                     86: *> \endverbatim
                     87: *>
                     88: *> \param[out] INFO
                     89: *> \verbatim
                     90: *>          INFO is INTEGER
                     91: *>          = 0: successful exit
                     92: *>          < 0: if INFO = -i, the i-th argument had an illegal value
                     93: *> \endverbatim
                     94: *
                     95: *  Authors:
                     96: *  ========
                     97: *
                     98: *> \author Univ. of Tennessee
                     99: *> \author Univ. of California Berkeley
                    100: *> \author Univ. of Colorado Denver
                    101: *> \author NAG Ltd.
                    102: *
                    103: *> \ingroup doubleGEcomputational
                    104: *
                    105: *> \par Further Details:
                    106: *  =====================
                    107: *>
                    108: *> \verbatim
                    109: *>
1.3       bertrand  110: *>  The matrix V stores the elementary reflectors H(i) in the i-th row
                    111: *>  above the diagonal. For example, if M=5 and N=3, the matrix V is
1.1       bertrand  112: *>
                    113: *>               V = (  1  v1 v1 v1 v1 )
                    114: *>                   (     1  v2 v2 v2 )
                    115: *>                   (     1  v3 v3 v3 )
                    116: *>
                    117: *>
                    118: *>  where the vi's represent the vectors which define H(i), which are returned
                    119: *>  in the matrix A.  The 1's along the diagonal of V are not stored in A.  The
                    120: *>  block reflector H is then given by
                    121: *>
                    122: *>               H = I - V * T * V**T
                    123: *>
                    124: *>  where V**T is the transpose of V.
                    125: *>
                    126: *>  For details of the algorithm, see Elmroth and Gustavson (cited above).
                    127: *> \endverbatim
                    128: *>
                    129: *  =====================================================================
                    130:       RECURSIVE SUBROUTINE DGELQT3( M, N, A, LDA, T, LDT, INFO )
                    131: *
1.5     ! bertrand  132: *  -- LAPACK computational routine --
1.1       bertrand  133: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    134: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    135: *
                    136: *     .. Scalar Arguments ..
                    137:       INTEGER   INFO, LDA, M, N, LDT
                    138: *     ..
                    139: *     .. Array Arguments ..
                    140:       DOUBLE PRECISION   A( LDA, * ), T( LDT, * )
                    141: *     ..
                    142: *
                    143: *  =====================================================================
                    144: *
                    145: *     .. Parameters ..
                    146:       DOUBLE PRECISION   ONE
                    147:       PARAMETER ( ONE = 1.0D+00 )
                    148: *     ..
                    149: *     .. Local Scalars ..
1.3       bertrand  150:       INTEGER   I, I1, J, J1, M1, M2, IINFO
1.1       bertrand  151: *     ..
                    152: *     .. External Subroutines ..
                    153:       EXTERNAL  DLARFG, DTRMM, DGEMM, XERBLA
                    154: *     ..
                    155: *     .. Executable Statements ..
                    156: *
                    157:       INFO = 0
                    158:       IF( M .LT. 0 ) THEN
                    159:          INFO = -1
                    160:       ELSE IF( N .LT. M ) THEN
                    161:          INFO = -2
                    162:       ELSE IF( LDA .LT. MAX( 1, M ) ) THEN
                    163:          INFO = -4
                    164:       ELSE IF( LDT .LT. MAX( 1, M ) ) THEN
                    165:          INFO = -6
                    166:       END IF
                    167:       IF( INFO.NE.0 ) THEN
                    168:          CALL XERBLA( 'DGELQT3', -INFO )
                    169:          RETURN
                    170:       END IF
                    171: *
                    172:       IF( M.EQ.1 ) THEN
                    173: *
1.5     ! bertrand  174: *        Compute Householder transform when M=1
1.1       bertrand  175: *
                    176:          CALL DLARFG( N, A, A( 1, MIN( 2, N ) ), LDA, T )
                    177: *
                    178:       ELSE
                    179: *
                    180: *        Otherwise, split A into blocks...
