File:  [local] / rpl / lapack / lapack / dgejsv.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Tue Dec 21 13:53:25 2010 UTC (13 years, 4 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_0, rpl-4_0_24, rpl-4_0_22, rpl-4_0_21, rpl-4_0_20, rpl-4_0, HEAD
Mise à jour de lapack vers la version 3.3.0.

    1:       SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
    2:      &                   M, N, A, LDA, SVA, U, LDU, V, LDV,
    3:      &                   WORK, LWORK, IWORK, INFO )
    4: *
    5: *  -- LAPACK routine (version 3.3.0)                                    --
    6: *
    7: *  -- Contributed by Zlatko Drmac of the University of Zagreb and     --
    8: *  -- Kresimir Veselic of the Fernuniversitaet Hagen                  --
    9: *     November 2010
   10: *
   11: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
   12: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   13: *
   14: * This routine is also part of SIGMA (version 1.23, October 23. 2008.)
   15: * SIGMA is a library of algorithms for highly accurate algorithms for
   16: * computation of SVD, PSVD, QSVD, (H,K)-SVD, and for solution of the
   17: * eigenvalue problems Hx = lambda M x, H M x = lambda x with H, M > 0.
   18: *
   19: *     .. Scalar Arguments ..
   20:       IMPLICIT    NONE
   21:       INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
   22: *     ..
   23: *     .. Array Arguments ..
   24:       DOUBLE PRECISION A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ),
   25:      &            WORK( LWORK )
   26:       INTEGER     IWORK( * )
   27:       CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
   28: *     ..
   29: *
   30: *  Purpose
   31: *  =======
   32: *
   33: *  DGEJSV computes the singular value decomposition (SVD) of a real M-by-N
   34: *  matrix [A], where M >= N. The SVD of [A] is written as
   35: *
   36: *               [A] = [U] * [SIGMA] * [V]^t,
   37: *
   38: *  where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
   39: *  diagonal elements, [U] is an M-by-N (or M-by-M) orthonormal matrix, and
   40: *  [V] is an N-by-N orthogonal matrix. The diagonal elements of [SIGMA] are
   41: *  the singular values of [A]. The columns of [U] and [V] are the left and
   42: *  the right singular vectors of [A], respectively. The matrices [U] and [V]
   43: *  are computed and stored in the arrays U and V, respectively. The diagonal
   44: *  of [SIGMA] is computed and stored in the array SVA.
   45: *
   46: *  Arguments
   47: *  =========
   48: *
   49: *  JOBA    (input) CHARACTER*1
   50: *        Specifies the level of accuracy:
   51: *       = 'C': This option works well (high relative accuracy) if A = B * D,
   52: *             with well-conditioned B and arbitrary diagonal matrix D.
   53: *             The accuracy cannot be spoiled by COLUMN scaling. The
   54: *             accuracy of the computed output depends on the condition of
   55: *             B, and the procedure aims at the best theoretical accuracy.
   56: *             The relative error max_{i=1:N}|d sigma_i| / sigma_i is
   57: *             bounded by f(M,N)*epsilon* cond(B), independent of D.
   58: *             The input matrix is preprocessed with the QRF with column
   59: *             pivoting. This initial preprocessing and preconditioning by
   60: *             a rank revealing QR factorization is common for all values of
   61: *             JOBA. Additional actions are specified as follows:
   62: *       = 'E': Computation as with 'C' with an additional estimate of the
   63: *             condition number of B. It provides a realistic error bound.
   64: *       = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
   65: *             D1, D2, and well-conditioned matrix C, this option gives
   66: *             higher accuracy than the 'C' option. If the structure of the
   67: *             input matrix is not known, and relative accuracy is
   68: *             desirable, then this option is advisable. The input matrix A
   69: *             is preprocessed with QR factorization with FULL (row and
   70: *             column) pivoting.
   71: *       = 'G'  Computation as with 'F' with an additional estimate of the
   72: *             condition number of B, where A=D*B. If A has heavily weighted
   73: *             rows, then using this condition number gives too pessimistic
   74: *             error bound.
   75: *       = 'A': Small singular values are the noise and the matrix is treated
   76: *             as numerically rank defficient. The error in the computed
   77: *             singular values is bounded by f(m,n)*epsilon*||A||.
   78: *             The computed SVD A = U * S * V^t restores A up to
   79: *             f(m,n)*epsilon*||A||.
   80: *             This gives the procedure the licence to discard (set to zero)
   81: *             all singular values below N*epsilon*||A||.
   82: *       = 'R': Similar as in 'A'. Rank revealing property of the initial
   83: *             QR factorization is used do reveal (using triangular factor)
   84: *             a gap sigma_{r+1} < epsilon * sigma_r in which case the
   85: *             numerical RANK is declared to be r. The SVD is computed with
   86: *             absolute error bounds, but more accurately than with 'A'.
   87: *
   88: *  JOBU    (input) CHARACTER*1
   89: *        Specifies whether to compute the columns of U:
   90: *       = 'U': N columns of U are returned in the array U.
   91: *       = 'F': full set of M left sing. vectors is returned in the array U.
   92: *       = 'W': U may be used as workspace of length M*N. See the description
   93: *             of U.
   94: *       = 'N': U is not computed.
   95: *
   96: *  JOBV    (input) CHARACTER*1
   97: *        Specifies whether to compute the matrix V:
   98: *       = 'V': N columns of V are returned in the array V; Jacobi rotations
   99: *             are not explicitly accumulated.
  100: *       = 'J': N columns of V are returned in the array V, but they are
  101: *             computed as the product of Jacobi rotations. This option is
  102: *             allowed only if JOBU .NE. 'N', i.e. in computing the full SVD.
  103: *       = 'W': V may be used as workspace of length N*N. See the description
  104: *             of V.
  105: *       = 'N': V is not computed.
  106: *
  107: *  JOBR    (input) CHARACTER*1
  108: *        Specifies the RANGE for the singular values. Issues the licence to
  109: *        set to zero small positive singular values if they are outside
  110: *        specified range. If A .NE. 0 is scaled so that the largest singular
  111: *        value of c*A is around DSQRT(BIG), BIG=SLAMCH('O'), then JOBR issues
  112: *        the licence to kill columns of A whose norm in c*A is less than
  113: *        DSQRT(SFMIN) (for JOBR.EQ.'R'), or less than SMALL=SFMIN/EPSLN,
  114: *        where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E').
  115: *       = 'N': Do not kill small columns of c*A. This option assumes that
  116: *             BLAS and QR factorizations and triangular solvers are
  117: *             implemented to work in that range. If the condition of A
  118: *             is greater than BIG, use DGESVJ.
  119: *       = 'R': RESTRICTED range for sigma(c*A) is [DSQRT(SFMIN), DSQRT(BIG)]
  120: *             (roughly, as described above). This option is recommended.
  121: *                                            ~~~~~~~~~~~~~~~~~~~~~~~~~~~
  122: *        For computing the singular values in the FULL range [SFMIN,BIG]
  123: *        use DGESVJ.
  124: *
  125: *  JOBT    (input) CHARACTER*1
  126: *        If the matrix is square then the procedure may determine to use
  127: *        transposed A if A^t seems to be better with respect to convergence.
  128: *        If the matrix is not square, JOBT is ignored. This is subject to
  129: *        changes in the future.
  130: *        The decision is based on two values of entropy over the adjoint
  131: *        orbit of A^t * A. See the descriptions of WORK(6) and WORK(7).
  132: *       = 'T': transpose if entropy test indicates possibly faster
  133: *        convergence of Jacobi process if A^t is taken as input. If A is
  134: *        replaced with A^t, then the row pivoting is included automatically.
  135: *       = 'N': do not speculate.
  136: *        This option can be used to compute only the singular values, or the
  137: *        full SVD (U, SIGMA and V). For only one set of singular vectors
  138: *        (U or V), the caller should provide both U and V, as one of the
  139: *        matrices is used as workspace if the matrix A is transposed.
  140: *        The implementer can easily remove this constraint and make the
  141: *        code more complicated. See the descriptions of U and V.
  142: *
  143: *  JOBP    (input) CHARACTER*1
  144: *        Issues the licence to introduce structured perturbations to drown
  145: *        denormalized numbers. This licence should be active if the
  146: *        denormals are poorly implemented, causing slow computation,
  147: *        especially in cases of fast convergence (!). For details see [1,2].
  148: *        For the sake of simplicity, this perturbations are included only
  149: *        when the full SVD or only the singular values are requested. The
  150: *        implementer/user can easily add the perturbation for the cases of
  151: *        computing one set of singular vectors.
  152: *       = 'P': introduce perturbation
  153: *       = 'N': do not perturb
  154: *
  155: *  M       (input) INTEGER
  156: *         The number of rows of the input matrix A.  M >= 0.
  157: *
  158: *  N       (input) INTEGER
  159: *         The number of columns of the input matrix A. M >= N >= 0.
  160: *
  161: *  A       (input/workspace) DOUBLE PRECISION array, dimension (LDA,N)
  162: *          On entry, the M-by-N matrix A.
  163: *
  164: *  LDA     (input) INTEGER
  165: *          The leading dimension of the array A.  LDA >= max(1,M).
  166: *
  167: *  SVA     (workspace/output) DOUBLE PRECISION array, dimension (N)
  168: *          On exit,
  169: *          - For WORK(1)/WORK(2) = ONE: The singular values of A. During the
  170: *            computation SVA contains Euclidean column norms of the
  171: *            iterated matrices in the array A.
  172: *          - For WORK(1) .NE. WORK(2): The singular values of A are
  173: *            (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if
  174: *            sigma_max(A) overflows or if small singular values have been
  175: *            saved from underflow by scaling the input matrix A.
  176: *          - If JOBR='R' then some of the singular values may be returned
  177: *            as exact zeros obtained by "set to zero" because they are
  178: *            below the numerical rank threshold or are denormalized numbers.
  179: *
  180: *  U       (workspace/output) DOUBLE PRECISION array, dimension ( LDU, N )
  181: *          If JOBU = 'U', then U contains on exit the M-by-N matrix of
  182: *                         the left singular vectors.
  183: *          If JOBU = 'F', then U contains on exit the M-by-M matrix of
  184: *                         the left singular vectors, including an ONB
  185: *                         of the orthogonal complement of the Range(A).
