Annotation of rpl/lapack/lapack/dgelq.f, revision 1.3

1.1       bertrand    1: *
                      2: *  Definition:
                      3: *  ===========
                      4: *
                      5: *       SUBROUTINE DGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK,
                      6: *                         INFO )
                      7: *
                      8: *       .. Scalar Arguments ..
                      9: *       INTEGER           INFO, LDA, M, N, TSIZE, LWORK
                     10: *       ..
                     11: *       .. Array Arguments ..
                     12: *       DOUBLE PRECISION  A( LDA, * ), T( * ), WORK( * )
                     13: *       ..
                     14: *
                     15: *
                     16: *> \par Purpose:
                     17: *  =============
                     18: *>
                     19: *> \verbatim
                     20: *> DGELQ computes a LQ factorization of an M-by-N matrix A.
                     21: *> \endverbatim
                     22: *
                     23: *  Arguments:
                     24: *  ==========
                     25: *
                     26: *> \param[in] M
                     27: *> \verbatim
                     28: *>          M is INTEGER
                     29: *>          The number of rows of the matrix A.  M >= 0.
                     30: *> \endverbatim
                     31: *>
                     32: *> \param[in] N
                     33: *> \verbatim
                     34: *>          N is INTEGER
                     35: *>          The number of columns of the matrix A.  N >= 0.
                     36: *> \endverbatim
                     37: *>
                     38: *> \param[in,out] A
                     39: *> \verbatim
                     40: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     41: *>          On entry, the M-by-N matrix A.
                     42: *>          On exit, the elements on and below the diagonal of the array
                     43: *>          contain the M-by-min(M,N) lower trapezoidal matrix L
                     44: *>          (L is lower triangular if M <= N);
                     45: *>          the elements above the diagonal are used to store part of the 
                     46: *>          data structure to represent Q.
                     47: *> \endverbatim
                     48: *>
                     49: *> \param[in] LDA
                     50: *> \verbatim
                     51: *>          LDA is INTEGER
                     52: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     53: *> \endverbatim
                     54: *>
                     55: *> \param[out] T
                     56: *> \verbatim
                     57: *>          T is DOUBLE PRECISION array, dimension (MAX(5,TSIZE))
                     58: *>          On exit, if INFO = 0, T(1) returns optimal (or either minimal 
                     59: *>          or optimal, if query is assumed) TSIZE. See TSIZE for details.
                     60: *>          Remaining T contains part of the data structure used to represent Q.
                     61: *>          If one wants to apply or construct Q, then one needs to keep T 
                     62: *>          (in addition to A) and pass it to further subroutines.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in] TSIZE
                     66: *> \verbatim
                     67: *>          TSIZE is INTEGER
                     68: *>          If TSIZE >= 5, the dimension of the array T.
                     69: *>          If TSIZE = -1 or -2, then a workspace query is assumed. The routine
                     70: *>          only calculates the sizes of the T and WORK arrays, returns these
                     71: *>          values as the first entries of the T and WORK arrays, and no error
                     72: *>          message related to T or WORK is issued by XERBLA.
                     73: *>          If TSIZE = -1, the routine calculates optimal size of T for the 
                     74: *>          optimum performance and returns this value in T(1).
                     75: *>          If TSIZE = -2, the routine calculates minimal size of T and 
                     76: *>          returns this value in T(1).
                     77: *> \endverbatim
                     78: *>
                     79: *> \param[out] WORK
                     80: *> \verbatim
                     81: *>          (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     82: *>          On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
                     83: *>          or optimal, if query was assumed) LWORK.
                     84: *>          See LWORK for details.
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[in] LWORK
                     88: *> \verbatim
                     89: *>          LWORK is INTEGER
                     90: *>          The dimension of the array WORK.
                     91: *>          If LWORK = -1 or -2, then a workspace query is assumed. The routine
                     92: *>          only calculates the sizes of the T and WORK arrays, returns these
                     93: *>          values as the first entries of the T and WORK arrays, and no error
                     94: *>          message related to T or WORK is issued by XERBLA.
                     95: *>          If LWORK = -1, the routine calculates optimal size of WORK for the
                     96: *>          optimal performance and returns this value in WORK(1).
                     97: *>          If LWORK = -2, the routine calculates minimal size of WORK and 
                     98: *>          returns this value in WORK(1).
