File:  [local] / rpl / lapack / lapack / dgejsv.f
Revision 1.21: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:48 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DGEJSV
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGEJSV + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgejsv.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgejsv.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgejsv.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
   22: *                          M, N, A, LDA, SVA, U, LDU, V, LDV,
   23: *                          WORK, LWORK, IWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       IMPLICIT    NONE
   27: *       INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ),
   31: *      $            WORK( LWORK )
   32: *       INTEGER     IWORK( * )
   33: *       CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
   34: *       ..
   35: *
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> DGEJSV computes the singular value decomposition (SVD) of a real M-by-N
   43: *> matrix [A], where M >= N. The SVD of [A] is written as
   44: *>
   45: *>              [A] = [U] * [SIGMA] * [V]^t,
   46: *>
   47: *> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
   48: *> diagonal elements, [U] is an M-by-N (or M-by-M) orthonormal matrix, and
   49: *> [V] is an N-by-N orthogonal matrix. The diagonal elements of [SIGMA] are
   50: *> the singular values of [A]. The columns of [U] and [V] are the left and
   51: *> the right singular vectors of [A], respectively. The matrices [U] and [V]
   52: *> are computed and stored in the arrays U and V, respectively. The diagonal
   53: *> of [SIGMA] is computed and stored in the array SVA.
   54: *> DGEJSV can sometimes compute tiny singular values and their singular vectors much
   55: *> more accurately than other SVD routines, see below under Further Details.
   56: *> \endverbatim
   57: *
   58: *  Arguments:
   59: *  ==========
   60: *
   61: *> \param[in] JOBA
   62: *> \verbatim
   63: *>          JOBA is CHARACTER*1
   64: *>        Specifies the level of accuracy:
   65: *>       = 'C': This option works well (high relative accuracy) if A = B * D,
   66: *>             with well-conditioned B and arbitrary diagonal matrix D.
   67: *>             The accuracy cannot be spoiled by COLUMN scaling. The
   68: *>             accuracy of the computed output depends on the condition of
   69: *>             B, and the procedure aims at the best theoretical accuracy.
   70: *>             The relative error max_{i=1:N}|d sigma_i| / sigma_i is
   71: *>             bounded by f(M,N)*epsilon* cond(B), independent of D.
   72: *>             The input matrix is preprocessed with the QRF with column
   73: *>             pivoting. This initial preprocessing and preconditioning by
   74: *>             a rank revealing QR factorization is common for all values of
   75: *>             JOBA. Additional actions are specified as follows:
   76: *>       = 'E': Computation as with 'C' with an additional estimate of the
   77: *>             condition number of B. It provides a realistic error bound.
   78: *>       = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
   79: *>             D1, D2, and well-conditioned matrix C, this option gives
   80: *>             higher accuracy than the 'C' option. If the structure of the
   81: *>             input matrix is not known, and relative accuracy is
   82: *>             desirable, then this option is advisable. The input matrix A
   83: *>             is preprocessed with QR factorization with FULL (row and
   84: *>             column) pivoting.
   85: *>       = 'G': Computation as with 'F' with an additional estimate of the
   86: *>             condition number of B, where A=D*B. If A has heavily weighted
   87: *>             rows, then using this condition number gives too pessimistic
   88: *>             error bound.
   89: *>       = 'A': Small singular values are the noise and the matrix is treated
   90: *>             as numerically rank deficient. The error in the computed
   91: *>             singular values is bounded by f(m,n)*epsilon*||A||.
   92: *>             The computed SVD A = U * S * V^t restores A up to
   93: *>             f(m,n)*epsilon*||A||.
   94: *>             This gives the procedure the licence to discard (set to zero)
   95: *>             all singular values below N*epsilon*||A||.
   96: *>       = 'R': Similar as in 'A'. Rank revealing property of the initial
   97: *>             QR factorization is used do reveal (using triangular factor)
   98: *>             a gap sigma_{r+1} < epsilon * sigma_r in which case the
   99: *>             numerical RANK is declared to be r. The SVD is computed with
  100: *>             absolute error bounds, but more accurately than with 'A'.
  101: *> \endverbatim
  102: *>
  103: *> \param[in] JOBU
  104: *> \verbatim
  105: *>          JOBU is CHARACTER*1
  106: *>        Specifies whether to compute the columns of U:
  107: *>       = 'U': N columns of U are returned in the array U.
  108: *>       = 'F': full set of M left sing. vectors is returned in the array U.
  109: *>       = 'W': U may be used as workspace of length M*N. See the description
  110: *>             of U.
  111: *>       = 'N': U is not computed.
  112: *> \endverbatim
  113: *>
  114: *> \param[in] JOBV
  115: *> \verbatim
  116: *>          JOBV is CHARACTER*1
  117: *>        Specifies whether to compute the matrix V:
  118: *>       = 'V': N columns of V are returned in the array V; Jacobi rotations
  119: *>             are not explicitly accumulated.
  120: *>       = 'J': N columns of V are returned in the array V, but they are
  121: *>             computed as the product of Jacobi rotations. This option is
  122: *>             allowed only if JOBU .NE. 'N', i.e. in computing the full SVD.
  123: *>       = 'W': V may be used as workspace of length N*N. See the description
  124: *>             of V.
  125: *>       = 'N': V is not computed.
  126: *> \endverbatim
  127: *>
  128: *> \param[in] JOBR
  129: *> \verbatim
  130: *>          JOBR is CHARACTER*1
  131: *>        Specifies the RANGE for the singular values. Issues the licence to
  132: *>        set to zero small positive singular values if they are outside
  133: *>        specified range. If A .NE. 0 is scaled so that the largest singular
  134: *>        value of c*A is around DSQRT(BIG), BIG=SLAMCH('O'), then JOBR issues
  135: *>        the licence to kill columns of A whose norm in c*A is less than
  136: *>        DSQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN,
  137: *>        where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E').
  138: *>       = 'N': Do not kill small columns of c*A. This option assumes that
  139: *>             BLAS and QR factorizations and triangular solvers are
  140: *>             implemented to work in that range. If the condition of A
  141: *>             is greater than BIG, use DGESVJ.
  142: *>       = 'R': RESTRICTED range for sigma(c*A) is [DSQRT(SFMIN), DSQRT(BIG)]
  143: *>             (roughly, as described above). This option is recommended.
  144: *>                                            ~~~~~~~~~~~~~~~~~~~~~~~~~~~
  145: *>        For computing the singular values in the FULL range [SFMIN,BIG]
  146: *>        use DGESVJ.
  147: *> \endverbatim
  148: *>
  149: *> \param[in] JOBT
  150: *> \verbatim
  151: *>          JOBT is CHARACTER*1
  152: *>        If the matrix is square then the procedure may determine to use
  153: *>        transposed A if A^t seems to be better with respect to convergence.
  154: *>        If the matrix is not square, JOBT is ignored. This is subject to
  155: *>        changes in the future.
  156: *>        The decision is based on two values of entropy over the adjoint
  157: *>        orbit of A^t * A. See the descriptions of WORK(6) and WORK(7).
  158: *>       = 'T': transpose if entropy test indicates possibly faster
  159: *>        convergence of Jacobi process if A^t is taken as input. If A is
  160: *>        replaced with A^t, then the row pivoting is included automatically.
  161: *>       = 'N': do not speculate.
  162: *>        This option can be used to compute only the singular values, or the
  163: *>        full SVD (U, SIGMA and V). For only one set of singular vectors
  164: *>        (U or V), the caller should provide both U and V, as one of the
  165: *>        matrices is used as workspace if the matrix A is transposed.
  166: *>        The implementer can easily remove this constraint and make the
  167: *>        code more complicated. See the descriptions of U and V.
  168: *> \endverbatim
  169: *>
  170: *> \param[in] JOBP
  171: *> \verbatim
  172: *>          JOBP is CHARACTER*1
  173: *>        Issues the licence to introduce structured perturbations to drown
  174: *>        denormalized numbers. This licence should be active if the
  175: *>        denormals are poorly implemented, causing slow computation,
  176: *>        especially in cases of fast convergence (!). For details see [1,2].
  177: *>        For the sake of simplicity, this perturbations are included only
  178: *>        when the full SVD or only the singular values are requested. The
  179: *>        implementer/user can easily add the perturbation for the cases of
  180: *>        computing one set of singular vectors.
  181: *>       = 'P': introduce perturbation
  182: *>       = 'N': do not perturb
  183: *> \endverbatim
  184: *>
  185: *> \param[in] M
  186: *> \verbatim
  187: *>          M is INTEGER
  188: *>         The number of rows of the input matrix A.  M >= 0.
  189: *> \endverbatim
  190: *>
  191: *> \param[in] N
  192: *> \verbatim
  193: *>          N is INTEGER
  194: *>         The number of columns of the input matrix A. M >= N >= 0.
  195: *> \endverbatim
  196: *>
  197: *> \param[in,out] A
  198: *> \verbatim
  199: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  200: *>          On entry, the M-by-N matrix A.
  201: *> \endverbatim
  202: *>
  203: *> \param[in] LDA
  204: *> \verbatim
  205: *>          LDA is INTEGER
  206: *>          The leading dimension of the array A.  LDA >= max(1,M).