                    181: *
                    182:          M1 = M/2
                    183:          M2 = M-M1
                    184:          I1 = MIN( M1+1, M )
                    185:          J1 = MIN( M+1, N )
                    186: *
                    187: *        Compute A(1:M1,1:N) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1^H
                    188: *
                    189:          CALL DGELQT3( M1, N, A, LDA, T, LDT, IINFO )
                    190: *
                    191: *        Compute A(J1:M,1:N) = Q1^H A(J1:M,1:N) [workspace: T(1:N1,J1:N)]
                    192: *
                    193:          DO I=1,M2
                    194:             DO J=1,M1
                    195:                T(  I+M1, J ) = A( I+M1, J )
                    196:             END DO
                    197:          END DO
                    198:          CALL DTRMM( 'R', 'U', 'T', 'U', M2, M1, ONE,
                    199:      &               A, LDA, T( I1, 1 ), LDT )
                    200: *
                    201:          CALL DGEMM( 'N', 'T', M2, M1, N-M1, ONE, A( I1, I1 ), LDA,
                    202:      &               A( 1, I1 ), LDA, ONE, T( I1, 1 ), LDT)
                    203: *
                    204:          CALL DTRMM( 'R', 'U', 'N', 'N', M2, M1, ONE,
                    205:      &               T, LDT, T( I1, 1 ), LDT )
                    206: *
                    207:          CALL DGEMM( 'N', 'N', M2, N-M1, M1, -ONE, T( I1, 1 ), LDT,
                    208:      &                A( 1, I1 ), LDA, ONE, A( I1, I1 ), LDA )
                    209: *
                    210:          CALL DTRMM( 'R', 'U', 'N', 'U', M2, M1 , ONE,
                    211:      &               A, LDA, T( I1, 1 ), LDT )
                    212: *
                    213:          DO I=1,M2
                    214:             DO J=1,M1
                    215:                A(  I+M1, J ) = A( I+M1, J ) - T( I+M1, J )
                    216:                T( I+M1, J )=0
                    217:             END DO
                    218:          END DO
                    219: *
                    220: *        Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2^H
                    221: *
                    222:          CALL DGELQT3( M2, N-M1, A( I1, I1 ), LDA,
                    223:      &                T( I1, I1 ), LDT, IINFO )
                    224: *
                    225: *        Compute T3 = T(J1:N1,1:N) = -T1 Y1^H Y2 T2
                    226: *
                    227:          DO I=1,M2
                    228:             DO J=1,M1
                    229:                T( J, I+M1  ) = (A( J, I+M1 ))
                    230:             END DO
                    231:          END DO
                    232: *
                    233:          CALL DTRMM( 'R', 'U', 'T', 'U', M1, M2, ONE,
                    234:      &               A( I1, I1 ), LDA, T( 1, I1 ), LDT )
                    235: *
                    236:          CALL DGEMM( 'N', 'T', M1, M2, N-M, ONE, A( 1, J1 ), LDA,
                    237:      &               A( I1, J1 ), LDA, ONE, T( 1, I1 ), LDT )
                    238: *
                    239:          CALL DTRMM( 'L', 'U', 'N', 'N', M1, M2, -ONE, T, LDT,
                    240:      &               T( 1, I1 ), LDT )
                    241: *
                    242:          CALL DTRMM( 'R', 'U', 'N', 'N', M1, M2, ONE,
                    243:      &               T( I1, I1 ), LDT, T( 1, I1 ), LDT )
                    244: *
                    245: *
                    246: *
                    247: *        Y = (Y1,Y2); L = [ L1            0  ];  T = [T1 T3]
                    248: *                         [ A(1:N1,J1:N)  L2 ]       [ 0 T2]
                    249: *
                    250:       END IF
                    251: *
                    252:       RETURN
                    253: *
                    254: *     End of DGELQT3
                    255: *
                    256:       END

CVSweb interface <joel.bertrand@systella.fr>