                     99: *> \endverbatim
                    100: *>
                    101: *> \param[out] INFO
                    102: *> \verbatim
                    103: *>          INFO is INTEGER
                    104: *>          = 0:  successful exit
                    105: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    106: *> \endverbatim
                    107: *
                    108: *  Authors:
                    109: *  ========
                    110: *
                    111: *> \author Univ. of Tennessee
                    112: *> \author Univ. of California Berkeley
                    113: *> \author Univ. of Colorado Denver
                    114: *> \author NAG Ltd.
                    115: *
                    116: *> \par Further Details
                    117: *  ====================
                    118: *>
                    119: *> \verbatim
                    120: *>
                    121: *> The goal of the interface is to give maximum freedom to the developers for
                    122: *> creating any LQ factorization algorithm they wish. The triangular 
                    123: *> (trapezoidal) L has to be stored in the lower part of A. The lower part of A
                    124: *> and the array T can be used to store any relevant information for applying or
                    125: *> constructing the Q factor. The WORK array can safely be discarded after exit.
                    126: *>
                    127: *> Caution: One should not expect the sizes of T and WORK to be the same from one 
                    128: *> LAPACK implementation to the other, or even from one execution to the other.
                    129: *> A workspace query (for T and WORK) is needed at each execution. However, 
                    130: *> for a given execution, the size of T and WORK are fixed and will not change 
                    131: *> from one query to the next.
                    132: *>
                    133: *> \endverbatim
                    134: *>
                    135: *> \par Further Details particular to this LAPACK implementation:
                    136: *  ==============================================================
                    137: *>
                    138: *> \verbatim
                    139: *>
                    140: *> These details are particular for this LAPACK implementation. Users should not 
                    141: *> take them for granted. These details may change in the future, and are unlikely not
                    142: *> true for another LAPACK implementation. These details are relevant if one wants
                    143: *> to try to understand the code. They are not part of the interface.
                    144: *>
                    145: *> In this version,
                    146: *>
                    147: *>          T(2): row block size (MB)
                    148: *>          T(3): column block size (NB)
                    149: *>          T(6:TSIZE): data structure needed for Q, computed by
                    150: *>                           DLASWLQ or DGELQT
                    151: *>
                    152: *>  Depending on the matrix dimensions M and N, and row and column
                    153: *>  block sizes MB and NB returned by ILAENV, DGELQ will use either
                    154: *>  DLASWLQ (if the matrix is short-and-wide) or DGELQT to compute
                    155: *>  the LQ factorization.
                    156: *> \endverbatim
                    157: *>
                    158: *  =====================================================================
                    159:       SUBROUTINE DGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK,
                    160:      $                  INFO )
                    161: *
                    162: *  -- LAPACK computational routine (version 3.7.0) --
                    163: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    164: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
                    165: *     December 2016
                    166: *
                    167: *     .. Scalar Arguments ..
                    168:       INTEGER            INFO, LDA, M, N, TSIZE, LWORK
                    169: *     ..
                    170: *     .. Array Arguments ..
                    171:       DOUBLE PRECISION   A( LDA, * ), T( * ), WORK( * )
                    172: *     ..
                    173: *
                    174: *  =====================================================================
                    175: *
                    176: *     ..
                    177: *     .. Local Scalars ..
                    178:       LOGICAL            LQUERY, LMINWS, MINT, MINW
                    179:       INTEGER            MB, NB, MINTSZ, NBLCKS
                    180: *     ..
                    181: *     .. External Functions ..
                    182:       LOGICAL            LSAME
                    183:       EXTERNAL           LSAME
                    184: *     ..
                    185: *     .. External Subroutines ..
                    186:       EXTERNAL           DGELQT, DLASWLQ, XERBLA
                    187: *     ..
                    188: *     .. Intrinsic Functions ..
                    189:       INTRINSIC          MAX, MIN, MOD
                    190: *     ..
                    191: *     .. External Functions ..
                    192:       INTEGER            ILAENV
                    193:       EXTERNAL           ILAENV
                    194: *     ..
                    195: *     .. Executable Statements ..
                    196: *
                    197: *     Test the input arguments
                    198: *
                    199:       INFO = 0
                    200: *
                    201:       LQUERY = ( TSIZE.EQ.-1 .OR. TSIZE.EQ.-2 .OR.
                    202:      $           LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
                    203: *
                    204:       MINT = .FALSE.
                    205:       MINW = .FALSE.
                    206:       IF( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) THEN
                    207:         IF( TSIZE.NE.-1 ) MINT = .TRUE.
                    208:         IF( LWORK.NE.-1 ) MINW = .TRUE.