  207: *> \endverbatim
  208: *>
  209: *> \param[out] SVA
  210: *> \verbatim
  211: *>          SVA is DOUBLE PRECISION array, dimension (N)
  212: *>          On exit,
  213: *>          - For WORK(1)/WORK(2) = ONE: The singular values of A. During the
  214: *>            computation SVA contains Euclidean column norms of the
  215: *>            iterated matrices in the array A.
  216: *>          - For WORK(1) .NE. WORK(2): The singular values of A are
  217: *>            (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if
  218: *>            sigma_max(A) overflows or if small singular values have been
  219: *>            saved from underflow by scaling the input matrix A.
  220: *>          - If JOBR='R' then some of the singular values may be returned
  221: *>            as exact zeros obtained by "set to zero" because they are
  222: *>            below the numerical rank threshold or are denormalized numbers.
  223: *> \endverbatim
  224: *>
  225: *> \param[out] U
  226: *> \verbatim
  227: *>          U is DOUBLE PRECISION array, dimension ( LDU, N )
  228: *>          If JOBU = 'U', then U contains on exit the M-by-N matrix of
  229: *>                         the left singular vectors.
  230: *>          If JOBU = 'F', then U contains on exit the M-by-M matrix of
  231: *>                         the left singular vectors, including an ONB
  232: *>                         of the orthogonal complement of the Range(A).
  233: *>          If JOBU = 'W'  .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N),
  234: *>                         then U is used as workspace if the procedure
  235: *>                         replaces A with A^t. In that case, [V] is computed
  236: *>                         in U as left singular vectors of A^t and then
  237: *>                         copied back to the V array. This 'W' option is just
  238: *>                         a reminder to the caller that in this case U is
  239: *>                         reserved as workspace of length N*N.
  240: *>          If JOBU = 'N'  U is not referenced, unless JOBT='T'.
  241: *> \endverbatim
  242: *>
  243: *> \param[in] LDU
  244: *> \verbatim
  245: *>          LDU is INTEGER
  246: *>          The leading dimension of the array U,  LDU >= 1.
  247: *>          IF  JOBU = 'U' or 'F' or 'W',  then LDU >= M.
  248: *> \endverbatim
  249: *>
  250: *> \param[out] V
  251: *> \verbatim
  252: *>          V is DOUBLE PRECISION array, dimension ( LDV, N )
  253: *>          If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
  254: *>                         the right singular vectors;
  255: *>          If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N),
  256: *>                         then V is used as workspace if the pprocedure
  257: *>                         replaces A with A^t. In that case, [U] is computed
  258: *>                         in V as right singular vectors of A^t and then
  259: *>                         copied back to the U array. This 'W' option is just
  260: *>                         a reminder to the caller that in this case V is
  261: *>                         reserved as workspace of length N*N.
  262: *>          If JOBV = 'N'  V is not referenced, unless JOBT='T'.
  263: *> \endverbatim
  264: *>
  265: *> \param[in] LDV
  266: *> \verbatim
  267: *>          LDV is INTEGER
  268: *>          The leading dimension of the array V,  LDV >= 1.
  269: *>          If JOBV = 'V' or 'J' or 'W', then LDV >= N.
  270: *> \endverbatim
  271: *>
  272: *> \param[out] WORK
  273: *> \verbatim
  274: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
  275: *>          On exit, if N > 0 .AND. M > 0 (else not referenced),
  276: *>          WORK(1) = SCALE = WORK(2) / WORK(1) is the scaling factor such
  277: *>                    that SCALE*SVA(1:N) are the computed singular values
  278: *>                    of A. (See the description of SVA().)
  279: *>          WORK(2) = See the description of WORK(1).
  280: *>          WORK(3) = SCONDA is an estimate for the condition number of
  281: *>                    column equilibrated A. (If JOBA = 'E' or 'G')
  282: *>                    SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).
  283: *>                    It is computed using DPOCON. It holds
  284: *>                    N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
  285: *>                    where R is the triangular factor from the QRF of A.
  286: *>                    However, if R is truncated and the numerical rank is
  287: *>                    determined to be strictly smaller than N, SCONDA is
  288: *>                    returned as -1, thus indicating that the smallest
  289: *>                    singular values might be lost.
  290: *>
  291: *>          If full SVD is needed, the following two condition numbers are
  292: *>          useful for the analysis of the algorithm. They are provided for
  293: *>          a developer/implementer who is familiar with the details of
  294: *>          the method.
  295: *>
  296: *>          WORK(4) = an estimate of the scaled condition number of the
  297: *>                    triangular factor in the first QR factorization.
  298: *>          WORK(5) = an estimate of the scaled condition number of the
  299: *>                    triangular factor in the second QR factorization.
  300: *>          The following two parameters are computed if JOBT = 'T'.
  301: *>          They are provided for a developer/implementer who is familiar
  302: *>          with the details of the method.
  303: *>
  304: *>          WORK(6) = the entropy of A^t*A :: this is the Shannon entropy
  305: *>                    of diag(A^t*A) / Trace(A^t*A) taken as point in the
  306: *>                    probability simplex.
  307: *>          WORK(7) = the entropy of A*A^t.
  308: *> \endverbatim
  309: *>
  310: *> \param[in] LWORK
  311: *> \verbatim
  312: *>          LWORK is INTEGER
  313: *>          Length of WORK to confirm proper allocation of work space.
  314: *>          LWORK depends on the job:
  315: *>
  316: *>          If only SIGMA is needed (JOBU = 'N', JOBV = 'N') and
  317: *>            -> .. no scaled condition estimate required (JOBE = 'N'):
  318: *>               LWORK >= max(2*M+N,4*N+1,7). This is the minimal requirement.
  319: *>               ->> For optimal performance (blocked code) the optimal value
  320: *>               is LWORK >= max(2*M+N,3*N+(N+1)*NB,7). Here NB is the optimal
  321: *>               block size for DGEQP3 and DGEQRF.
  322: *>               In general, optimal LWORK is computed as
  323: *>               LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), 7).
  324: *>            -> .. an estimate of the scaled condition number of A is
  325: *>               required (JOBA='E', 'G'). In this case, LWORK is the maximum
  326: *>               of the above and N*N+4*N, i.e. LWORK >= max(2*M+N,N*N+4*N,7).
  327: *>               ->> For optimal performance (blocked code) the optimal value
  328: *>               is LWORK >= max(2*M+N,3*N+(N+1)*NB, N*N+4*N, 7).
  329: *>               In general, the optimal length LWORK is computed as
  330: *>               LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF),
  331: *>                                                     N+N*N+LWORK(DPOCON),7).
  332: *>
  333: *>          If SIGMA and the right singular vectors are needed (JOBV = 'V'),
  334: *>            -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7).
  335: *>            -> For optimal performance, LWORK >= max(2*M+N,3*N+(N+1)*NB,7),
  336: *>               where NB is the optimal block size for DGEQP3, DGEQRF, DGELQF,
  337: *>               DORMLQ. In general, the optimal length LWORK is computed as
  338: *>               LWORK >= max(2*M+N,N+LWORK(DGEQP3), N+LWORK(DPOCON),
  339: *>                       N+LWORK(DGELQF), 2*N+LWORK(DGEQRF), N+LWORK(DORMLQ)).
  340: *>
  341: *>          If SIGMA and the left singular vectors are needed
  342: *>            -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7).
  343: *>            -> For optimal performance:
  344: *>               if JOBU = 'U' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,7),
  345: *>               if JOBU = 'F' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,N+M*NB,7),
  346: *>               where NB is the optimal block size for DGEQP3, DGEQRF, DORMQR.
  347: *>               In general, the optimal length LWORK is computed as
  348: *>               LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DPOCON),
  349: *>                        2*N+LWORK(DGEQRF), N+LWORK(DORMQR)).
  350: *>               Here LWORK(DORMQR) equals N*NB (for JOBU = 'U') or
  351: *>               M*NB (for JOBU = 'F').
  352: *>
  353: *>          If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and
  354: *>            -> if JOBV = 'V'
  355: *>               the minimal requirement is LWORK >= max(2*M+N,6*N+2*N*N).
  356: *>            -> if JOBV = 'J' the minimal requirement is
  357: *>               LWORK >= max(2*M+N, 4*N+N*N,2*N+N*N+6).
  358: *>            -> For optimal performance, LWORK should be additionally
  359: *>               larger than N+M*NB, where NB is the optimal block size
  360: *>               for DORMQR.
  361: *> \endverbatim
  362: *>
  363: *> \param[out] IWORK
  364: *> \verbatim
  365: *>          IWORK is INTEGER array, dimension (M+3*N).
  366: *>          On exit,
  367: *>          IWORK(1) = the numerical rank determined after the initial
  368: *>                     QR factorization with pivoting. See the descriptions
  369: *>                     of JOBA and JOBR.
  370: *>          IWORK(2) = the number of the computed nonzero singular values
  371: *>          IWORK(3) = if nonzero, a warning message:
  372: *>                     If IWORK(3) = 1 then some of the column norms of A
  373: *>                     were denormalized floats. The requested high accuracy
  374: *>                     is not warranted by the data.