  186: *          If JOBU = 'W'  .AND. (JOBV.EQ.'V' .AND. JOBT.EQ.'T' .AND. M.EQ.N),
  187: *                         then U is used as workspace if the procedure
  188: *                         replaces A with A^t. In that case, [V] is computed
  189: *                         in U as left singular vectors of A^t and then
  190: *                         copied back to the V array. This 'W' option is just
  191: *                         a reminder to the caller that in this case U is
  192: *                         reserved as workspace of length N*N.
  193: *          If JOBU = 'N'  U is not referenced.
  194: *
  195: * LDU      (input) INTEGER
  196: *          The leading dimension of the array U,  LDU >= 1.
  197: *          IF  JOBU = 'U' or 'F' or 'W',  then LDU >= M.
  198: *
  199: *  V       (workspace/output) DOUBLE PRECISION array, dimension ( LDV, N )
  200: *          If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
  201: *                         the right singular vectors;
  202: *          If JOBV = 'W', AND (JOBU.EQ.'U' AND JOBT.EQ.'T' AND M.EQ.N),
  203: *                         then V is used as workspace if the pprocedure
  204: *                         replaces A with A^t. In that case, [U] is computed
  205: *                         in V as right singular vectors of A^t and then
  206: *                         copied back to the U array. This 'W' option is just
  207: *                         a reminder to the caller that in this case V is
  208: *                         reserved as workspace of length N*N.
  209: *          If JOBV = 'N'  V is not referenced.
  210: *
  211: *  LDV     (input) INTEGER
  212: *          The leading dimension of the array V,  LDV >= 1.
  213: *          If JOBV = 'V' or 'J' or 'W', then LDV >= N.
  214: *
  215: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension at least LWORK.
  216: *          On exit,
  217: *          WORK(1) = SCALE = WORK(2) / WORK(1) is the scaling factor such
  218: *                    that SCALE*SVA(1:N) are the computed singular values
  219: *                    of A. (See the description of SVA().)
  220: *          WORK(2) = See the description of WORK(1).
  221: *          WORK(3) = SCONDA is an estimate for the condition number of
  222: *                    column equilibrated A. (If JOBA .EQ. 'E' or 'G')
  223: *                    SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).
  224: *                    It is computed using DPOCON. It holds
  225: *                    N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
  226: *                    where R is the triangular factor from the QRF of A.
  227: *                    However, if R is truncated and the numerical rank is
  228: *                    determined to be strictly smaller than N, SCONDA is
  229: *                    returned as -1, thus indicating that the smallest
  230: *                    singular values might be lost.
  231: *
  232: *          If full SVD is needed, the following two condition numbers are
  233: *          useful for the analysis of the algorithm. They are provied for
  234: *          a developer/implementer who is familiar with the details of
  235: *          the method.
  236: *
  237: *          WORK(4) = an estimate of the scaled condition number of the
  238: *                    triangular factor in the first QR factorization.
  239: *          WORK(5) = an estimate of the scaled condition number of the
  240: *                    triangular factor in the second QR factorization.
  241: *          The following two parameters are computed if JOBT .EQ. 'T'.
  242: *          They are provided for a developer/implementer who is familiar
  243: *          with the details of the method.
  244: *
  245: *          WORK(6) = the entropy of A^t*A :: this is the Shannon entropy
  246: *                    of diag(A^t*A) / Trace(A^t*A) taken as point in the
  247: *                    probability simplex.
  248: *          WORK(7) = the entropy of A*A^t.
  249: *
  250: *  LWORK   (input) INTEGER
  251: *          Length of WORK to confirm proper allocation of work space.
  252: *          LWORK depends on the job:
  253: *
  254: *          If only SIGMA is needed ( JOBU.EQ.'N', JOBV.EQ.'N' ) and
  255: *            -> .. no scaled condition estimate required ( JOBE.EQ.'N'):
  256: *               LWORK >= max(2*M+N,4*N+1,7). This is the minimal requirement.
  257: *               For optimal performance (blocked code) the optimal value
  258: *               is LWORK >= max(2*M+N,3*N+(N+1)*NB,7). Here NB is the optimal
  259: *               block size for xGEQP3/xGEQRF.
  260: *            -> .. an estimate of the scaled condition number of A is
  261: *               required (JOBA='E', 'G'). In this case, LWORK is the maximum
  262: *               of the above and N*N+4*N, i.e. LWORK >= max(2*M+N,N*N+4N,7).
  263: *
  264: *          If SIGMA and the right singular vectors are needed (JOBV.EQ.'V'),
  265: *            -> the minimal requirement is LWORK >= max(2*N+M,7).
  266: *            -> For optimal performance, LWORK >= max(2*N+M,2*N+N*NB,7),
  267: *               where NB is the optimal block size.
  268: *
  269: *          If SIGMA and the left singular vectors are needed
  270: *            -> the minimal requirement is LWORK >= max(2*N+M,7).
  271: *            -> For optimal performance, LWORK >= max(2*N+M,2*N+N*NB,7),
  272: *               where NB is the optimal block size.
  273: *
  274: *          If full SVD is needed ( JOBU.EQ.'U' or 'F', JOBV.EQ.'V' ) and
  275: *            -> .. the singular vectors are computed without explicit
  276: *               accumulation of the Jacobi rotations, LWORK >= 6*N+2*N*N
  277: *            -> .. in the iterative part, the Jacobi rotations are
  278: *               explicitly accumulated (option, see the description of JOBV),
  279: *               then the minimal requirement is LWORK >= max(M+3*N+N*N,7).
  280: *               For better performance, if NB is the optimal block size,
  281: *               LWORK >= max(3*N+N*N+M,3*N+N*N+N*NB,7).
  282: *
  283: *  IWORK   (workspace/output) INTEGER array, dimension M+3*N.
  284: *          On exit,
  285: *          IWORK(1) = the numerical rank determined after the initial
  286: *                     QR factorization with pivoting. See the descriptions
  287: *                     of JOBA and JOBR.
  288: *          IWORK(2) = the number of the computed nonzero singular values
  289: *          IWORK(3) = if nonzero, a warning message:
  290: *                     If IWORK(3).EQ.1 then some of the column norms of A
  291: *                     were denormalized floats. The requested high accuracy
  292: *                     is not warranted by the data.
  293: *
  294: *  INFO    (output) INTEGER
  295: *           < 0  : if INFO = -i, then the i-th argument had an illegal value.
  296: *           = 0 :  successfull exit;
  297: *           > 0 :  DGEJSV  did not converge in the maximal allowed number
  298: *                  of sweeps. The computed values may be inaccurate.
  299: *
  300: *  Further Details
  301: *  ===============
  302: *
  303: *  DGEJSV implements a preconditioned Jacobi SVD algorithm. It uses SGEQP3,
  304: *  SGEQRF, and SGELQF as preprocessors and preconditioners. Optionally, an
  305: *  additional row pivoting can be used as a preprocessor, which in some
  306: *  cases results in much higher accuracy. An example is matrix A with the
  307: *  structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
  308: *  diagonal matrices and C is well-conditioned matrix. In that case, complete
  309: *  pivoting in the first QR factorizations provides accuracy dependent on the
  310: *  condition number of C, and independent of D1, D2. Such higher accuracy is
  311: *  not completely understood theoretically, but it works well in practice.
  312: *  Further, if A can be written as A = B*D, with well-conditioned B and some
  313: *  diagonal D, then the high accuracy is guaranteed, both theoretically and
  314: *  in software, independent of D. For more details see [1], [2].
  315: *     The computational range for the singular values can be the full range
  316: *  ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
  317: *  & LAPACK routines called by DGEJSV are implemented to work in that range.
  318: *  If that is not the case, then the restriction for safe computation with
  319: *  the singular values in the range of normalized IEEE numbers is that the
  320: *  spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
  321: *  overflow. This code (DGEJSV) is best used in this restricted range,
  322: *  meaning that singular values of magnitude below ||A||_2 / SLAMCH('O') are
  323: *  returned as zeros. See JOBR for details on this.
  324: *     Further, this implementation is somewhat slower than the one described
  325: *  in [1,2] due to replacement of some non-LAPACK components, and because
  326: *  the choice of some tuning parameters in the iterative part (DGESVJ) is
  327: *  left to the implementer on a particular machine.
  328: *     The rank revealing QR factorization (in this code: SGEQP3) should be
  329: *  implemented as in [3]. We have a new version of SGEQP3 under development
  330: *  that is more robust than the current one in LAPACK, with a cleaner cut in
  331: *  rank defficient cases. It will be available in the SIGMA library [4].
  332: *  If M is much larger than N, it is obvious that the inital QRF with
  333: *  column pivoting can be preprocessed by the QRF without pivoting. That
  334: *  well known trick is not used in DGEJSV because in some cases heavy row
  335: *  weighting can be treated with complete pivoting. The overhead in cases
  336: *  M much larger than N is then only due to pivoting, but the benefits in
  337: *  terms of accuracy have prevailed. The implementer/user can incorporate
  338: *  this extra QRF step easily. The implementer can also improve data movement
  339: *  (matrix transpose, matrix copy, matrix transposed copy) - this
  340: *  implementation of DGEJSV uses only the simplest, naive data movement.
  341: *
  342: *  Contributors
  343: *
  344: *  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
  345: *
  346: *  References
  347: *
  348: * [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
  349: *     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
  350: *     LAPACK Working note 169.
  351: * [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
  352: *     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
  353: *     LAPACK Working note 170.
  354: * [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
  355: *     factorization software - a case study.
  356: *     ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
  357: *     LAPACK Working note 176.
  358: * [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
  359: *     QSVD, (H,K)-SVD computations.
  360: *     Department of Mathematics, University of Zagreb, 2008.
  361: *
  362: *  Bugs, examples and comments
  363:   364: *  Please report all bugs and send interesting examples and/or comments to
  365: *  drmac@math.hr. Thank you.
  366: *
  367: * ==========================================================================
  368: *
  369: *     .. Local Parameters ..
  370:       DOUBLE PRECISION   ZERO,  ONE
  371:       PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  372: *     ..
  373: *     .. Local Scalars ..