                    209:       END IF
                    210: *
                    211: *     Determine the block size
                    212: *
                    213:       IF( MIN( M, N ).GT.0 ) THEN
                    214:         MB = ILAENV( 1, 'DGELQ ', ' ', M, N, 1, -1 )
                    215:         NB = ILAENV( 1, 'DGELQ ', ' ', M, N, 2, -1 )
                    216:       ELSE
                    217:         MB = 1
                    218:         NB = N
                    219:       END IF
                    220:       IF( MB.GT.MIN( M, N ) .OR. MB.LT.1 ) MB = 1
                    221:       IF( NB.GT.N .OR. NB.LE.M ) NB = N
                    222:       MINTSZ = M + 5
                    223:       IF ( NB.GT.M .AND. N.GT.M ) THEN
                    224:         IF( MOD( N - M, NB - M ).EQ.0 ) THEN
                    225:           NBLCKS = ( N - M ) / ( NB - M )
                    226:         ELSE
                    227:           NBLCKS = ( N - M ) / ( NB - M ) + 1
                    228:         END IF
                    229:       ELSE
                    230:         NBLCKS = 1
                    231:       END IF
                    232: *
                    233: *     Determine if the workspace size satisfies minimal size
                    234: *
                    235:       LMINWS = .FALSE.
                    236:       IF( ( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) .OR. LWORK.LT.MB*M )
                    237:      $    .AND. ( LWORK.GE.M ) .AND. ( TSIZE.GE.MINTSZ )
                    238:      $    .AND. ( .NOT.LQUERY ) ) THEN
                    239:         IF( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) ) THEN
                    240:             LMINWS = .TRUE.
                    241:             MB = 1
                    242:             NB = N
                    243:         END IF
                    244:         IF( LWORK.LT.MB*M ) THEN
                    245:             LMINWS = .TRUE.
                    246:             MB = 1
                    247:         END IF
                    248:       END IF
                    249: *
                    250:       IF( M.LT.0 ) THEN
                    251:         INFO = -1
                    252:       ELSE IF( N.LT.0 ) THEN
                    253:         INFO = -2
                    254:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    255:         INFO = -4
                    256:       ELSE IF( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 )
                    257:      $   .AND. ( .NOT.LQUERY ) .AND. ( .NOT.LMINWS ) ) THEN
                    258:         INFO = -6
                    259:       ELSE IF( ( LWORK.LT.MAX( 1, M*MB ) ) .AND .( .NOT.LQUERY )
                    260:      $   .AND. ( .NOT.LMINWS ) ) THEN
                    261:         INFO = -8
                    262:       END IF
                    263: *
                    264:       IF( INFO.EQ.0 ) THEN
                    265:         IF( MINT ) THEN
                    266:           T( 1 ) = MINTSZ
                    267:         ELSE
                    268:           T( 1 ) = MB*M*NBLCKS + 5
                    269:         END IF
                    270:         T( 2 ) = MB
                    271:         T( 3 ) = NB
                    272:         IF( MINW ) THEN
                    273:           WORK( 1 ) = MAX( 1, N )
                    274:         ELSE
                    275:           WORK( 1 ) = MAX( 1, MB*M )
                    276:         END IF
                    277:       END IF
                    278:       IF( INFO.NE.0 ) THEN
                    279:         CALL XERBLA( 'DGELQ', -INFO )
                    280:         RETURN
                    281:       ELSE IF( LQUERY ) THEN
                    282:         RETURN
                    283:       END IF
                    284: *
                    285: *     Quick return if possible
                    286: *
                    287:       IF( MIN( M, N ).EQ.0 ) THEN
                    288:         RETURN
                    289:       END IF
                    290: *
                    291: *     The LQ Decomposition
                    292: *
                    293:       IF( ( N.LE.M ) .OR. ( NB.LE.M ) .OR. ( NB.GE.N ) ) THEN
                    294:         CALL DGELQT( M, N, MB, A, LDA, T( 6 ), MB, WORK, INFO )
                    295:       ELSE
                    296:         CALL DLASWLQ( M, N, MB, NB, A, LDA, T( 6 ), MB, WORK,
                    297:      $                LWORK, INFO )
                    298:       END IF
                    299: *
                    300:       WORK( 1 ) = MAX( 1, MB*M )
                    301: *
                    302:       RETURN
                    303: *
                    304: *     End of DGELQ
                    305: *
                    306:       END

CVSweb interface <joel.bertrand@systella.fr>