Annotation of rpl/lapack/lapack/dgelqt.f, revision 1.6

1.1       bertrand    1: *> \brief \b DGELQT
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
                      7: *
                      8: *> \htmlonly
1.6     ! bertrand    9: *> Download DGELQT + dependencies
1.1       bertrand   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelqt.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelqt.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelqt.f">
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO )
                     22: *
                     23: *       .. Scalar Arguments ..
                     24: *       INTEGER INFO, LDA, LDT, M, N, MB
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
                     28: *       ..
                     29: *
                     30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> DGELQT computes a blocked LQ factorization of a real M-by-N matrix A
                     37: *> using the compact WY representation of Q.
                     38: *> \endverbatim
                     39: *
                     40: *  Arguments:
                     41: *  ==========
                     42: *
                     43: *> \param[in] M
                     44: *> \verbatim
                     45: *>          M is INTEGER
                     46: *>          The number of rows of the matrix A.  M >= 0.
                     47: *> \endverbatim
                     48: *>
                     49: *> \param[in] N
                     50: *> \verbatim
                     51: *>          N is INTEGER
                     52: *>          The number of columns of the matrix A.  N >= 0.
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[in] MB
                     56: *> \verbatim
                     57: *>          MB is INTEGER
                     58: *>          The block size to be used in the blocked QR.  MIN(M,N) >= MB >= 1.
                     59: *> \endverbatim
                     60: *>
                     61: *> \param[in,out] A
                     62: *> \verbatim
                     63: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     64: *>          On entry, the M-by-N matrix A.
                     65: *>          On exit, the elements on and below the diagonal of the array
                     66: *>          contain the M-by-MIN(M,N) lower trapezoidal matrix L (L is
                     67: *>          lower triangular if M <= N); the elements above the diagonal
                     68: *>          are the rows of V.
                     69: *> \endverbatim
                     70: *>
                     71: *> \param[in] LDA
                     72: *> \verbatim
                     73: *>          LDA is INTEGER
                     74: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     75: *> \endverbatim
                     76: *>
                     77: *> \param[out] T
                     78: *> \verbatim
                     79: *>          T is DOUBLE PRECISION array, dimension (LDT,MIN(M,N))
                     80: *>          The upper triangular block reflectors stored in compact form
                     81: *>          as a sequence of upper triangular blocks.  See below
                     82: *>          for further details.
                     83: *> \endverbatim
                     84: *>
                     85: *> \param[in] LDT
                     86: *> \verbatim
                     87: *>          LDT is INTEGER
                     88: *>          The leading dimension of the array T.  LDT >= MB.
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[out] WORK
                     92: *> \verbatim
                     93: *>          WORK is DOUBLE PRECISION array, dimension (MB*N)
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[out] INFO
                     97: *> \verbatim
                     98: *>          INFO is INTEGER
                     99: *>          = 0:  successful exit
                    100: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    101: *> \endverbatim
                    102: *
                    103: *  Authors:
                    104: *  ========
                    105: *
                    106: *> \author Univ. of Tennessee
                    107: *> \author Univ. of California Berkeley
                    108: *> \author Univ. of Colorado Denver
                    109: *> \author NAG Ltd.
                    110: *
                    111: *> \ingroup doubleGEcomputational
                    112: *
                    113: *> \par Further Details:
                    114: *  =====================
                    115: *>
                    116: *> \verbatim
                    117: *>
1.3       bertrand  118: *>  The matrix V stores the elementary reflectors H(i) in the i-th row
                    119: *>  above the diagonal. For example, if M=5 and N=3, the matrix V is
1.1       bertrand  120: *>
                    121: *>               V = (  1  v1 v1 v1 v1 )
                    122: *>                   (     1  v2 v2 v2 )
                    123: *>                   (         1 v3 v3 )
                    124: *>
                    125: *>
                    126: *>  where the vi's represent the vectors which define H(i), which are returned
                    127: *>  in the matrix A.  The 1's along the diagonal of V are not stored in A.
1.3       bertrand  128: *>  Let K=MIN(M,N).  The number of blocks is B = ceiling(K/MB), where each
                    129: *>  block is of order MB except for the last block, which is of order
                    130: *>  IB = K - (B-1)*MB.  For each of the B blocks, a upper triangular block
                    131: *>  reflector factor is computed: T1, T2, ..., TB.  The MB-by-MB (and IB-by-IB
                    132: *>  for the last block) T's are stored in the MB-by-K matrix T as
1.1       bertrand  133: *>
                    134: *>               T = (T1 T2 ... TB).
                    135: *> \endverbatim
                    136: *>
                    137: *  =====================================================================
                    138:       SUBROUTINE DGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO )
                    139: *
1.6     ! bertrand  140: *  -- LAPACK computational routine --
1.1       bertrand  141: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    142: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    143: *
                    144: *     .. Scalar Arguments ..
                    145:       INTEGER INFO, LDA, LDT, M, N, MB
                    146: *     ..
                    147: *     .. Array Arguments ..
                    148:       DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
                    149: *     ..
                    150: *
                    151: * =====================================================================
                    152: *
                    153: *     ..
                    154: *     .. Local Scalars ..
                    155:       INTEGER    I, IB, IINFO, K
                    156: *     ..
                    157: *     .. External Subroutines ..
1.5       bertrand  158:       EXTERNAL   DGELQT3, DLARFB, XERBLA
1.1       bertrand  159: *     ..
                    160: *     .. Executable Statements ..
                    161: *
                    162: *     Test the input arguments
                    163: *
                    164:       INFO = 0
                    165:       IF( M.LT.0 ) THEN
                    166:          INFO = -1
                    167:       ELSE IF( N.LT.0 ) THEN
                    168:          INFO = -2
                    169:       ELSE IF( MB.LT.1 .OR. ( MB.GT.MIN(M,N) .AND. MIN(M,N).GT.0 ) )THEN
                    170:          INFO = -3
                    171:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    172:          INFO = -5
                    173:       ELSE IF( LDT.LT.MB ) THEN
                    174:          INFO = -7
                    175:       END IF
                    176:       IF( INFO.NE.0 ) THEN
                    177:          CALL XERBLA( 'DGELQT', -INFO )
                    178:          RETURN
                    179:       END IF
                    180: *
                    181: *     Quick return if possible
                    182: *
                    183:       K = MIN( M, N )
                    184:       IF( K.EQ.0 ) RETURN
                    185: *
                    186: *     Blocked loop of length K
                    187: *
                    188:       DO I = 1, K,  MB
                    189:          IB = MIN( K-I+1, MB )
                    190: *
                    191: *     Compute the LQ factorization of the current block A(I:M,I:I+IB-1)
                    192: *
                    193:          CALL DGELQT3( IB, N-I+1, A(I,I), LDA, T(1,I), LDT, IINFO )
                    194:          IF( I+IB.LE.M ) THEN
                    195: *
                    196: *     Update by applying H**T to A(I:M,I+IB:N) from the right
                    197: *
                    198:          CALL DLARFB( 'R', 'N', 'F', 'R', M-I-IB+1, N-I+1, IB,
                    199:      $                   A( I, I ), LDA, T( 1, I ), LDT,
                    200:      $                   A( I+IB, I ), LDA, WORK , M-I-IB+1 )
                    201:          END IF
                    202:       END DO
                    203:       RETURN
                    204: *
                    205: *     End of DGELQT
                    206: *
                    207:       END

CVSweb interface <joel.bertrand@systella.fr>