  374:       DOUBLE PRECISION AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1, COND_OK,
  375:      &        CONDR1, CONDR2, ENTRA,  ENTRAT, EPSLN,  MAXPRJ, SCALEM,
  376:      &        SCONDA, SFMIN,  SMALL,  TEMP1,  USCAL1, USCAL2, XSC
  377:       INTEGER IERR,   N1,     NR,     NUMRANK,        p, q,   WARNING
  378:       LOGICAL ALMORT, DEFR,   ERREST, GOSCAL, JRACC,  KILL,   LSVEC,
  379:      &        L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN,
  380:      &        NOSCAL, ROWPIV, RSVEC,  TRANSP
  381: *     ..
  382: *     .. Intrinsic Functions ..
  383:       INTRINSIC DABS,  DLOG, DMAX1, DMIN1, DBLE,
  384:      &          MAX0, MIN0, IDNINT,  DSIGN,  DSQRT
  385: *     ..
  386: *     .. External Functions ..
  387:       DOUBLE PRECISION  DLAMCH, DNRM2
  388:       INTEGER   IDAMAX
  389:       LOGICAL   LSAME
  390:       EXTERNAL  IDAMAX, LSAME, DLAMCH, DNRM2
  391: *     ..
  392: *     .. External Subroutines ..
  393:       EXTERNAL  DCOPY,  DGELQF, DGEQP3, DGEQRF, DLACPY, DLASCL,
  394:      &          DLASET, DLASSQ, DLASWP, DORGQR, DORMLQ,
  395:      &          DORMQR, DPOCON, DSCAL,  DSWAP,  DTRSM,  XERBLA
  396: *
  397:       EXTERNAL  DGESVJ
  398: *     ..
  399: *
  400: *     Test the input arguments
  401: *
  402:       LSVEC  = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
  403:       JRACC  = LSAME( JOBV, 'J' )
  404:       RSVEC  = LSAME( JOBV, 'V' ) .OR. JRACC
  405:       ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
  406:       L2RANK = LSAME( JOBA, 'R' )
  407:       L2ABER = LSAME( JOBA, 'A' )
  408:       ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
  409:       L2TRAN = LSAME( JOBT, 'T' )
  410:       L2KILL = LSAME( JOBR, 'R' )
  411:       DEFR   = LSAME( JOBR, 'N' )
  412:       L2PERT = LSAME( JOBP, 'P' )
  413: *
  414:       IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
  415:      &     ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
  416:          INFO = - 1
  417:       ELSE IF ( .NOT.( LSVEC  .OR. LSAME( JOBU, 'N' ) .OR.
  418:      &                             LSAME( JOBU, 'W' )) ) THEN
  419:          INFO = - 2
  420:       ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
  421:      &   LSAME( JOBV, 'W' )) .OR. ( JRACC .AND. (.NOT.LSVEC) ) ) THEN
  422:          INFO = - 3
  423:       ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) )    THEN
  424:          INFO = - 4
  425:       ELSE IF ( .NOT. ( L2TRAN .OR. LSAME( JOBT, 'N' ) ) ) THEN
  426:          INFO = - 5
  427:       ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
  428:          INFO = - 6
  429:       ELSE IF ( M .LT. 0 ) THEN
  430:          INFO = - 7
  431:       ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
  432:          INFO = - 8
  433:       ELSE IF ( LDA .LT. M ) THEN
  434:          INFO = - 10
  435:       ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
  436:          INFO = - 13
  437:       ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
  438:          INFO = - 14
  439:       ELSE IF ( (.NOT.(LSVEC .OR. RSVEC .OR. ERREST).AND.
  440:      &                           (LWORK .LT. MAX0(7,4*N+1,2*M+N))) .OR.
  441:      & (.NOT.(LSVEC .OR. LSVEC) .AND. ERREST .AND.
  442:      &                         (LWORK .LT. MAX0(7,4*N+N*N,2*M+N))) .OR.
  443:      & (LSVEC .AND. (.NOT.RSVEC) .AND. (LWORK .LT. MAX0(7,2*N+M))) .OR.
  444:      & (RSVEC .AND. (.NOT.LSVEC) .AND. (LWORK .LT. MAX0(7,2*N+M))) .OR.
  445:      & (LSVEC .AND. RSVEC .AND. .NOT.JRACC .AND. (LWORK.LT.6*N+2*N*N))
  446:      & .OR. (LSVEC.AND.RSVEC.AND.JRACC.AND.LWORK.LT.MAX0(7,M+3*N+N*N)))
  447:      &   THEN
  448:          INFO = - 17
  449:       ELSE
  450: *        #:)
  451:          INFO = 0
  452:       END IF
  453: *
  454:       IF ( INFO .NE. 0 ) THEN
  455: *       #:(
  456:          CALL XERBLA( 'DGEJSV', - INFO )
  457:       END IF
  458: *
  459: *     Quick return for void matrix (Y3K safe)
  460: * #:)
  461:       IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) RETURN
  462: *
  463: *     Determine whether the matrix U should be M x N or M x M
  464: *
  465:       IF ( LSVEC ) THEN
  466:          N1 = N
  467:          IF ( LSAME( JOBU, 'F' ) ) N1 = M
  468:       END IF
  469: *
  470: *     Set numerical parameters
  471: *
  472: *!    NOTE: Make sure DLAMCH() does not fail on the target architecture.
  473: *
  474: 
  475:       EPSLN = DLAMCH('Epsilon')
  476:       SFMIN = DLAMCH('SafeMinimum')
  477:       SMALL = SFMIN / EPSLN
  478:       BIG   = DLAMCH('O')
  479: *     BIG   = ONE / SFMIN
  480: *
  481: *     Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
  482: *
  483: *(!)  If necessary, scale SVA() to protect the largest norm from
  484: *     overflow. It is possible that this scaling pushes the smallest
  485: *     column norm left from the underflow threshold (extreme case).
  486: *
  487:       SCALEM  = ONE / DSQRT(DBLE(M)*DBLE(N))
  488:       NOSCAL  = .TRUE.
  489:       GOSCAL  = .TRUE.
  490:       DO 1874 p = 1, N
  491:          AAPP = ZERO
  492:          AAQQ = ONE
  493:          CALL DLASSQ( M, A(1,p), 1, AAPP, AAQQ )
  494:          IF ( AAPP .GT. BIG ) THEN
  495:             INFO = - 9
  496:             CALL XERBLA( 'DGEJSV', -INFO )
  497:             RETURN
  498:          END IF
  499:          AAQQ = DSQRT(AAQQ)
  500:          IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL  ) THEN
  501:             SVA(p)  = AAPP * AAQQ
  502:          ELSE
  503:             NOSCAL  = .FALSE.
  504:             SVA(p)  = AAPP * ( AAQQ * SCALEM )
  505:             IF ( GOSCAL ) THEN
  506:                GOSCAL = .FALSE.
  507:                CALL DSCAL( p-1, SCALEM, SVA, 1 )
  508:             END IF
  509:          END IF
  510:  1874 CONTINUE
  511: *
  512:       IF ( NOSCAL ) SCALEM = ONE
  513: *
  514:       AAPP = ZERO
  515:       AAQQ = BIG
  516:       DO 4781 p = 1, N
  517:          AAPP = DMAX1( AAPP, SVA(p) )
  518:          IF ( SVA(p) .NE. ZERO ) AAQQ = DMIN1( AAQQ, SVA(p) )
  519:  4781 CONTINUE
  520: *
  521: *     Quick return for zero M x N matrix
  522: * #:)
  523:       IF ( AAPP .EQ. ZERO ) THEN
  524:          IF ( LSVEC ) CALL DLASET( 'G', M, N1, ZERO, ONE, U, LDU )
  525:          IF ( RSVEC ) CALL DLASET( 'G', N, N,  ZERO, ONE, V, LDV )
  526:          WORK(1) = ONE
  527:          WORK(2) = ONE
  528:          IF ( ERREST ) WORK(3) = ONE
  529:          IF ( LSVEC .AND. RSVEC ) THEN
  530:             WORK(4) = ONE
  531:             WORK(5) = ONE
  532:          END IF
  533:          IF ( L2TRAN ) THEN
  534:             WORK(6) = ZERO
  535:             WORK(7) = ZERO
  536:          END IF
  537:          IWORK(1) = 0
  538:          IWORK(2) = 0
  539:          RETURN
  540:       END IF
  541: *
  542: *     Issue warning if denormalized column norms detected. Override the
  543: *     high relative accuracy request. Issue licence to kill columns
  544: *     (set them to zero) whose norm is less than sigma_max / BIG (roughly).
  545: * #:(
  546:       WARNING = 0
  547:       IF ( AAQQ .LE. SFMIN ) THEN
  548:          L2RANK = .TRUE.
  549:          L2KILL = .TRUE.
  550:          WARNING = 1
  551:       END IF
  552: *
  553: *     Quick return for one-column matrix
  554: * #:)
  555:       IF ( N .EQ. 1 ) THEN
  556: *
  557:          IF ( LSVEC ) THEN
  558:             CALL DLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
  559:             CALL DLACPY( 'A', M, 1, A, LDA, U, LDU )
  560: *           computing all M left singular vectors of the M x 1 matrix
  561:             IF ( N1 .NE. N  ) THEN
  562:                CALL DGEQRF( M, N, U,LDU, WORK, WORK(N+1),LWORK-N,IERR )
  563:                CALL DORGQR( M,N1,1, U,LDU,WORK,WORK(N+1),LWORK-N,IERR )
  564:                CALL DCOPY( M, A(1,1), 1, U(1,1), 1 )
  565:             END IF
  566:          END IF
  567:          IF ( RSVEC ) THEN
  568:              V(1,1) = ONE
  569:          END IF
  570:          IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
  571:             SVA(1)  = SVA(1) / SCALEM
  572:             SCALEM  = ONE
  573:          END IF
  574:          WORK(1) = ONE / SCALEM
  575:          WORK(2) = ONE
  576:          IF ( SVA(1) .NE. ZERO ) THEN
  577:             IWORK(1) = 1
  578:             IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
  579:                IWORK(2) = 1
  580:             ELSE
  581:                IWORK(2) = 0
  582:             END IF
  583:          ELSE
  584:             IWORK(1) = 0
  585:             IWORK(2) = 0
  586:          END IF
  587:          IF ( ERREST ) WORK(3) = ONE
  588:          IF ( LSVEC .AND. RSVEC ) THEN
  589:             WORK(4) = ONE
  590:             WORK(5) = ONE
  591:          END IF
  592:          IF ( L2TRAN ) THEN
  593:             WORK(6) = ZERO
  594:             WORK(7) = ZERO
  595:          END IF
  596:          RETURN
  597: *
  598:       END IF
  599: *
  600:       TRANSP = .FALSE.