  375: *> \endverbatim
  376: *>
  377: *> \param[out] INFO
  378: *> \verbatim
  379: *>          INFO is INTEGER
  380: *>           < 0:  if INFO = -i, then the i-th argument had an illegal value.
  381: *>           = 0:  successful exit;
  382: *>           > 0:  DGEJSV  did not converge in the maximal allowed number
  383: *>                 of sweeps. The computed values may be inaccurate.
  384: *> \endverbatim
  385: *
  386: *  Authors:
  387: *  ========
  388: *
  389: *> \author Univ. of Tennessee
  390: *> \author Univ. of California Berkeley
  391: *> \author Univ. of Colorado Denver
  392: *> \author NAG Ltd.
  393: *
  394: *> \ingroup doubleGEsing
  395: *
  396: *> \par Further Details:
  397: *  =====================
  398: *>
  399: *> \verbatim
  400: *>
  401: *>  DGEJSV implements a preconditioned Jacobi SVD algorithm. It uses DGEQP3,
  402: *>  DGEQRF, and DGELQF as preprocessors and preconditioners. Optionally, an
  403: *>  additional row pivoting can be used as a preprocessor, which in some
  404: *>  cases results in much higher accuracy. An example is matrix A with the
  405: *>  structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
  406: *>  diagonal matrices and C is well-conditioned matrix. In that case, complete
  407: *>  pivoting in the first QR factorizations provides accuracy dependent on the
  408: *>  condition number of C, and independent of D1, D2. Such higher accuracy is
  409: *>  not completely understood theoretically, but it works well in practice.
  410: *>  Further, if A can be written as A = B*D, with well-conditioned B and some
  411: *>  diagonal D, then the high accuracy is guaranteed, both theoretically and
  412: *>  in software, independent of D. For more details see [1], [2].
  413: *>     The computational range for the singular values can be the full range
  414: *>  ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
  415: *>  & LAPACK routines called by DGEJSV are implemented to work in that range.
  416: *>  If that is not the case, then the restriction for safe computation with
  417: *>  the singular values in the range of normalized IEEE numbers is that the
  418: *>  spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
  419: *>  overflow. This code (DGEJSV) is best used in this restricted range,
  420: *>  meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are
  421: *>  returned as zeros. See JOBR for details on this.
  422: *>     Further, this implementation is somewhat slower than the one described
  423: *>  in [1,2] due to replacement of some non-LAPACK components, and because
  424: *>  the choice of some tuning parameters in the iterative part (DGESVJ) is
  425: *>  left to the implementer on a particular machine.
  426: *>     The rank revealing QR factorization (in this code: DGEQP3) should be
  427: *>  implemented as in [3]. We have a new version of DGEQP3 under development
  428: *>  that is more robust than the current one in LAPACK, with a cleaner cut in
  429: *>  rank deficient cases. It will be available in the SIGMA library [4].
  430: *>  If M is much larger than N, it is obvious that the initial QRF with
  431: *>  column pivoting can be preprocessed by the QRF without pivoting. That
  432: *>  well known trick is not used in DGEJSV because in some cases heavy row
  433: *>  weighting can be treated with complete pivoting. The overhead in cases
  434: *>  M much larger than N is then only due to pivoting, but the benefits in
  435: *>  terms of accuracy have prevailed. The implementer/user can incorporate
  436: *>  this extra QRF step easily. The implementer can also improve data movement
  437: *>  (matrix transpose, matrix copy, matrix transposed copy) - this
  438: *>  implementation of DGEJSV uses only the simplest, naive data movement.
  439: *> \endverbatim
  440: *
  441: *> \par Contributors:
  442: *  ==================
  443: *>
  444: *>  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
  445: *
  446: *> \par References:
  447: *  ================
  448: *>
  449: *> \verbatim
  450: *>
  451: *> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
  452: *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
  453: *>     LAPACK Working note 169.
  454: *> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
  455: *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
  456: *>     LAPACK Working note 170.
  457: *> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
  458: *>     factorization software - a case study.
  459: *>     ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
  460: *>     LAPACK Working note 176.
  461: *> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
  462: *>     QSVD, (H,K)-SVD computations.
  463: *>     Department of Mathematics, University of Zagreb, 2008.
  464: *> \endverbatim
  465: *
  466: *>  \par Bugs, examples and comments:
  467: *   =================================
  468: *>
  469: *>  Please report all bugs and send interesting examples and/or comments to
  470: *>  drmac@math.hr. Thank you.
  471: *>
  472: *  =====================================================================
  473:       SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
  474:      $                   M, N, A, LDA, SVA, U, LDU, V, LDV,
  475:      $                   WORK, LWORK, IWORK, INFO )
  476: *
  477: *  -- LAPACK computational routine --
  478: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  479: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  480: *
  481: *     .. Scalar Arguments ..
  482:       IMPLICIT    NONE
  483:       INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
  484: *     ..
  485: *     .. Array Arguments ..
  486:       DOUBLE PRECISION A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ),
  487:      $            WORK( LWORK )
  488:       INTEGER     IWORK( * )
  489:       CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
  490: *     ..
  491: *
  492: *  ===========================================================================
  493: *
  494: *     .. Local Parameters ..
  495:       DOUBLE PRECISION   ZERO,  ONE
  496:       PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  497: *     ..
  498: *     .. Local Scalars ..
  499:       DOUBLE PRECISION AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1, COND_OK,
  500:      $        CONDR1, CONDR2, ENTRA,  ENTRAT, EPSLN,  MAXPRJ, SCALEM,
  501:      $        SCONDA, SFMIN,  SMALL,  TEMP1,  USCAL1, USCAL2, XSC
  502:       INTEGER IERR,   N1,     NR,     NUMRANK,        p, q,   WARNING
  503:       LOGICAL ALMORT, DEFR,   ERREST, GOSCAL, JRACC,  KILL,   LSVEC,
  504:      $        L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN,
  505:      $        NOSCAL, ROWPIV, RSVEC,  TRANSP
  506: *     ..
  507: *     .. Intrinsic Functions ..
  508:       INTRINSIC DABS, DLOG, MAX, MIN, DBLE, IDNINT, DSIGN, DSQRT
  509: *     ..
  510: *     .. External Functions ..
  511:       DOUBLE PRECISION  DLAMCH, DNRM2
  512:       INTEGER   IDAMAX
  513:       LOGICAL   LSAME
  514:       EXTERNAL  IDAMAX, LSAME, DLAMCH, DNRM2
  515: *     ..
  516: *     .. External Subroutines ..
  517:       EXTERNAL  DCOPY,  DGELQF, DGEQP3, DGEQRF, DLACPY, DLASCL,
  518:      $          DLASET, DLASSQ, DLASWP, DORGQR, DORMLQ,
  519:      $          DORMQR, DPOCON, DSCAL,  DSWAP,  DTRSM,  XERBLA
  520: *
  521:       EXTERNAL  DGESVJ
  522: *     ..
  523: *
  524: *     Test the input arguments
  525: *
  526:       LSVEC  = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
  527:       JRACC  = LSAME( JOBV, 'J' )
  528:       RSVEC  = LSAME( JOBV, 'V' ) .OR. JRACC
  529:       ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
  530:       L2RANK = LSAME( JOBA, 'R' )
  531:       L2ABER = LSAME( JOBA, 'A' )
  532:       ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
  533:       L2TRAN = LSAME( JOBT, 'T' )
  534:       L2KILL = LSAME( JOBR, 'R' )
  535:       DEFR   = LSAME( JOBR, 'N' )
  536:       L2PERT = LSAME( JOBP, 'P' )
  537: *
  538:       IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
  539:      $     ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
  540:          INFO = - 1
  541:       ELSE IF ( .NOT.( LSVEC  .OR. LSAME( JOBU, 'N' ) .OR.
  542:      $                             LSAME( JOBU, 'W' )) ) THEN
  543:          INFO = - 2
  544:       ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
  545:      $   LSAME( JOBV, 'W' )) .OR. ( JRACC .AND. (.NOT.LSVEC) ) ) THEN
  546:          INFO = - 3
  547:       ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) )    THEN
  548:          INFO = - 4
  549:       ELSE IF ( .NOT. ( L2TRAN .OR. LSAME( JOBT, 'N' ) ) ) THEN
  550:          INFO = - 5
  551:       ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
  552:          INFO = - 6
  553:       ELSE IF ( M .LT. 0 ) THEN
  554:          INFO = - 7
  555:       ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
  556:          INFO = - 8
  557:       ELSE IF ( LDA .LT. M ) THEN
  558:          INFO = - 10
  559:       ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
  560:          INFO = - 13
  561:       ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
  562:          INFO = - 15
  563:       ELSE IF ( (.NOT.(LSVEC .OR. RSVEC .OR. ERREST).AND.
  564:      &                           (LWORK .LT. MAX(7,4*N+1,2*M+N))) .OR.
  565:      & (.NOT.(LSVEC .OR. RSVEC) .AND. ERREST .AND.
  566:      &                         (LWORK .LT. MAX(7,4*N+N*N,2*M+N))) .OR.