  601:       L2TRAN = L2TRAN .AND. ( M .EQ. N )
  602: *
  603:       AATMAX = -ONE
  604:       AATMIN =  BIG
  605:       IF ( ROWPIV .OR. L2TRAN ) THEN
  606: *
  607: *     Compute the row norms, needed to determine row pivoting sequence
  608: *     (in the case of heavily row weighted A, row pivoting is strongly
  609: *     advised) and to collect information needed to compare the
  610: *     structures of A * A^t and A^t * A (in the case L2TRAN.EQ..TRUE.).
  611: *
  612:          IF ( L2TRAN ) THEN
  613:             DO 1950 p = 1, M
  614:                XSC   = ZERO
  615:                TEMP1 = ONE
  616:                CALL DLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
  617: *              DLASSQ gets both the ell_2 and the ell_infinity norm
  618: *              in one pass through the vector
  619:                WORK(M+N+p)  = XSC * SCALEM
  620:                WORK(N+p)    = XSC * (SCALEM*DSQRT(TEMP1))
  621:                AATMAX = DMAX1( AATMAX, WORK(N+p) )
  622:                IF (WORK(N+p) .NE. ZERO) AATMIN = DMIN1(AATMIN,WORK(N+p))
  623:  1950       CONTINUE
  624:          ELSE
  625:             DO 1904 p = 1, M
  626:                WORK(M+N+p) = SCALEM*DABS( A(p,IDAMAX(N,A(p,1),LDA)) )
  627:                AATMAX = DMAX1( AATMAX, WORK(M+N+p) )
  628:                AATMIN = DMIN1( AATMIN, WORK(M+N+p) )
  629:  1904       CONTINUE
  630:          END IF
  631: *
  632:       END IF
  633: *
  634: *     For square matrix A try to determine whether A^t  would be  better
  635: *     input for the preconditioned Jacobi SVD, with faster convergence.
  636: *     The decision is based on an O(N) function of the vector of column
  637: *     and row norms of A, based on the Shannon entropy. This should give
  638: *     the right choice in most cases when the difference actually matters.
  639: *     It may fail and pick the slower converging side.
  640: *
  641:       ENTRA  = ZERO
  642:       ENTRAT = ZERO
  643:       IF ( L2TRAN ) THEN
  644: *
  645:          XSC   = ZERO
  646:          TEMP1 = ONE
  647:          CALL DLASSQ( N, SVA, 1, XSC, TEMP1 )
  648:          TEMP1 = ONE / TEMP1
  649: *
  650:          ENTRA = ZERO
  651:          DO 1113 p = 1, N
  652:             BIG1  = ( ( SVA(p) / XSC )**2 ) * TEMP1
  653:             IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1)
  654:  1113    CONTINUE
  655:          ENTRA = - ENTRA / DLOG(DBLE(N))
  656: *
  657: *        Now, SVA().^2/Trace(A^t * A) is a point in the probability simplex.
  658: *        It is derived from the diagonal of  A^t * A.  Do the same with the
  659: *        diagonal of A * A^t, compute the entropy of the corresponding
  660: *        probability distribution. Note that A * A^t and A^t * A have the
  661: *        same trace.
  662: *
  663:          ENTRAT = ZERO
  664:          DO 1114 p = N+1, N+M
  665:             BIG1 = ( ( WORK(p) / XSC )**2 ) * TEMP1
  666:             IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1)
  667:  1114    CONTINUE
  668:          ENTRAT = - ENTRAT / DLOG(DBLE(M))
  669: *
  670: *        Analyze the entropies and decide A or A^t. Smaller entropy
  671: *        usually means better input for the algorithm.
  672: *
  673:          TRANSP = ( ENTRAT .LT. ENTRA )
  674: *
  675: *        If A^t is better than A, transpose A.
  676: *
  677:          IF ( TRANSP ) THEN
  678: *           In an optimal implementation, this trivial transpose
  679: *           should be replaced with faster transpose.
  680:             DO 1115 p = 1, N - 1
  681:                DO 1116 q = p + 1, N
  682:                    TEMP1 = A(q,p)
  683:                   A(q,p) = A(p,q)
  684:                   A(p,q) = TEMP1
  685:  1116          CONTINUE
  686:  1115       CONTINUE
  687:             DO 1117 p = 1, N
  688:                WORK(M+N+p) = SVA(p)
  689:                SVA(p)      = WORK(N+p)
  690:  1117       CONTINUE
  691:             TEMP1  = AAPP
  692:             AAPP   = AATMAX
  693:             AATMAX = TEMP1
  694:             TEMP1  = AAQQ
  695:             AAQQ   = AATMIN
  696:             AATMIN = TEMP1
  697:             KILL   = LSVEC
  698:             LSVEC  = RSVEC
  699:             RSVEC  = KILL
  700:             IF ( LSVEC ) N1 = N
  701: *
  702:             ROWPIV = .TRUE.
  703:          END IF
  704: *
  705:       END IF
  706: *     END IF L2TRAN
  707: *
  708: *     Scale the matrix so that its maximal singular value remains less
  709: *     than DSQRT(BIG) -- the matrix is scaled so that its maximal column
  710: *     has Euclidean norm equal to DSQRT(BIG/N). The only reason to keep
  711: *     DSQRT(BIG) instead of BIG is the fact that DGEJSV uses LAPACK and
  712: *     BLAS routines that, in some implementations, are not capable of
  713: *     working in the full interval [SFMIN,BIG] and that they may provoke
  714: *     overflows in the intermediate results. If the singular values spread
  715: *     from SFMIN to BIG, then DGESVJ will compute them. So, in that case,
  716: *     one should use DGESVJ instead of DGEJSV.
  717: *
  718:       BIG1   = DSQRT( BIG )
  719:       TEMP1  = DSQRT( BIG / DBLE(N) )
  720: *
  721:       CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
  722:       IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
  723:           AAQQ = ( AAQQ / AAPP ) * TEMP1
  724:       ELSE
  725:           AAQQ = ( AAQQ * TEMP1 ) / AAPP
  726:       END IF
  727:       TEMP1 = TEMP1 * SCALEM
  728:       CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
  729: *
  730: *     To undo scaling at the end of this procedure, multiply the
  731: *     computed singular values with USCAL2 / USCAL1.
  732: *
  733:       USCAL1 = TEMP1
  734:       USCAL2 = AAPP
  735: *
  736:       IF ( L2KILL ) THEN
  737: *        L2KILL enforces computation of nonzero singular values in
  738: *        the restricted range of condition number of the initial A,
  739: *        sigma_max(A) / sigma_min(A) approx. DSQRT(BIG)/DSQRT(SFMIN).
  740:          XSC = DSQRT( SFMIN )
  741:       ELSE
  742:          XSC = SMALL
  743: *
  744: *        Now, if the condition number of A is too big,
  745: *        sigma_max(A) / sigma_min(A) .GT. DSQRT(BIG/N) * EPSLN / SFMIN,
  746: *        as a precaution measure, the full SVD is computed using DGESVJ
  747: *        with accumulated Jacobi rotations. This provides numerically
  748: *        more robust computation, at the cost of slightly increased run
  749: *        time. Depending on the concrete implementation of BLAS and LAPACK
  750: *        (i.e. how they behave in presence of extreme ill-conditioning) the
  751: *        implementor may decide to remove this switch.
  752:          IF ( ( AAQQ.LT.DSQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
  753:             JRACC = .TRUE.
  754:          END IF
  755: *
  756:       END IF
  757:       IF ( AAQQ .LT. XSC ) THEN
  758:          DO 700 p = 1, N
  759:             IF ( SVA(p) .LT. XSC ) THEN
  760:                CALL DLASET( 'A', M, 1, ZERO, ZERO, A(1,p), LDA )
  761:                SVA(p) = ZERO
  762:             END IF
  763:  700     CONTINUE
  764:       END IF
  765: *
  766: *     Preconditioning using QR factorization with pivoting
  767: *
  768:       IF ( ROWPIV ) THEN
  769: *        Optional row permutation (Bjoerck row pivoting):
  770: *        A result by Cox and Higham shows that the Bjoerck's
  771: *        row pivoting combined with standard column pivoting
  772: *        has similar effect as Powell-Reid complete pivoting.
  773: *        The ell-infinity norms of A are made nonincreasing.
  774:          DO 1952 p = 1, M - 1
  775:             q = IDAMAX( M-p+1, WORK(M+N+p), 1 ) + p - 1
  776:             IWORK(2*N+p) = q
  777:             IF ( p .NE. q ) THEN
  778:                TEMP1       = WORK(M+N+p)
  779:                WORK(M+N+p) = WORK(M+N+q)
  780:                WORK(M+N+q) = TEMP1
  781:             END IF
  782:  1952    CONTINUE
  783:          CALL DLASWP( N, A, LDA, 1, M-1, IWORK(2*N+1), 1 )
  784:       END IF
  785: *
  786: *     End of the preparation phase (scaling, optional sorting and
  787: *     transposing, optional flushing of small columns).
  788: *
  789: *     Preconditioning
  790: *
  791: *     If the full SVD is needed, the right singular vectors are computed
  792: *     from a matrix equation, and for that we need theoretical analysis
  793: *     of the Businger-Golub pivoting. So we use DGEQP3 as the first RR QRF.
  794: *     In all other cases the first RR QRF can be chosen by other criteria
  795: *     (eg speed by replacing global with restricted window pivoting, such
  796: *     as in SGEQPX from TOMS # 782). Good results will be obtained using
  797: *     SGEQPX with properly (!) chosen numerical parameters.
  798: *     Any improvement of DGEQP3 improves overal performance of DGEJSV.
  799: *
  800: *     A * P1 = Q1 * [ R1^t 0]^t:
  801:       DO 1963 p = 1, N
  802: *        .. all columns are free columns
  803:          IWORK(p) = 0
  804:  1963 CONTINUE
  805:       CALL DGEQP3( M,N,A,LDA, IWORK,WORK, WORK(N+1),LWORK-N, IERR )
  806: *
  807: *     The upper triangular matrix R1 from the first QRF is inspected for
  808: *     rank deficiency and possibilities for deflation, or possible
  809: *     ill-conditioning. Depending on the user specified flag L2RANK,
  810: *     the procedure explores possibilities to reduce the numerical
  811: *     rank by inspecting the computed upper triangular factor. If
  812: *     L2RANK or L2ABER are up, then DGEJSV will compute the SVD of
  813: *     A + dA, where ||dA|| <= f(M,N)*EPSLN.
  814: *
  815:       NR = 1
  816:       IF ( L2ABER ) THEN
  817: *        Standard absolute error bound suffices. All sigma_i with
  818: *        sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
  819: *        agressive enforcement of lower numerical rank by introducing a
  820: *        backward error of the order of N*EPSLN*||A||.
  821:          TEMP1 = DSQRT(DBLE(N))*EPSLN
  822:          DO 3001 p = 2, N
  823:             IF ( DABS(A(p,p)) .GE. (TEMP1*DABS(A(1,1))) ) THEN
  824:                NR = NR + 1
  825:             ELSE
  826:                GO TO 3002
  827:             END IF
  828:  3001    CONTINUE
  829:  3002    CONTINUE
  830:       ELSE IF ( L2RANK ) THEN
  831: *        .. similarly as above, only slightly more gentle (less agressive).
  832: *        Sudden drop on the diagonal of R1 is used as the criterion for
  833: *        close-to-rank-defficient.
  834:          TEMP1 = DSQRT(SFMIN)
  835:          DO 3401 p = 2, N
  836:             IF ( ( DABS(A(p,p)) .LT. (EPSLN*DABS(A(p-1,p-1))) ) .OR.
  837:      &           ( DABS(A(p,p)) .LT. SMALL ) .OR.
  838:      &           ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
  839:             NR = NR + 1
  840:  3401    CONTINUE
  841:  3402    CONTINUE
  842: *
  843:       ELSE
  844: *        The goal is high relative accuracy. However, if the matrix
  845: *        has high scaled condition number the relative accuracy is in
  846: *        general not feasible. Later on, a condition number estimator
  847: *        will be deployed to estimate the scaled condition number.
  848: *        Here we just remove the underflowed part of the triangular
  849: *        factor. This prevents the situation in which the code is
  850: *        working hard to get the accuracy not warranted by the data.
  851:          TEMP1  = DSQRT(SFMIN)
  852:          DO 3301 p = 2, N
  853:             IF ( ( DABS(A(p,p)) .LT. SMALL ) .OR.
  854:      &          ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
  855:             NR = NR + 1
  856:  3301    CONTINUE
  857:  3302    CONTINUE
  858: *
  859:       END IF
  860: *
  861:       ALMORT = .FALSE.
  862:       IF ( NR .EQ. N ) THEN
  863:          MAXPRJ = ONE
  864:          DO 3051 p = 2, N
  865:             TEMP1  = DABS(A(p,p)) / SVA(IWORK(p))
  866:             MAXPRJ = DMIN1( MAXPRJ, TEMP1 )
  867:  3051    CONTINUE
  868:          IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE.
  869:       END IF
  870: *
  871: *
  872:       SCONDA = - ONE
  873:       CONDR1 = - ONE
  874:       CONDR2 = - ONE
  875: *
  876:       IF ( ERREST ) THEN
  877:          IF ( N .EQ. NR ) THEN
  878:             IF ( RSVEC ) THEN
  879: *              .. V is available as workspace
  880:                CALL DLACPY( 'U', N, N, A, LDA, V, LDV )
  881:                DO 3053 p = 1, N
  882:                   TEMP1 = SVA(IWORK(p))
  883:                   CALL DSCAL( p, ONE/TEMP1, V(1,p), 1 )
  884:  3053          CONTINUE
  885:                CALL DPOCON( 'U', N, V, LDV, ONE, TEMP1,
  886:      &              WORK(N+1), IWORK(2*N+M+1), IERR )
  887:             ELSE IF ( LSVEC ) THEN
  888: *              .. U is available as workspace
  889:                CALL DLACPY( 'U', N, N, A, LDA, U, LDU )
  890:                DO 3054 p = 1, N
  891:                   TEMP1 = SVA(IWORK(p))
  892:                   CALL DSCAL( p, ONE/TEMP1, U(1,p), 1 )
  893:  3054          CONTINUE
  894:                CALL DPOCON( 'U', N, U, LDU, ONE, TEMP1,
  895:      &              WORK(N+1), IWORK(2*N+M+1), IERR )
  896:             ELSE
  897:                CALL DLACPY( 'U', N, N, A, LDA, WORK(N+1), N )
  898:                DO 3052 p = 1, N
  899:                   TEMP1 = SVA(IWORK(p))
  900:                   CALL DSCAL( p, ONE/TEMP1, WORK(N+(p-1)*N+1), 1 )
  901:  3052          CONTINUE
  902: *           .. the columns of R are scaled to have unit Euclidean lengths.
  903:                CALL DPOCON( 'U', N, WORK(N+1), N, ONE, TEMP1,
  904:      &              WORK(N+N*N+1), IWORK(2*N+M+1), IERR )
  905:             END IF
  906:             SCONDA = ONE / DSQRT(TEMP1)
  907: *           SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).
  908: *           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
  909:          ELSE
  910:             SCONDA = - ONE
  911:          END IF
  912:       END IF
  913: *
  914:       L2PERT = L2PERT .AND. ( DABS( A(1,1)/A(NR,NR) ) .GT. DSQRT(BIG1) )
  915: *     If there is no violent scaling, artificial perturbation is not needed.
  916: *
  917: *     Phase 3:
  918: *
  919: 
  920:       IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
  921: *
  922: *         Singular Values only
  923: *
  924: *         .. transpose A(1:NR,1:N)
  925:          DO 1946 p = 1, MIN0( N-1, NR )
  926:             CALL DCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
  927:  1946    CONTINUE
  928: *
  929: *        The following two DO-loops introduce small relative perturbation
  930: *        into the strict upper triangle of the lower triangular matrix.
  931: *        Small entries below the main diagonal are also changed.
  932: *        This modification is useful if the computing environment does not
  933: *        provide/allow FLUSH TO ZERO underflow, for it prevents many
  934: *        annoying denormalized numbers in case of strongly scaled matrices.
  935: *        The perturbation is structured so that it does not introduce any
  936: *        new perturbation of the singular values, and it does not destroy
  937: *        the job done by the preconditioner.
  938: *        The licence for this perturbation is in the variable L2PERT, which
  939: *        should be .FALSE. if FLUSH TO ZERO underflow is active.
  940: *
  941:          IF ( .NOT. ALMORT ) THEN
  942: *
  943:             IF ( L2PERT ) THEN
  944: *              XSC = DSQRT(SMALL)
  945:                XSC = EPSLN / DBLE(N)
  946:                DO 4947 q = 1, NR
  947:                   TEMP1 = XSC*DABS(A(q,q))
  948:                   DO 4949 p = 1, N
  949:                      IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )
  950:      &                    .OR. ( p .LT. q ) )
  951:      &                     A(p,q) = DSIGN( TEMP1, A(p,q) )
  952:  4949             CONTINUE
  953:  4947          CONTINUE
  954:             ELSE
  955:                CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, A(1,2),LDA )
  956:             END IF
  957: *
  958: *            .. second preconditioning using the QR factorization
  959: *
  960:             CALL DGEQRF( N,NR, A,LDA, WORK, WORK(N+1),LWORK-N, IERR )
  961: *
  962: *           .. and transpose upper to lower triangular
  963:             DO 1948 p = 1, NR - 1
  964:                CALL DCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
  965:  1948       CONTINUE
  966: *
  967:          END IF
  968: *
  969: *           Row-cyclic Jacobi SVD algorithm with column pivoting
  970: *
  971: *           .. again some perturbation (a "background noise") is added
  972: *           to drown denormals
  973:             IF ( L2PERT ) THEN
  974: *              XSC = DSQRT(SMALL)
  975:                XSC = EPSLN / DBLE(N)
  976:                DO 1947 q = 1, NR
  977:                   TEMP1 = XSC*DABS(A(q,q))
  978:                   DO 1949 p = 1, NR
  979:                      IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )
  980:      &                       .OR. ( p .LT. q ) )
  981:      &                   A(p,q) = DSIGN( TEMP1, A(p,q) )
  982:  1949             CONTINUE
  983:  1947          CONTINUE
  984:             ELSE
  985:                CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, A(1,2), LDA )
  986:             END IF
  987: *
  988: *           .. and one-sided Jacobi rotations are started on a lower
  989: *           triangular matrix (plus perturbation which is ignored in
  990: *           the part which destroys triangular form (confusing?!))