  567:      & (LSVEC .AND. (.NOT.RSVEC) .AND. (LWORK .LT. MAX(7,2*M+N,4*N+1)))
  568:      & .OR.
  569:      & (RSVEC .AND. (.NOT.LSVEC) .AND. (LWORK .LT. MAX(7,2*M+N,4*N+1)))
  570:      & .OR.
  571:      & (LSVEC .AND. RSVEC .AND. (.NOT.JRACC) .AND.
  572:      &                          (LWORK.LT.MAX(2*M+N,6*N+2*N*N)))
  573:      & .OR. (LSVEC .AND. RSVEC .AND. JRACC .AND.
  574:      &                          LWORK.LT.MAX(2*M+N,4*N+N*N,2*N+N*N+6)))
  575:      &   THEN
  576:          INFO = - 17
  577:       ELSE
  578: *        #:)
  579:          INFO = 0
  580:       END IF
  581: *
  582:       IF ( INFO .NE. 0 ) THEN
  583: *       #:(
  584:          CALL XERBLA( 'DGEJSV', - INFO )
  585:          RETURN
  586:       END IF
  587: *
  588: *     Quick return for void matrix (Y3K safe)
  589: * #:)
  590:       IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) THEN
  591:          IWORK(1:3) = 0
  592:          WORK(1:7) = 0
  593:          RETURN
  594:       ENDIF
  595: *
  596: *     Determine whether the matrix U should be M x N or M x M
  597: *
  598:       IF ( LSVEC ) THEN
  599:          N1 = N
  600:          IF ( LSAME( JOBU, 'F' ) ) N1 = M
  601:       END IF
  602: *
  603: *     Set numerical parameters
  604: *
  605: *!    NOTE: Make sure DLAMCH() does not fail on the target architecture.
  606: *
  607:       EPSLN = DLAMCH('Epsilon')
  608:       SFMIN = DLAMCH('SafeMinimum')
  609:       SMALL = SFMIN / EPSLN
  610:       BIG   = DLAMCH('O')
  611: *     BIG   = ONE / SFMIN
  612: *
  613: *     Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
  614: *
  615: *(!)  If necessary, scale SVA() to protect the largest norm from
  616: *     overflow. It is possible that this scaling pushes the smallest
  617: *     column norm left from the underflow threshold (extreme case).
  618: *
  619:       SCALEM  = ONE / DSQRT(DBLE(M)*DBLE(N))
  620:       NOSCAL  = .TRUE.
  621:       GOSCAL  = .TRUE.
  622:       DO 1874 p = 1, N
  623:          AAPP = ZERO
  624:          AAQQ = ONE
  625:          CALL DLASSQ( M, A(1,p), 1, AAPP, AAQQ )
  626:          IF ( AAPP .GT. BIG ) THEN
  627:             INFO = - 9
  628:             CALL XERBLA( 'DGEJSV', -INFO )
  629:             RETURN
  630:          END IF
  631:          AAQQ = DSQRT(AAQQ)
  632:          IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL  ) THEN
  633:             SVA(p)  = AAPP * AAQQ
  634:          ELSE
  635:             NOSCAL  = .FALSE.
  636:             SVA(p)  = AAPP * ( AAQQ * SCALEM )
  637:             IF ( GOSCAL ) THEN
  638:                GOSCAL = .FALSE.
  639:                CALL DSCAL( p-1, SCALEM, SVA, 1 )
  640:             END IF
  641:          END IF
  642:  1874 CONTINUE
  643: *
  644:       IF ( NOSCAL ) SCALEM = ONE
  645: *
  646:       AAPP = ZERO
  647:       AAQQ = BIG
  648:       DO 4781 p = 1, N
  649:          AAPP = MAX( AAPP, SVA(p) )
  650:          IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) )
  651:  4781 CONTINUE
  652: *
  653: *     Quick return for zero M x N matrix
  654: * #:)
  655:       IF ( AAPP .EQ. ZERO ) THEN
  656:          IF ( LSVEC ) CALL DLASET( 'G', M, N1, ZERO, ONE, U, LDU )
  657:          IF ( RSVEC ) CALL DLASET( 'G', N, N,  ZERO, ONE, V, LDV )
  658:          WORK(1) = ONE
  659:          WORK(2) = ONE
  660:          IF ( ERREST ) WORK(3) = ONE
  661:          IF ( LSVEC .AND. RSVEC ) THEN
  662:             WORK(4) = ONE
  663:             WORK(5) = ONE
  664:          END IF
  665:          IF ( L2TRAN ) THEN
  666:             WORK(6) = ZERO
  667:             WORK(7) = ZERO
  668:          END IF
  669:          IWORK(1) = 0
  670:          IWORK(2) = 0
  671:          IWORK(3) = 0
  672:          RETURN
  673:       END IF
  674: *
  675: *     Issue warning if denormalized column norms detected. Override the
  676: *     high relative accuracy request. Issue licence to kill columns
  677: *     (set them to zero) whose norm is less than sigma_max / BIG (roughly).
  678: * #:(
  679:       WARNING = 0
  680:       IF ( AAQQ .LE. SFMIN ) THEN
  681:          L2RANK = .TRUE.
  682:          L2KILL = .TRUE.
  683:          WARNING = 1
  684:       END IF
  685: *
  686: *     Quick return for one-column matrix
  687: * #:)
  688:       IF ( N .EQ. 1 ) THEN
  689: *
  690:          IF ( LSVEC ) THEN
  691:             CALL DLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
  692:             CALL DLACPY( 'A', M, 1, A, LDA, U, LDU )
  693: *           computing all M left singular vectors of the M x 1 matrix
  694:             IF ( N1 .NE. N  ) THEN
  695:                CALL DGEQRF( M, N, U,LDU, WORK, WORK(N+1),LWORK-N,IERR )
  696:                CALL DORGQR( M,N1,1, U,LDU,WORK,WORK(N+1),LWORK-N,IERR )
  697:                CALL DCOPY( M, A(1,1), 1, U(1,1), 1 )
  698:             END IF
  699:          END IF
  700:          IF ( RSVEC ) THEN
  701:              V(1,1) = ONE
  702:          END IF
  703:          IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
  704:             SVA(1)  = SVA(1) / SCALEM
  705:             SCALEM  = ONE
  706:          END IF
  707:          WORK(1) = ONE / SCALEM
  708:          WORK(2) = ONE
  709:          IF ( SVA(1) .NE. ZERO ) THEN
  710:             IWORK(1) = 1
  711:             IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
  712:                IWORK(2) = 1
  713:             ELSE
  714:                IWORK(2) = 0
  715:             END IF
  716:          ELSE
  717:             IWORK(1) = 0
  718:             IWORK(2) = 0
  719:          END IF
  720:          IWORK(3) = 0
  721:          IF ( ERREST ) WORK(3) = ONE
  722:          IF ( LSVEC .AND. RSVEC ) THEN
  723:             WORK(4) = ONE
  724:             WORK(5) = ONE
  725:          END IF
  726:          IF ( L2TRAN ) THEN
  727:             WORK(6) = ZERO
  728:             WORK(7) = ZERO
  729:          END IF
  730:          RETURN
  731: *
  732:       END IF
  733: *
  734:       TRANSP = .FALSE.
  735:       L2TRAN = L2TRAN .AND. ( M .EQ. N )
  736: *
  737:       AATMAX = -ONE
  738:       AATMIN =  BIG
  739:       IF ( ROWPIV .OR. L2TRAN ) THEN
  740: *
  741: *     Compute the row norms, needed to determine row pivoting sequence
  742: *     (in the case of heavily row weighted A, row pivoting is strongly
  743: *     advised) and to collect information needed to compare the
  744: *     structures of A * A^t and A^t * A (in the case L2TRAN.EQ..TRUE.).
  745: *
  746:          IF ( L2TRAN ) THEN
  747:             DO 1950 p = 1, M
  748:                XSC   = ZERO
  749:                TEMP1 = ONE
  750:                CALL DLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
  751: *              DLASSQ gets both the ell_2 and the ell_infinity norm
  752: *              in one pass through the vector
  753:                WORK(M+N+p)  = XSC * SCALEM
  754:                WORK(N+p)    = XSC * (SCALEM*DSQRT(TEMP1))
  755:                AATMAX = MAX( AATMAX, WORK(N+p) )
  756:                IF (WORK(N+p) .NE. ZERO) AATMIN = MIN(AATMIN,WORK(N+p))
  757:  1950       CONTINUE
  758:          ELSE
  759:             DO 1904 p = 1, M
  760:                WORK(M+N+p) = SCALEM*DABS( A(p,IDAMAX(N,A(p,1),LDA)) )
  761:                AATMAX = MAX( AATMAX, WORK(M+N+p) )
  762:                AATMIN = MIN( AATMIN, WORK(M+N+p) )
  763:  1904       CONTINUE
  764:          END IF
  765: *
  766:       END IF
  767: *
  768: *     For square matrix A try to determine whether A^t  would be  better
  769: *     input for the preconditioned Jacobi SVD, with faster convergence.
  770: *     The decision is based on an O(N) function of the vector of column
  771: *     and row norms of A, based on the Shannon entropy. This should give
  772: *     the right choice in most cases when the difference actually matters.
  773: *     It may fail and pick the slower converging side.
  774: *
  775:       ENTRA  = ZERO
  776:       ENTRAT = ZERO
  777:       IF ( L2TRAN ) THEN
  778: *
  779:          XSC   = ZERO
  780:          TEMP1 = ONE
  781:          CALL DLASSQ( N, SVA, 1, XSC, TEMP1 )
  782:          TEMP1 = ONE / TEMP1
  783: *
  784:          ENTRA = ZERO
  785:          DO 1113 p = 1, N
  786:             BIG1  = ( ( SVA(p) / XSC )**2 ) * TEMP1
  787:             IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1)
  788:  1113    CONTINUE
  789:          ENTRA = - ENTRA / DLOG(DBLE(N))
  790: *
  791: *        Now, SVA().^2/Trace(A^t * A) is a point in the probability simplex.
  792: *        It is derived from the diagonal of  A^t * A.  Do the same with the
  793: *        diagonal of A * A^t, compute the entropy of the corresponding
  794: *        probability distribution. Note that A * A^t and A^t * A have the
  795: *        same trace.
  796: *
  797:          ENTRAT = ZERO
  798:          DO 1114 p = N+1, N+M
  799:             BIG1 = ( ( WORK(p) / XSC )**2 ) * TEMP1
  800:             IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1)
  801:  1114    CONTINUE
  802:          ENTRAT = - ENTRAT / DLOG(DBLE(M))
  803: *
  804: *        Analyze the entropies and decide A or A^t. Smaller entropy
  805: *        usually means better input for the algorithm.
  806: *
  807:          TRANSP = ( ENTRAT .LT. ENTRA )
  808: *
  809: *        If A^t is better than A, transpose A.
  810: *
  811:          IF ( TRANSP ) THEN
  812: *           In an optimal implementation, this trivial transpose
  813: *           should be replaced with faster transpose.
  814:             DO 1115 p = 1, N - 1
  815:                DO 1116 q = p + 1, N
  816:                    TEMP1 = A(q,p)
  817:                   A(q,p) = A(p,q)
  818:                   A(p,q) = TEMP1
  819:  1116          CONTINUE
  820:  1115       CONTINUE
  821:             DO 1117 p = 1, N
  822:                WORK(M+N+p) = SVA(p)
  823:                SVA(p)      = WORK(N+p)
  824:  1117       CONTINUE
  825:             TEMP1  = AAPP
  826:             AAPP   = AATMAX
  827:             AATMAX = TEMP1
  828:             TEMP1  = AAQQ
  829:             AAQQ   = AATMIN
  830:             AATMIN = TEMP1
  831:             KILL   = LSVEC
  832:             LSVEC  = RSVEC
  833:             RSVEC  = KILL
  834:             IF ( LSVEC ) N1 = N
  835: *
  836:             ROWPIV = .TRUE.
  837:          END IF
  838: *
  839:       END IF
  840: *     END IF L2TRAN
  841: *
  842: *     Scale the matrix so that its maximal singular value remains less
  843: *     than DSQRT(BIG) -- the matrix is scaled so that its maximal column
  844: *     has Euclidean norm equal to DSQRT(BIG/N). The only reason to keep
  845: *     DSQRT(BIG) instead of BIG is the fact that DGEJSV uses LAPACK and
  846: *     BLAS routines that, in some implementations, are not capable of
  847: *     working in the full interval [SFMIN,BIG] and that they may provoke
  848: *     overflows in the intermediate results. If the singular values spread
  849: *     from SFMIN to BIG, then DGESVJ will compute them. So, in that case,
  850: *     one should use DGESVJ instead of DGEJSV.
  851: *
  852:       BIG1   = DSQRT( BIG )
  853:       TEMP1  = DSQRT( BIG / DBLE(N) )
  854: *
  855:       CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
  856:       IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
  857:           AAQQ = ( AAQQ / AAPP ) * TEMP1
  858:       ELSE
  859:           AAQQ = ( AAQQ * TEMP1 ) / AAPP
  860:       END IF
  861:       TEMP1 = TEMP1 * SCALEM
  862:       CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
  863: *
  864: *     To undo scaling at the end of this procedure, multiply the
  865: *     computed singular values with USCAL2 / USCAL1.
  866: *
  867:       USCAL1 = TEMP1
  868:       USCAL2 = AAPP
  869: *
  870:       IF ( L2KILL ) THEN
  871: *        L2KILL enforces computation of nonzero singular values in
  872: *        the restricted range of condition number of the initial A,
  873: *        sigma_max(A) / sigma_min(A) approx. DSQRT(BIG)/DSQRT(SFMIN).
  874:          XSC = DSQRT( SFMIN )
  875:       ELSE
  876:          XSC = SMALL
  877: *
  878: *        Now, if the condition number of A is too big,
  879: *        sigma_max(A) / sigma_min(A) .GT. DSQRT(BIG/N) * EPSLN / SFMIN,
  880: *        as a precaution measure, the full SVD is computed using DGESVJ
  881: *        with accumulated Jacobi rotations. This provides numerically
  882: *        more robust computation, at the cost of slightly increased run
  883: *        time. Depending on the concrete implementation of BLAS and LAPACK
  884: *        (i.e. how they behave in presence of extreme ill-conditioning) the
  885: *        implementor may decide to remove this switch.
  886:          IF ( ( AAQQ.LT.DSQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
  887:             JRACC = .TRUE.
  888:          END IF
  889: *
  890:       END IF
  891:       IF ( AAQQ .LT. XSC ) THEN
  892:          DO 700 p = 1, N
  893:             IF ( SVA(p) .LT. XSC ) THEN
  894:                CALL DLASET( 'A', M, 1, ZERO, ZERO, A(1,p), LDA )
  895:                SVA(p) = ZERO
  896:             END IF
  897:  700     CONTINUE
  898:       END IF
  899: *
  900: *     Preconditioning using QR factorization with pivoting
  901: *
  902:       IF ( ROWPIV ) THEN
  903: *        Optional row permutation (Bjoerck row pivoting):
  904: *        A result by Cox and Higham shows that the Bjoerck's
  905: *        row pivoting combined with standard column pivoting
  906: *        has similar effect as Powell-Reid complete pivoting.
  907: *        The ell-infinity norms of A are made nonincreasing.
  908:          DO 1952 p = 1, M - 1
  909:             q = IDAMAX( M-p+1, WORK(M+N+p), 1 ) + p - 1
  910:             IWORK(2*N+p) = q
  911:             IF ( p .NE. q ) THEN
  912:                TEMP1       = WORK(M+N+p)
  913:                WORK(M+N+p) = WORK(M+N+q)
  914:                WORK(M+N+q) = TEMP1
  915:             END IF
  916:  1952    CONTINUE
  917:          CALL DLASWP( N, A, LDA, 1, M-1, IWORK(2*N+1), 1 )
  918:       END IF
  919: *
  920: *     End of the preparation phase (scaling, optional sorting and
  921: *     transposing, optional flushing of small columns).
  922: *
  923: *     Preconditioning
  924: *
  925: *     If the full SVD is needed, the right singular vectors are computed
  926: *     from a matrix equation, and for that we need theoretical analysis
  927: *     of the Businger-Golub pivoting. So we use DGEQP3 as the first RR QRF.
  928: *     In all other cases the first RR QRF can be chosen by other criteria
  929: *     (eg speed by replacing global with restricted window pivoting, such
  930: *     as in SGEQPX from TOMS # 782). Good results will be obtained using
  931: *     SGEQPX with properly (!) chosen numerical parameters.
  932: *     Any improvement of DGEQP3 improves overall performance of DGEJSV.
  933: *
  934: *     A * P1 = Q1 * [ R1^t 0]^t:
  935:       DO 1963 p = 1, N
  936: *        .. all columns are free columns
  937:          IWORK(p) = 0
  938:  1963 CONTINUE
  939:       CALL DGEQP3( M,N,A,LDA, IWORK,WORK, WORK(N+1),LWORK-N, IERR )
  940: *
  941: *     The upper triangular matrix R1 from the first QRF is inspected for
  942: *     rank deficiency and possibilities for deflation, or possible
  943: *     ill-conditioning. Depending on the user specified flag L2RANK,
  944: *     the procedure explores possibilities to reduce the numerical
  945: *     rank by inspecting the computed upper triangular factor. If
  946: *     L2RANK or L2ABER are up, then DGEJSV will compute the SVD of
  947: *     A + dA, where ||dA|| <= f(M,N)*EPSLN.
  948: *
  949:       NR = 1
  950:       IF ( L2ABER ) THEN
  951: *        Standard absolute error bound suffices. All sigma_i with
  952: *        sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
  953: *        aggressive enforcement of lower numerical rank by introducing a
  954: *        backward error of the order of N*EPSLN*||A||.
  955:          TEMP1 = DSQRT(DBLE(N))*EPSLN
  956:          DO 3001 p = 2, N
  957:             IF ( DABS(A(p,p)) .GE. (TEMP1*DABS(A(1,1))) ) THEN
  958:                NR = NR + 1
  959:             ELSE
  960:                GO TO 3002
  961:             END IF
  962:  3001    CONTINUE
  963:  3002    CONTINUE
  964:       ELSE IF ( L2RANK ) THEN
  965: *        .. similarly as above, only slightly more gentle (less aggressive).