  991: *
  992:             CALL DGESVJ( 'L', 'NoU', 'NoV', NR, NR, A, LDA, SVA,
  993:      &                      N, V, LDV, WORK, LWORK, INFO )
  994: *
  995:             SCALEM  = WORK(1)
  996:             NUMRANK = IDNINT(WORK(2))
  997: *
  998: *
  999:       ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN
 1000: *
 1001: *        -> Singular Values and Right Singular Vectors <-
 1002: *
 1003:          IF ( ALMORT ) THEN
 1004: *
 1005: *           .. in this case NR equals N
 1006:             DO 1998 p = 1, NR
 1007:                CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1008:  1998       CONTINUE
 1009:             CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1010: *
 1011:             CALL DGESVJ( 'L','U','N', N, NR, V,LDV, SVA, NR, A,LDA,
 1012:      &                  WORK, LWORK, INFO )
 1013:             SCALEM  = WORK(1)
 1014:             NUMRANK = IDNINT(WORK(2))
 1015: 
 1016:          ELSE
 1017: *
 1018: *        .. two more QR factorizations ( one QRF is not enough, two require
 1019: *        accumulated product of Jacobi rotations, three are perfect )
 1020: *
 1021:             CALL DLASET( 'Lower', NR-1, NR-1, ZERO, ZERO, A(2,1), LDA )
 1022:             CALL DGELQF( NR, N, A, LDA, WORK, WORK(N+1), LWORK-N, IERR)
 1023:             CALL DLACPY( 'Lower', NR, NR, A, LDA, V, LDV )
 1024:             CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1025:             CALL DGEQRF( NR, NR, V, LDV, WORK(N+1), WORK(2*N+1),
 1026:      &                   LWORK-2*N, IERR )
 1027:             DO 8998 p = 1, NR
 1028:                CALL DCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
 1029:  8998       CONTINUE
 1030:             CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1031: *
 1032:             CALL DGESVJ( 'Lower', 'U','N', NR, NR, V,LDV, SVA, NR, U,
 1033:      &                  LDU, WORK(N+1), LWORK, INFO )
 1034:             SCALEM  = WORK(N+1)
 1035:             NUMRANK = IDNINT(WORK(N+2))
 1036:             IF ( NR .LT. N ) THEN
 1037:                CALL DLASET( 'A',N-NR, NR, ZERO,ZERO, V(NR+1,1),   LDV )
 1038:                CALL DLASET( 'A',NR, N-NR, ZERO,ZERO, V(1,NR+1),   LDV )
 1039:                CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE, V(NR+1,NR+1), LDV )
 1040:             END IF
 1041: *
 1042:          CALL DORMLQ( 'Left', 'Transpose', N, N, NR, A, LDA, WORK,
 1043:      &               V, LDV, WORK(N+1), LWORK-N, IERR )
 1044: *
 1045:          END IF
 1046: *
 1047:          DO 8991 p = 1, N
 1048:             CALL DCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
 1049:  8991    CONTINUE
 1050:          CALL DLACPY( 'All', N, N, A, LDA, V, LDV )
 1051: *
 1052:          IF ( TRANSP ) THEN
 1053:             CALL DLACPY( 'All', N, N, V, LDV, U, LDU )
 1054:          END IF
 1055: *
 1056:       ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
 1057: *
 1058: *        .. Singular Values and Left Singular Vectors                 ..
 1059: *
 1060: *        .. second preconditioning step to avoid need to accumulate
 1061: *        Jacobi rotations in the Jacobi iterations.
 1062:          DO 1965 p = 1, NR
 1063:             CALL DCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
 1064:  1965    CONTINUE
 1065:          CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
 1066: *
 1067:          CALL DGEQRF( N, NR, U, LDU, WORK(N+1), WORK(2*N+1),
 1068:      &              LWORK-2*N, IERR )
 1069: *
 1070:          DO 1967 p = 1, NR - 1
 1071:             CALL DCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
 1072:  1967    CONTINUE
 1073:          CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
 1074: *
 1075:          CALL DGESVJ( 'Lower', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
 1076:      &        LDA, WORK(N+1), LWORK-N, INFO )
 1077:          SCALEM  = WORK(N+1)
 1078:          NUMRANK = IDNINT(WORK(N+2))
 1079: *
 1080:          IF ( NR .LT. M ) THEN
 1081:             CALL DLASET( 'A',  M-NR, NR,ZERO, ZERO, U(NR+1,1), LDU )
 1082:             IF ( NR .LT. N1 ) THEN
 1083:                CALL DLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1), LDU )
 1084:                CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1), LDU )
 1085:             END IF
 1086:          END IF
 1087: *
 1088:          CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
 1089:      &               LDU, WORK(N+1), LWORK-N, IERR )
 1090: *
 1091:          IF ( ROWPIV )
 1092:      &       CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
 1093: *
 1094:          DO 1974 p = 1, N1
 1095:             XSC = ONE / DNRM2( M, U(1,p), 1 )
 1096:             CALL DSCAL( M, XSC, U(1,p), 1 )
 1097:  1974    CONTINUE
 1098: *
 1099:          IF ( TRANSP ) THEN
 1100:             CALL DLACPY( 'All', N, N, U, LDU, V, LDV )
 1101:          END IF
 1102: *
 1103:       ELSE
 1104: *
 1105: *        .. Full SVD ..
 1106: *
 1107:          IF ( .NOT. JRACC ) THEN
 1108: *
 1109:          IF ( .NOT. ALMORT ) THEN
 1110: *
 1111: *           Second Preconditioning Step (QRF [with pivoting])
 1112: *           Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
 1113: *           equivalent to an LQF CALL. Since in many libraries the QRF
 1114: *           seems to be better optimized than the LQF, we do explicit
 1115: *           transpose and use the QRF. This is subject to changes in an
 1116: *           optimized implementation of DGEJSV.
 1117: *
 1118:             DO 1968 p = 1, NR
 1119:                CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1120:  1968       CONTINUE
 1121: *
 1122: *           .. the following two loops perturb small entries to avoid
 1123: *           denormals in the second QR factorization, where they are
 1124: *           as good as zeros. This is done to avoid painfully slow
 1125: *           computation with denormals. The relative size of the perturbation
 1126: *           is a parameter that can be changed by the implementer.
 1127: *           This perturbation device will be obsolete on machines with
 1128: *           properly implemented arithmetic.
 1129: *           To switch it off, set L2PERT=.FALSE. To remove it from  the
 1130: *           code, remove the action under L2PERT=.TRUE., leave the ELSE part.
 1131: *           The following two loops should be blocked and fused with the
 1132: *           transposed copy above.
 1133: *
 1134:             IF ( L2PERT ) THEN
 1135:                XSC = DSQRT(SMALL)
 1136:                DO 2969 q = 1, NR
 1137:                   TEMP1 = XSC*DABS( V(q,q) )
 1138:                   DO 2968 p = 1, N
 1139:                      IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )
 1140:      &                   .OR. ( p .LT. q ) )
 1141:      &                   V(p,q) = DSIGN( TEMP1, V(p,q) )
 1142:                      IF ( p. LT. q ) V(p,q) = - V(p,q)
 1143:  2968             CONTINUE
 1144:  2969          CONTINUE
 1145:             ELSE
 1146:                CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1147:             END IF
 1148: *
 1149: *           Estimate the row scaled condition number of R1
 1150: *           (If R1 is rectangular, N > NR, then the condition number
 1151: *           of the leading NR x NR submatrix is estimated.)
 1152: *
 1153:             CALL DLACPY( 'L', NR, NR, V, LDV, WORK(2*N+1), NR )
 1154:             DO 3950 p = 1, NR
 1155:                TEMP1 = DNRM2(NR-p+1,WORK(2*N+(p-1)*NR+p),1)
 1156:                CALL DSCAL(NR-p+1,ONE/TEMP1,WORK(2*N+(p-1)*NR+p),1)
 1157:  3950       CONTINUE
 1158:             CALL DPOCON('Lower',NR,WORK(2*N+1),NR,ONE,TEMP1,
 1159:      &                   WORK(2*N+NR*NR+1),IWORK(M+2*N+1),IERR)
 1160:             CONDR1 = ONE / DSQRT(TEMP1)
 1161: *           .. here need a second oppinion on the condition number
 1162: *           .. then assume worst case scenario
 1163: *           R1 is OK for inverse <=> CONDR1 .LT. DBLE(N)
 1164: *           more conservative    <=> CONDR1 .LT. DSQRT(DBLE(N))
 1165: *
 1166:             COND_OK = DSQRT(DBLE(NR))
 1167: *[TP]       COND_OK is a tuning parameter.
 1168: 
 1169:             IF ( CONDR1 .LT. COND_OK ) THEN
 1170: *              .. the second QRF without pivoting. Note: in an optimized
 1171: *              implementation, this QRF should be implemented as the QRF
 1172: *              of a lower triangular matrix.
 1173: *              R1^t = Q2 * R2
 1174:                CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
 1175:      &              LWORK-2*N, IERR )
 1176: *
 1177:                IF ( L2PERT ) THEN
 1178:                   XSC = DSQRT(SMALL)/EPSLN
 1179:                   DO 3959 p = 2, NR
 1180:                      DO 3958 q = 1, p - 1
 1181:                         TEMP1 = XSC * DMIN1(DABS(V(p,p)),DABS(V(q,q)))
 1182:                         IF ( DABS(V(q,p)) .LE. TEMP1 )
 1183:      &                     V(q,p) = DSIGN( TEMP1, V(q,p) )
 1184:  3958                CONTINUE
 1185:  3959             CONTINUE
 1186:                END IF
 1187: *
 1188:                IF ( NR .NE. N )
 1189: *              .. save ...
 1190:      &         CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )
 1191: *
 1192: *           .. this transposed copy should be better than naive
 1193:                DO 1969 p = 1, NR - 1
 1194:                   CALL DCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
 1195:  1969          CONTINUE
 1196: *
 1197:                CONDR2 = CONDR1
 1198: *
 1199:             ELSE
 1200: *
 1201: *              .. ill-conditioned case: second QRF with pivoting
 1202: *              Note that windowed pivoting would be equaly good
 1203: *              numerically, and more run-time efficient. So, in
 1204: *              an optimal implementation, the next call to DGEQP3
 1205: *              should be replaced with eg. CALL SGEQPX (ACM TOMS #782)
 1206: *              with properly (carefully) chosen parameters.
 1207: *
 1208: *              R1^t * P2 = Q2 * R2
 1209:                DO 3003 p = 1, NR
 1210:                   IWORK(N+p) = 0
 1211:  3003          CONTINUE
 1212:                CALL DGEQP3( N, NR, V, LDV, IWORK(N+1), WORK(N+1),
 1213:      &                  WORK(2*N+1), LWORK-2*N, IERR )
 1214: **               CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
 1215: **     &              LWORK-2*N, IERR )
 1216:                IF ( L2PERT ) THEN
 1217:                   XSC = DSQRT(SMALL)
 1218:                   DO 3969 p = 2, NR
 1219:                      DO 3968 q = 1, p - 1
 1220:                         TEMP1 = XSC * DMIN1(DABS(V(p,p)),DABS(V(q,q)))
 1221:                         IF ( DABS(V(q,p)) .LE. TEMP1 )
 1222:      &                     V(q,p) = DSIGN( TEMP1, V(q,p) )
 1223:  3968                CONTINUE
 1224:  3969             CONTINUE
 1225:                END IF
 1226: *
 1227:                CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )
 1228: *
 1229:                IF ( L2PERT ) THEN
 1230:                   XSC = DSQRT(SMALL)
 1231:                   DO 8970 p = 2, NR
 1232:                      DO 8971 q = 1, p - 1
 1233:                         TEMP1 = XSC * DMIN1(DABS(V(p,p)),DABS(V(q,q)))
 1234:                         V(p,q) = - DSIGN( TEMP1, V(q,p) )
 1235:  8971                CONTINUE
 1236:  8970             CONTINUE
 1237:                ELSE
 1238:                   CALL DLASET( 'L',NR-1,NR-1,ZERO,ZERO,V(2,1),LDV )
 1239:                END IF
 1240: *              Now, compute R2 = L3 * Q3, the LQ factorization.