  966: *        Sudden drop on the diagonal of R1 is used as the criterion for
  967: *        close-to-rank-deficient.
  968:          TEMP1 = DSQRT(SFMIN)
  969:          DO 3401 p = 2, N
  970:             IF ( ( DABS(A(p,p)) .LT. (EPSLN*DABS(A(p-1,p-1))) ) .OR.
  971:      $           ( DABS(A(p,p)) .LT. SMALL ) .OR.
  972:      $           ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
  973:             NR = NR + 1
  974:  3401    CONTINUE
  975:  3402    CONTINUE
  976: *
  977:       ELSE
  978: *        The goal is high relative accuracy. However, if the matrix
  979: *        has high scaled condition number the relative accuracy is in
  980: *        general not feasible. Later on, a condition number estimator
  981: *        will be deployed to estimate the scaled condition number.
  982: *        Here we just remove the underflowed part of the triangular
  983: *        factor. This prevents the situation in which the code is
  984: *        working hard to get the accuracy not warranted by the data.
  985:          TEMP1  = DSQRT(SFMIN)
  986:          DO 3301 p = 2, N
  987:             IF ( ( DABS(A(p,p)) .LT. SMALL ) .OR.
  988:      $          ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
  989:             NR = NR + 1
  990:  3301    CONTINUE
  991:  3302    CONTINUE
  992: *
  993:       END IF
  994: *
  995:       ALMORT = .FALSE.
  996:       IF ( NR .EQ. N ) THEN
  997:          MAXPRJ = ONE
  998:          DO 3051 p = 2, N
  999:             TEMP1  = DABS(A(p,p)) / SVA(IWORK(p))
 1000:             MAXPRJ = MIN( MAXPRJ, TEMP1 )
 1001:  3051    CONTINUE
 1002:          IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE.
 1003:       END IF
 1004: *
 1005: *
 1006:       SCONDA = - ONE
 1007:       CONDR1 = - ONE
 1008:       CONDR2 = - ONE
 1009: *
 1010:       IF ( ERREST ) THEN
 1011:          IF ( N .EQ. NR ) THEN
 1012:             IF ( RSVEC ) THEN
 1013: *              .. V is available as workspace
 1014:                CALL DLACPY( 'U', N, N, A, LDA, V, LDV )
 1015:                DO 3053 p = 1, N
 1016:                   TEMP1 = SVA(IWORK(p))
 1017:                   CALL DSCAL( p, ONE/TEMP1, V(1,p), 1 )
 1018:  3053          CONTINUE
 1019:                CALL DPOCON( 'U', N, V, LDV, ONE, TEMP1,
 1020:      $              WORK(N+1), IWORK(2*N+M+1), IERR )
 1021:             ELSE IF ( LSVEC ) THEN
 1022: *              .. U is available as workspace
 1023:                CALL DLACPY( 'U', N, N, A, LDA, U, LDU )
 1024:                DO 3054 p = 1, N
 1025:                   TEMP1 = SVA(IWORK(p))
 1026:                   CALL DSCAL( p, ONE/TEMP1, U(1,p), 1 )
 1027:  3054          CONTINUE
 1028:                CALL DPOCON( 'U', N, U, LDU, ONE, TEMP1,
 1029:      $              WORK(N+1), IWORK(2*N+M+1), IERR )
 1030:             ELSE
 1031:                CALL DLACPY( 'U', N, N, A, LDA, WORK(N+1), N )
 1032:                DO 3052 p = 1, N
 1033:                   TEMP1 = SVA(IWORK(p))
 1034:                   CALL DSCAL( p, ONE/TEMP1, WORK(N+(p-1)*N+1), 1 )
 1035:  3052          CONTINUE
 1036: *           .. the columns of R are scaled to have unit Euclidean lengths.
 1037:                CALL DPOCON( 'U', N, WORK(N+1), N, ONE, TEMP1,
 1038:      $              WORK(N+N*N+1), IWORK(2*N+M+1), IERR )
 1039:             END IF
 1040:             SCONDA = ONE / DSQRT(TEMP1)
 1041: *           SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).
 1042: *           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
 1043:          ELSE
 1044:             SCONDA = - ONE
 1045:          END IF
 1046:       END IF
 1047: *
 1048:       L2PERT = L2PERT .AND. ( DABS( A(1,1)/A(NR,NR) ) .GT. DSQRT(BIG1) )
 1049: *     If there is no violent scaling, artificial perturbation is not needed.
 1050: *
 1051: *     Phase 3:
 1052: *
 1053:       IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
 1054: *
 1055: *         Singular Values only
 1056: *
 1057: *         .. transpose A(1:NR,1:N)
 1058:          DO 1946 p = 1, MIN( N-1, NR )
 1059:             CALL DCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
 1060:  1946    CONTINUE
 1061: *
 1062: *        The following two DO-loops introduce small relative perturbation
 1063: *        into the strict upper triangle of the lower triangular matrix.
 1064: *        Small entries below the main diagonal are also changed.
 1065: *        This modification is useful if the computing environment does not
 1066: *        provide/allow FLUSH TO ZERO underflow, for it prevents many
 1067: *        annoying denormalized numbers in case of strongly scaled matrices.
 1068: *        The perturbation is structured so that it does not introduce any
 1069: *        new perturbation of the singular values, and it does not destroy
 1070: *        the job done by the preconditioner.
 1071: *        The licence for this perturbation is in the variable L2PERT, which
 1072: *        should be .FALSE. if FLUSH TO ZERO underflow is active.
 1073: *
 1074:          IF ( .NOT. ALMORT ) THEN
 1075: *
 1076:             IF ( L2PERT ) THEN
 1077: *              XSC = DSQRT(SMALL)
 1078:                XSC = EPSLN / DBLE(N)
 1079:                DO 4947 q = 1, NR
 1080:                   TEMP1 = XSC*DABS(A(q,q))
 1081:                   DO 4949 p = 1, N
 1082:                      IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )
 1083:      $                    .OR. ( p .LT. q ) )
 1084:      $                     A(p,q) = DSIGN( TEMP1, A(p,q) )
 1085:  4949             CONTINUE
 1086:  4947          CONTINUE
 1087:             ELSE
 1088:                CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, A(1,2),LDA )
 1089:             END IF
 1090: *
 1091: *            .. second preconditioning using the QR factorization
 1092: *
 1093:             CALL DGEQRF( N,NR, A,LDA, WORK, WORK(N+1),LWORK-N, IERR )
 1094: *
 1095: *           .. and transpose upper to lower triangular
 1096:             DO 1948 p = 1, NR - 1
 1097:                CALL DCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
 1098:  1948       CONTINUE
 1099: *
 1100:          END IF
 1101: *
 1102: *           Row-cyclic Jacobi SVD algorithm with column pivoting
 1103: *
 1104: *           .. again some perturbation (a "background noise") is added
 1105: *           to drown denormals
 1106:             IF ( L2PERT ) THEN
 1107: *              XSC = DSQRT(SMALL)
 1108:                XSC = EPSLN / DBLE(N)
 1109:                DO 1947 q = 1, NR
 1110:                   TEMP1 = XSC*DABS(A(q,q))
 1111:                   DO 1949 p = 1, NR
 1112:                      IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )
 1113:      $                       .OR. ( p .LT. q ) )
 1114:      $                   A(p,q) = DSIGN( TEMP1, A(p,q) )
 1115:  1949             CONTINUE
 1116:  1947          CONTINUE
 1117:             ELSE
 1118:                CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, A(1,2), LDA )
 1119:             END IF
 1120: *
 1121: *           .. and one-sided Jacobi rotations are started on a lower
 1122: *           triangular matrix (plus perturbation which is ignored in
 1123: *           the part which destroys triangular form (confusing?!))
 1124: *
 1125:             CALL DGESVJ( 'L', 'NoU', 'NoV', NR, NR, A, LDA, SVA,
 1126:      $                      N, V, LDV, WORK, LWORK, INFO )
 1127: *
 1128:             SCALEM  = WORK(1)
 1129:             NUMRANK = IDNINT(WORK(2))
 1130: *
 1131: *
 1132:       ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN
 1133: *
 1134: *        -> Singular Values and Right Singular Vectors <-
 1135: *
 1136:          IF ( ALMORT ) THEN
 1137: *
 1138: *           .. in this case NR equals N
 1139:             DO 1998 p = 1, NR
 1140:                CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1141:  1998       CONTINUE
 1142:             CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1143: *
 1144:             CALL DGESVJ( 'L','U','N', N, NR, V,LDV, SVA, NR, A,LDA,
 1145:      $                  WORK, LWORK, INFO )
 1146:             SCALEM  = WORK(1)
 1147:             NUMRANK = IDNINT(WORK(2))
 1148: 
 1149:          ELSE
 1150: *
 1151: *        .. two more QR factorizations ( one QRF is not enough, two require
 1152: *        accumulated product of Jacobi rotations, three are perfect )
 1153: *
 1154:             CALL DLASET( 'Lower', NR-1, NR-1, ZERO, ZERO, A(2,1), LDA )
 1155:             CALL DGELQF( NR, N, A, LDA, WORK, WORK(N+1), LWORK-N, IERR)
 1156:             CALL DLACPY( 'Lower', NR, NR, A, LDA, V, LDV )
 1157:             CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1158:             CALL DGEQRF( NR, NR, V, LDV, WORK(N+1), WORK(2*N+1),
 1159:      $                   LWORK-2*N, IERR )
 1160:             DO 8998 p = 1, NR
 1161:                CALL DCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
 1162:  8998       CONTINUE
 1163:             CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1164: *
 1165:             CALL DGESVJ( 'Lower', 'U','N', NR, NR, V,LDV, SVA, NR, U,
 1166:      $                  LDU, WORK(N+1), LWORK, INFO )
 1167:             SCALEM  = WORK(N+1)
 1168:             NUMRANK = IDNINT(WORK(N+2))
 1169:             IF ( NR .LT. N ) THEN
 1170:                CALL DLASET( 'A',N-NR, NR, ZERO,ZERO, V(NR+1,1),   LDV )
 1171:                CALL DLASET( 'A',NR, N-NR, ZERO,ZERO, V(1,NR+1),   LDV )
 1172:                CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE, V(NR+1,NR+1), LDV )
 1173:             END IF
 1174: *
 1175:          CALL DORMLQ( 'Left', 'Transpose', N, N, NR, A, LDA, WORK,
 1176:      $               V, LDV, WORK(N+1), LWORK-N, IERR )
 1177: *
 1178:          END IF
 1179: *
 1180:          DO 8991 p = 1, N
 1181:             CALL DCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
 1182:  8991    CONTINUE
 1183:          CALL DLACPY( 'All', N, N, A, LDA, V, LDV )
 1184: *
 1185:          IF ( TRANSP ) THEN
 1186:             CALL DLACPY( 'All', N, N, V, LDV, U, LDU )
 1187:          END IF
 1188: *
 1189:       ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
 1190: *
 1191: *        .. Singular Values and Left Singular Vectors                 ..
 1192: *
 1193: *        .. second preconditioning step to avoid need to accumulate
 1194: *        Jacobi rotations in the Jacobi iterations.
 1195:          DO 1965 p = 1, NR
 1196:             CALL DCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
 1197:  1965    CONTINUE
 1198:          CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
 1199: *
 1200:          CALL DGEQRF( N, NR, U, LDU, WORK(N+1), WORK(2*N+1),
 1201:      $              LWORK-2*N, IERR )
 1202: *
 1203:          DO 1967 p = 1, NR - 1
 1204:             CALL DCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
 1205:  1967    CONTINUE
 1206:          CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
 1207: *
 1208:          CALL DGESVJ( 'Lower', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
 1209:      $        LDA, WORK(N+1), LWORK-N, INFO )
 1210:          SCALEM  = WORK(N+1)
 1211:          NUMRANK = IDNINT(WORK(N+2))
 1212: *
 1213:          IF ( NR .LT. M ) THEN
 1214:             CALL DLASET( 'A',  M-NR, NR,ZERO, ZERO, U(NR+1,1), LDU )
 1215:             IF ( NR .LT. N1 ) THEN
 1216:                CALL DLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1), LDU )
 1217:                CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1), LDU )
 1218:             END IF
 1219:          END IF
 1220: *
 1221:          CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
 1222:      $               LDU, WORK(N+1), LWORK-N, IERR )
 1223: *
 1224:          IF ( ROWPIV )
 1225:      $       CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
 1226: *
 1227:          DO 1974 p = 1, N1
 1228:             XSC = ONE / DNRM2( M, U(1,p), 1 )
 1229:             CALL DSCAL( M, XSC, U(1,p), 1 )
 1230:  1974    CONTINUE
 1231: *
 1232:          IF ( TRANSP ) THEN
 1233:             CALL DLACPY( 'All', N, N, U, LDU, V, LDV )
 1234:          END IF
 1235: *
 1236:       ELSE
 1237: *
 1238: *        .. Full SVD ..
 1239: *
 1240:          IF ( .NOT. JRACC ) THEN
 1241: *
 1242:          IF ( .NOT. ALMORT ) THEN
 1243: *
 1244: *           Second Preconditioning Step (QRF [with pivoting])
 1245: *           Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
 1246: *           equivalent to an LQF CALL. Since in many libraries the QRF
 1247: *           seems to be better optimized than the LQF, we do explicit
 1248: *           transpose and use the QRF. This is subject to changes in an
 1249: *           optimized implementation of DGEJSV.
 1250: *
 1251:             DO 1968 p = 1, NR
 1252:                CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1253:  1968       CONTINUE
 1254: *
 1255: *           .. the following two loops perturb small entries to avoid
 1256: *           denormals in the second QR factorization, where they are
 1257: *           as good as zeros. This is done to avoid painfully slow
 1258: *           computation with denormals. The relative size of the perturbation
 1259: *           is a parameter that can be changed by the implementer.
 1260: *           This perturbation device will be obsolete on machines with
 1261: *           properly implemented arithmetic.
 1262: *           To switch it off, set L2PERT=.FALSE. To remove it from  the
 1263: *           code, remove the action under L2PERT=.TRUE., leave the ELSE part.
 1264: *           The following two loops should be blocked and fused with the
 1265: *           transposed copy above.
 1266: *
 1267:             IF ( L2PERT ) THEN
 1268:                XSC = DSQRT(SMALL)
 1269:                DO 2969 q = 1, NR
 1270:                   TEMP1 = XSC*DABS( V(q,q) )
 1271:                   DO 2968 p = 1, N
 1272:                      IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )
 1273:      $                   .OR. ( p .LT. q ) )
 1274:      $                   V(p,q) = DSIGN( TEMP1, V(p,q) )
 1275:                      IF ( p .LT. q ) V(p,q) = - V(p,q)
 1276:  2968             CONTINUE
 1277:  2969          CONTINUE
 1278:             ELSE
 1279:                CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1280:             END IF
 1281: *
 1282: *           Estimate the row scaled condition number of R1
 1283: *           (If R1 is rectangular, N > NR, then the condition number
 1284: *           of the leading NR x NR submatrix is estimated.)
 1285: *
 1286:             CALL DLACPY( 'L', NR, NR, V, LDV, WORK(2*N+1), NR )
 1287:             DO 3950 p = 1, NR
 1288:                TEMP1 = DNRM2(NR-p+1,WORK(2*N+(p-1)*NR+p),1)
 1289:                CALL DSCAL(NR-p+1,ONE/TEMP1,WORK(2*N+(p-1)*NR+p),1)
 1290:  3950       CONTINUE
 1291:             CALL DPOCON('Lower',NR,WORK(2*N+1),NR,ONE,TEMP1,
 1292:      $                   WORK(2*N+NR*NR+1),IWORK(M+2*N+1),IERR)
 1293:             CONDR1 = ONE / DSQRT(TEMP1)
 1294: *           .. here need a second opinion on the condition number
 1295: *           .. then assume worst case scenario
 1296: *           R1 is OK for inverse <=> CONDR1 .LT. DBLE(N)
 1297: *           more conservative    <=> CONDR1 .LT. DSQRT(DBLE(N))
 1298: *
 1299:             COND_OK = DSQRT(DBLE(NR))
 1300: *[TP]       COND_OK is a tuning parameter.
 1301: 
 1302:             IF ( CONDR1 .LT. COND_OK ) THEN
 1303: *              .. the second QRF without pivoting. Note: in an optimized
 1304: *              implementation, this QRF should be implemented as the QRF
 1305: *              of a lower triangular matrix.
 1306: *              R1^t = Q2 * R2
 1307:                CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
 1308:      $              LWORK-2*N, IERR )
 1309: *
 1310:                IF ( L2PERT ) THEN
 1311:                   XSC = DSQRT(SMALL)/EPSLN
 1312:                   DO 3959 p = 2, NR
 1313:                      DO 3958 q = 1, p - 1
 1314:                         TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
 1315:                         IF ( DABS(V(q,p)) .LE. TEMP1 )
 1316:      $                     V(q,p) = DSIGN( TEMP1, V(q,p) )
 1317:  3958                CONTINUE
 1318:  3959             CONTINUE
 1319:                END IF
 1320: *
 1321:                IF ( NR .NE. N )
 1322:      $         CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )
 1323: *              .. save ...
 1324: *
 1325: *           .. this transposed copy should be better than naive
 1326:                DO 1969 p = 1, NR - 1
 1327:                   CALL DCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
 1328:  1969          CONTINUE
 1329: *
 1330:                CONDR2 = CONDR1
 1331: *
 1332:             ELSE
 1333: *
 1334: *              .. ill-conditioned case: second QRF with pivoting
 1335: *              Note that windowed pivoting would be equally good
 1336: *              numerically, and more run-time efficient. So, in
 1337: *              an optimal implementation, the next call to DGEQP3
 1338: *              should be replaced with eg. CALL SGEQPX (ACM TOMS #782)
 1339: *              with properly (carefully) chosen parameters.