 1241:                CALL DGELQF( NR, NR, V, LDV, WORK(2*N+N*NR+1),
 1242:      &               WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
 1243: *              .. and estimate the condition number
 1244:                CALL DLACPY( 'L',NR,NR,V,LDV,WORK(2*N+N*NR+NR+1),NR )
 1245:                DO 4950 p = 1, NR
 1246:                   TEMP1 = DNRM2( p, WORK(2*N+N*NR+NR+p), NR )
 1247:                   CALL DSCAL( p, ONE/TEMP1, WORK(2*N+N*NR+NR+p), NR )
 1248:  4950          CONTINUE
 1249:                CALL DPOCON( 'L',NR,WORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
 1250:      &              WORK(2*N+N*NR+NR+NR*NR+1),IWORK(M+2*N+1),IERR )
 1251:                CONDR2 = ONE / DSQRT(TEMP1)
 1252: *
 1253:                IF ( CONDR2 .GE. COND_OK ) THEN
 1254: *                 .. save the Householder vectors used for Q3
 1255: *                 (this overwrittes the copy of R2, as it will not be
 1256: *                 needed in this branch, but it does not overwritte the
 1257: *                 Huseholder vectors of Q2.).
 1258:                   CALL DLACPY( 'U', NR, NR, V, LDV, WORK(2*N+1), N )
 1259: *                 .. and the rest of the information on Q3 is in
 1260: *                 WORK(2*N+N*NR+1:2*N+N*NR+N)
 1261:                END IF
 1262: *
 1263:             END IF
 1264: *
 1265:             IF ( L2PERT ) THEN
 1266:                XSC = DSQRT(SMALL)
 1267:                DO 4968 q = 2, NR
 1268:                   TEMP1 = XSC * V(q,q)
 1269:                   DO 4969 p = 1, q - 1
 1270: *                    V(p,q) = - DSIGN( TEMP1, V(q,p) )
 1271:                      V(p,q) = - DSIGN( TEMP1, V(p,q) )
 1272:  4969             CONTINUE
 1273:  4968          CONTINUE
 1274:             ELSE
 1275:                CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV )
 1276:             END IF
 1277: *
 1278: *        Second preconditioning finished; continue with Jacobi SVD
 1279: *        The input matrix is lower trinagular.
 1280: *
 1281: *        Recover the right singular vectors as solution of a well
 1282: *        conditioned triangular matrix equation.
 1283: *
 1284:             IF ( CONDR1 .LT. COND_OK ) THEN
 1285: *
 1286:                CALL DGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U,
 1287:      &              LDU,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,INFO )
 1288:                SCALEM  = WORK(2*N+N*NR+NR+1)
 1289:                NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
 1290:                DO 3970 p = 1, NR
 1291:                   CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )
 1292:                   CALL DSCAL( NR, SVA(p),    V(1,p), 1 )
 1293:  3970          CONTINUE
 1294: 
 1295: *        .. pick the right matrix equation and solve it
 1296: *
 1297:                IF ( NR. EQ. N ) THEN
 1298: * :))             .. best case, R1 is inverted. The solution of this matrix
 1299: *                 equation is Q2*V2 = the product of the Jacobi rotations
 1300: *                 used in DGESVJ, premultiplied with the orthogonal matrix
 1301: *                 from the second QR factorization.
 1302:                   CALL DTRSM( 'L','U','N','N', NR,NR,ONE, A,LDA, V,LDV )
 1303:                ELSE
 1304: *                 .. R1 is well conditioned, but non-square. Transpose(R2)
 1305: *                 is inverted to get the product of the Jacobi rotations
 1306: *                 used in DGESVJ. The Q-factor from the second QR
 1307: *                 factorization is then built in explicitly.
 1308:                   CALL DTRSM('L','U','T','N',NR,NR,ONE,WORK(2*N+1),
 1309:      &                 N,V,LDV)
 1310:                   IF ( NR .LT. N ) THEN
 1311:                     CALL DLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV)
 1312:                     CALL DLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV)
 1313:                     CALL DLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV)
 1314:                   END IF
 1315:                   CALL DORMQR('L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
 1316:      &                 V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
 1317:                END IF
 1318: *
 1319:             ELSE IF ( CONDR2 .LT. COND_OK ) THEN
 1320: *
 1321: * :)           .. the input matrix A is very likely a relative of
 1322: *              the Kahan matrix :)
 1323: *              The matrix R2 is inverted. The solution of the matrix equation
 1324: *              is Q3^T*V3 = the product of the Jacobi rotations (appplied to
 1325: *              the lower triangular L3 from the LQ factorization of
 1326: *              R2=L3*Q3), pre-multiplied with the transposed Q3.
 1327:                CALL DGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,
 1328:      &              LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )
 1329:                SCALEM  = WORK(2*N+N*NR+NR+1)
 1330:                NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
 1331:                DO 3870 p = 1, NR
 1332:                   CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )
 1333:                   CALL DSCAL( NR, SVA(p),    U(1,p), 1 )
 1334:  3870          CONTINUE
 1335:                CALL DTRSM('L','U','N','N',NR,NR,ONE,WORK(2*N+1),N,U,LDU)
 1336: *              .. apply the permutation from the second QR factorization
 1337:                DO 873 q = 1, NR
 1338:                   DO 872 p = 1, NR
 1339:                      WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 1340:  872              CONTINUE
 1341:                   DO 874 p = 1, NR
 1342:                      U(p,q) = WORK(2*N+N*NR+NR+p)
 1343:  874              CONTINUE
 1344:  873           CONTINUE
 1345:                IF ( NR .LT. N ) THEN
 1346:                   CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
 1347:                   CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
 1348:                   CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
 1349:                END IF
 1350:                CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
 1351:      &              V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 1352:             ELSE
 1353: *              Last line of defense.
 1354: * #:(          This is a rather pathological case: no scaled condition
 1355: *              improvement after two pivoted QR factorizations. Other
 1356: *              possibility is that the rank revealing QR factorization
 1357: *              or the condition estimator has failed, or the COND_OK
 1358: *              is set very close to ONE (which is unnecessary). Normally,
 1359: *              this branch should never be executed, but in rare cases of
 1360: *              failure of the RRQR or condition estimator, the last line of
 1361: *              defense ensures that DGEJSV completes the task.
 1362: *              Compute the full SVD of L3 using DGESVJ with explicit
 1363: *              accumulation of Jacobi rotations.
 1364:                CALL DGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,
 1365:      &              LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )
 1366:                SCALEM  = WORK(2*N+N*NR+NR+1)
 1367:                NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
 1368:                IF ( NR .LT. N ) THEN
 1369:                   CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
 1370:                   CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
 1371:                   CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
 1372:                END IF
 1373:                CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
 1374:      &              V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 1375: *
 1376:                CALL DORMLQ( 'L', 'T', NR, NR, NR, WORK(2*N+1), N,
 1377:      &              WORK(2*N+N*NR+1), U, LDU, WORK(2*N+N*NR+NR+1),
 1378:      &              LWORK-2*N-N*NR-NR, IERR )
 1379:                DO 773 q = 1, NR
 1380:                   DO 772 p = 1, NR
 1381:                      WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 1382:  772              CONTINUE
 1383:                   DO 774 p = 1, NR
 1384:                      U(p,q) = WORK(2*N+N*NR+NR+p)
 1385:  774              CONTINUE
 1386:  773           CONTINUE
 1387: *
 1388:             END IF
 1389: *
 1390: *           Permute the rows of V using the (column) permutation from the
 1391: *           first QRF. Also, scale the columns to make them unit in
 1392: *           Euclidean norm. This applies to all cases.
 1393: *
 1394:             TEMP1 = DSQRT(DBLE(N)) * EPSLN
 1395:             DO 1972 q = 1, N
 1396:                DO 972 p = 1, N
 1397:                   WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
 1398:   972          CONTINUE
 1399:                DO 973 p = 1, N
 1400:                   V(p,q) = WORK(2*N+N*NR+NR+p)
 1401:   973          CONTINUE
 1402:                XSC = ONE / DNRM2( N, V(1,q), 1 )
 1403:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1404:      &           CALL DSCAL( N, XSC, V(1,q), 1 )
 1405:  1972       CONTINUE
 1406: *           At this moment, V contains the right singular vectors of A.
 1407: *           Next, assemble the left singular vector matrix U (M x N).
 1408:             IF ( NR .LT. M ) THEN
 1409:                CALL DLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )
 1410:                IF ( NR .LT. N1 ) THEN
 1411:                   CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)
 1412:                   CALL DLASET('A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1),LDU)
 1413:                END IF
 1414:             END IF
 1415: *
 1416: *           The Q matrix from the first QRF is built into the left singular
 1417: *           matrix U. This applies to all cases.
 1418: *
 1419:             CALL DORMQR( 'Left', 'No_Tr', M, N1, N, A, LDA, WORK, U,
 1420:      &           LDU, WORK(N+1), LWORK-N, IERR )
 1421: 
 1422: *           The columns of U are normalized. The cost is O(M*N) flops.
 1423:             TEMP1 = DSQRT(DBLE(M)) * EPSLN
 1424:             DO 1973 p = 1, NR
 1425:                XSC = ONE / DNRM2( M, U(1,p), 1 )
 1426:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1427:      &          CALL DSCAL( M, XSC, U(1,p), 1 )
 1428:  1973       CONTINUE
 1429: *
 1430: *           If the initial QRF is computed with row pivoting, the left
 1431: *           singular vectors must be adjusted.
 1432: *
 1433:             IF ( ROWPIV )
 1434:      &          CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
 1435: *
 1436:          ELSE
 1437: *
 1438: *        .. the initial matrix A has almost orthogonal columns and
 1439: *        the second QRF is not needed
 1440: *
 1441:             CALL DLACPY( 'Upper', N, N, A, LDA, WORK(N+1), N )
 1442:             IF ( L2PERT ) THEN
 1443:                XSC = DSQRT(SMALL)
 1444:                DO 5970 p = 2, N
 1445:                   TEMP1 = XSC * WORK( N + (p-1)*N + p )
 1446:                   DO 5971 q = 1, p - 1
 1447:                      WORK(N+(q-1)*N+p)=-DSIGN(TEMP1,WORK(N+(p-1)*N+q))
 1448:  5971             CONTINUE
 1449:  5970          CONTINUE
 1450:             ELSE
 1451:                CALL DLASET( 'Lower',N-1,N-1,ZERO,ZERO,WORK(N+2),N )
 1452:             END IF
 1453: *
 1454:             CALL DGESVJ( 'Upper', 'U', 'N', N, N, WORK(N+1), N, SVA,
 1455:      &           N, U, LDU, WORK(N+N*N+1), LWORK-N-N*N, INFO )
 1456: *
 1457:             SCALEM  = WORK(N+N*N+1)
 1458:             NUMRANK = IDNINT(WORK(N+N*N+2))
 1459:             DO 6970 p = 1, N
 1460:                CALL DCOPY( N, WORK(N+(p-1)*N+1), 1, U(1,p), 1 )
 1461:                CALL DSCAL( N, SVA(p), WORK(N+(p-1)*N+1), 1 )
 1462:  6970       CONTINUE
 1463: *
 1464:             CALL DTRSM( 'Left', 'Upper', 'NoTrans', 'No UD', N, N,
 1465:      &           ONE, A, LDA, WORK(N+1), N )
 1466:             DO 6972 p = 1, N
 1467:                CALL DCOPY( N, WORK(N+p), N, V(IWORK(p),1), LDV )
 1468:  6972       CONTINUE
 1469:             TEMP1 = DSQRT(DBLE(N))*EPSLN
 1470:             DO 6971 p = 1, N
 1471:                XSC = ONE / DNRM2( N, V(1,p), 1 )
 1472:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1473:      &            CALL DSCAL( N, XSC, V(1,p), 1 )
 1474:  6971       CONTINUE
 1475: *
 1476: *           Assemble the left singular vector matrix U (M x N).
 1477: *
 1478:             IF ( N .LT. M ) THEN
 1479:                CALL DLASET( 'A',  M-N, N, ZERO, ZERO, U(N+1,1), LDU )
 1480:                IF ( N .LT. N1 ) THEN
 1481:                   CALL DLASET( 'A',N,  N1-N, ZERO, ZERO,  U(1,N+1),LDU )
 1482:                   CALL DLASET( 'A',M-N,N1-N, ZERO, ONE,U(N+1,N+1),LDU )
 1483:                END IF
 1484:             END IF
 1485:             CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
 1486:      &           LDU, WORK(N+1), LWORK-N, IERR )
 1487:             TEMP1 = DSQRT(DBLE(M))*EPSLN
 1488:             DO 6973 p = 1, N1
 1489:                XSC = ONE / DNRM2( M, U(1,p), 1 )
 1490:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1491:      &            CALL DSCAL( M, XSC, U(1,p), 1 )
 1492:  6973       CONTINUE
 1493: *
 1494:             IF ( ROWPIV )
 1495:      &         CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
 1496: *
 1497:          END IF
 1498: *
 1499: *        end of the  >> almost orthogonal case <<  in the full SVD
 1500: *
 1501:          ELSE
 1502: *
 1503: *        This branch deploys a preconditioned Jacobi SVD with explicitly
 1504: *        accumulated rotations. It is included as optional, mainly for
 1505: *        experimental purposes. It does perfom well, and can also be used.
 1506: *        In this implementation, this branch will be automatically activated
 1507: *        if the  condition number sigma_max(A) / sigma_min(A) is predicted
 1508: *        to be greater than the overflow threshold. This is because the
 1509: *        a posteriori computation of the singular vectors assumes robust
 1510: *        implementation of BLAS and some LAPACK procedures, capable of working
 1511: *        in presence of extreme values. Since that is not always the case, ...
 1512: *
 1513:          DO 7968 p = 1, NR
 1514:             CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1515:  7968    CONTINUE
 1516: *
 1517:          IF ( L2PERT ) THEN
 1518:             XSC = DSQRT(SMALL/EPSLN)
 1519:             DO 5969 q = 1, NR
 1520:                TEMP1 = XSC*DABS( V(q,q) )
 1521:                DO 5968 p = 1, N
 1522:                   IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )
 1523:      &                .OR. ( p .LT. q ) )
 1524:      &                V(p,q) = DSIGN( TEMP1, V(p,q) )
 1525:                   IF ( p. LT. q ) V(p,q) = - V(p,q)
 1526:  5968          CONTINUE
 1527:  5969       CONTINUE
 1528:          ELSE
 1529:             CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1530:          END IF
 1531: 
 1532:          CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
 1533:      &        LWORK-2*N, IERR )
 1534:          CALL DLACPY( 'L', N, NR, V, LDV, WORK(2*N+1), N )
 1535: *
 1536:          DO 7969 p = 1, NR
 1537:             CALL DCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
 1538:  7969    CONTINUE
 1539: 
 1540:          IF ( L2PERT ) THEN
 1541:             XSC = DSQRT(SMALL/EPSLN)
 1542:             DO 9970 q = 2, NR
 1543:                DO 9971 p = 1, q - 1
 1544:                   TEMP1 = XSC * DMIN1(DABS(U(p,p)),DABS(U(q,q)))
 1545:                   U(p,q) = - DSIGN( TEMP1, U(q,p) )
 1546:  9971          CONTINUE
 1547:  9970       CONTINUE
 1548:          ELSE
 1549:             CALL DLASET('U', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
 1550:          END IF
 1551: 
 1552:          CALL DGESVJ( 'G', 'U', 'V', NR, NR, U, LDU, SVA,
 1553:      &        N, V, LDV, WORK(2*N+N*NR+1), LWORK-2*N-N*NR, INFO )
 1554:          SCALEM  = WORK(2*N+N*NR+1)
 1555:          NUMRANK = IDNINT(WORK(2*N+N*NR+2))
 1556: 
 1557:          IF ( NR .LT. N ) THEN
 1558:             CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
 1559:             CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
 1560:             CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
 1561:          END IF
 1562: 
 1563:          CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
 1564:      &        V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 1565: *
 1566: *           Permute the rows of V using the (column) permutation from the
 1567: *           first QRF. Also, scale the columns to make them unit in
 1568: *           Euclidean norm. This applies to all cases.
 1569: *
 1570:             TEMP1 = DSQRT(DBLE(N)) * EPSLN
 1571:             DO 7972 q = 1, N
 1572:                DO 8972 p = 1, N
 1573:                   WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
 1574:  8972          CONTINUE
 1575:                DO 8973 p = 1, N
 1576:                   V(p,q) = WORK(2*N+N*NR+NR+p)
 1577:  8973          CONTINUE
 1578:                XSC = ONE / DNRM2( N, V(1,q), 1 )
 1579:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1580:      &           CALL DSCAL( N, XSC, V(1,q), 1 )
 1581:  7972       CONTINUE
 1582: *
 1583: *           At this moment, V contains the right singular vectors of A.
 1584: *           Next, assemble the left singular vector matrix U (M x N).
 1585: *
 1586:          IF ( NR .LT. M ) THEN
 1587:             CALL DLASET( 'A',  M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )
 1588:             IF ( NR .LT. N1 ) THEN
 1589:                CALL DLASET( 'A',NR,  N1-NR, ZERO, ZERO,  U(1,NR+1),LDU )
 1590:                CALL DLASET( 'A',M-NR,N1-NR, ZERO, ONE,U(NR+1,NR+1),LDU )
 1591:             END IF
 1592:          END IF
 1593: *
 1594:          CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
 1595:      &        LDU, WORK(N+1), LWORK-N, IERR )
 1596: *
 1597:             IF ( ROWPIV )
 1598:      &         CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
 1599: *
 1600: *
 1601:          END IF
 1602:          IF ( TRANSP ) THEN
 1603: *           .. swap U and V because the procedure worked on A^t
 1604:             DO 6974 p = 1, N
 1605:                CALL DSWAP( N, U(1,p), 1, V(1,p), 1 )
 1606:  6974       CONTINUE
 1607:          END IF
 1608: *
 1609:       END IF
 1610: *     end of the full SVD
 1611: *
 1612: *     Undo scaling, if necessary (and possible)
 1613: *
 1614:       IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
 1615:          CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )
 1616:          USCAL1 = ONE
 1617:          USCAL2 = ONE
 1618:       END IF
 1619: *
 1620:       IF ( NR .LT. N ) THEN
 1621:          DO 3004 p = NR+1, N
 1622:             SVA(p) = ZERO
 1623:  3004    CONTINUE
 1624:       END IF
 1625: *
 1626:       WORK(1) = USCAL2 * SCALEM
 1627:       WORK(2) = USCAL1
 1628:       IF ( ERREST ) WORK(3) = SCONDA
 1629:       IF ( LSVEC .AND. RSVEC ) THEN
 1630:          WORK(4) = CONDR1
 1631:          WORK(5) = CONDR2
 1632:       END IF
 1633:       IF ( L2TRAN ) THEN
 1634:          WORK(6) = ENTRA
 1635:          WORK(7) = ENTRAT
 1636:       END IF
 1637: *
 1638:       IWORK(1) = NR
 1639:       IWORK(2) = NUMRANK
 1640:       IWORK(3) = WARNING
 1641: *
 1642:       RETURN
 1643: *     ..
 1644: *     .. END OF DGEJSV
 1645: *     ..
 1646:       END
 1647: *

CVSweb interface <joel.bertrand@systella.fr>