 1340: *
 1341: *              R1^t * P2 = Q2 * R2
 1342:                DO 3003 p = 1, NR
 1343:                   IWORK(N+p) = 0
 1344:  3003          CONTINUE
 1345:                CALL DGEQP3( N, NR, V, LDV, IWORK(N+1), WORK(N+1),
 1346:      $                  WORK(2*N+1), LWORK-2*N, IERR )
 1347: **               CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
 1348: **     $              LWORK-2*N, IERR )
 1349:                IF ( L2PERT ) THEN
 1350:                   XSC = DSQRT(SMALL)
 1351:                   DO 3969 p = 2, NR
 1352:                      DO 3968 q = 1, p - 1
 1353:                         TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
 1354:                         IF ( DABS(V(q,p)) .LE. TEMP1 )
 1355:      $                     V(q,p) = DSIGN( TEMP1, V(q,p) )
 1356:  3968                CONTINUE
 1357:  3969             CONTINUE
 1358:                END IF
 1359: *
 1360:                CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )
 1361: *
 1362:                IF ( L2PERT ) THEN
 1363:                   XSC = DSQRT(SMALL)
 1364:                   DO 8970 p = 2, NR
 1365:                      DO 8971 q = 1, p - 1
 1366:                         TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
 1367:                         V(p,q) = - DSIGN( TEMP1, V(q,p) )
 1368:  8971                CONTINUE
 1369:  8970             CONTINUE
 1370:                ELSE
 1371:                   CALL DLASET( 'L',NR-1,NR-1,ZERO,ZERO,V(2,1),LDV )
 1372:                END IF
 1373: *              Now, compute R2 = L3 * Q3, the LQ factorization.
 1374:                CALL DGELQF( NR, NR, V, LDV, WORK(2*N+N*NR+1),
 1375:      $               WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
 1376: *              .. and estimate the condition number
 1377:                CALL DLACPY( 'L',NR,NR,V,LDV,WORK(2*N+N*NR+NR+1),NR )
 1378:                DO 4950 p = 1, NR
 1379:                   TEMP1 = DNRM2( p, WORK(2*N+N*NR+NR+p), NR )
 1380:                   CALL DSCAL( p, ONE/TEMP1, WORK(2*N+N*NR+NR+p), NR )
 1381:  4950          CONTINUE
 1382:                CALL DPOCON( 'L',NR,WORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
 1383:      $              WORK(2*N+N*NR+NR+NR*NR+1),IWORK(M+2*N+1),IERR )
 1384:                CONDR2 = ONE / DSQRT(TEMP1)
 1385: *
 1386:                IF ( CONDR2 .GE. COND_OK ) THEN
 1387: *                 .. save the Householder vectors used for Q3
 1388: *                 (this overwrites the copy of R2, as it will not be
 1389: *                 needed in this branch, but it does not overwritte the
 1390: *                 Huseholder vectors of Q2.).
 1391:                   CALL DLACPY( 'U', NR, NR, V, LDV, WORK(2*N+1), N )
 1392: *                 .. and the rest of the information on Q3 is in
 1393: *                 WORK(2*N+N*NR+1:2*N+N*NR+N)
 1394:                END IF
 1395: *
 1396:             END IF
 1397: *
 1398:             IF ( L2PERT ) THEN
 1399:                XSC = DSQRT(SMALL)
 1400:                DO 4968 q = 2, NR
 1401:                   TEMP1 = XSC * V(q,q)
 1402:                   DO 4969 p = 1, q - 1
 1403: *                    V(p,q) = - DSIGN( TEMP1, V(q,p) )
 1404:                      V(p,q) = - DSIGN( TEMP1, V(p,q) )
 1405:  4969             CONTINUE
 1406:  4968          CONTINUE
 1407:             ELSE
 1408:                CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV )
 1409:             END IF
 1410: *
 1411: *        Second preconditioning finished; continue with Jacobi SVD
 1412: *        The input matrix is lower trinagular.
 1413: *
 1414: *        Recover the right singular vectors as solution of a well
 1415: *        conditioned triangular matrix equation.
 1416: *
 1417:             IF ( CONDR1 .LT. COND_OK ) THEN
 1418: *
 1419:                CALL DGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U,
 1420:      $              LDU,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,INFO )
 1421:                SCALEM  = WORK(2*N+N*NR+NR+1)
 1422:                NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
 1423:                DO 3970 p = 1, NR
 1424:                   CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )
 1425:                   CALL DSCAL( NR, SVA(p),    V(1,p), 1 )
 1426:  3970          CONTINUE
 1427: 
 1428: *        .. pick the right matrix equation and solve it
 1429: *
 1430:                IF ( NR .EQ. N ) THEN
 1431: * :))             .. best case, R1 is inverted. The solution of this matrix
 1432: *                 equation is Q2*V2 = the product of the Jacobi rotations
 1433: *                 used in DGESVJ, premultiplied with the orthogonal matrix
 1434: *                 from the second QR factorization.
 1435:                   CALL DTRSM( 'L','U','N','N', NR,NR,ONE, A,LDA, V,LDV )
 1436:                ELSE
 1437: *                 .. R1 is well conditioned, but non-square. Transpose(R2)
 1438: *                 is inverted to get the product of the Jacobi rotations
 1439: *                 used in DGESVJ. The Q-factor from the second QR
 1440: *                 factorization is then built in explicitly.
 1441:                   CALL DTRSM('L','U','T','N',NR,NR,ONE,WORK(2*N+1),
 1442:      $                 N,V,LDV)
 1443:                   IF ( NR .LT. N ) THEN
 1444:                     CALL DLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV)
 1445:                     CALL DLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV)
 1446:                     CALL DLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV)
 1447:                   END IF
 1448:                   CALL DORMQR('L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
 1449:      $                 V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
 1450:                END IF
 1451: *
 1452:             ELSE IF ( CONDR2 .LT. COND_OK ) THEN
 1453: *
 1454: * :)           .. the input matrix A is very likely a relative of
 1455: *              the Kahan matrix :)
 1456: *              The matrix R2 is inverted. The solution of the matrix equation
 1457: *              is Q3^T*V3 = the product of the Jacobi rotations (appplied to
 1458: *              the lower triangular L3 from the LQ factorization of
 1459: *              R2=L3*Q3), pre-multiplied with the transposed Q3.
 1460:                CALL DGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,
 1461:      $              LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )
 1462:                SCALEM  = WORK(2*N+N*NR+NR+1)
 1463:                NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
 1464:                DO 3870 p = 1, NR
 1465:                   CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )
 1466:                   CALL DSCAL( NR, SVA(p),    U(1,p), 1 )
 1467:  3870          CONTINUE
 1468:                CALL DTRSM('L','U','N','N',NR,NR,ONE,WORK(2*N+1),N,U,LDU)
 1469: *              .. apply the permutation from the second QR factorization
 1470:                DO 873 q = 1, NR
 1471:                   DO 872 p = 1, NR
 1472:                      WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 1473:  872              CONTINUE
 1474:                   DO 874 p = 1, NR
 1475:                      U(p,q) = WORK(2*N+N*NR+NR+p)
 1476:  874              CONTINUE
 1477:  873           CONTINUE
 1478:                IF ( NR .LT. N ) THEN
 1479:                   CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
 1480:                   CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
 1481:                   CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
 1482:                END IF
 1483:                CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
 1484:      $              V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 1485:             ELSE
 1486: *              Last line of defense.
 1487: * #:(          This is a rather pathological case: no scaled condition
 1488: *              improvement after two pivoted QR factorizations. Other
 1489: *              possibility is that the rank revealing QR factorization
 1490: *              or the condition estimator has failed, or the COND_OK
 1491: *              is set very close to ONE (which is unnecessary). Normally,
 1492: *              this branch should never be executed, but in rare cases of
 1493: *              failure of the RRQR or condition estimator, the last line of
 1494: *              defense ensures that DGEJSV completes the task.
 1495: *              Compute the full SVD of L3 using DGESVJ with explicit
 1496: *              accumulation of Jacobi rotations.
 1497:                CALL DGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,
 1498:      $              LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )
 1499:                SCALEM  = WORK(2*N+N*NR+NR+1)
 1500:                NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
 1501:                IF ( NR .LT. N ) THEN
 1502:                   CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
 1503:                   CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
 1504:                   CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
 1505:                END IF
 1506:                CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
 1507:      $              V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 1508: *
 1509:                CALL DORMLQ( 'L', 'T', NR, NR, NR, WORK(2*N+1), N,
 1510:      $              WORK(2*N+N*NR+1), U, LDU, WORK(2*N+N*NR+NR+1),
 1511:      $              LWORK-2*N-N*NR-NR, IERR )
 1512:                DO 773 q = 1, NR
 1513:                   DO 772 p = 1, NR
 1514:                      WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 1515:  772              CONTINUE
 1516:                   DO 774 p = 1, NR
 1517:                      U(p,q) = WORK(2*N+N*NR+NR+p)
 1518:  774              CONTINUE
 1519:  773           CONTINUE
 1520: *
 1521:             END IF
 1522: *
 1523: *           Permute the rows of V using the (column) permutation from the
 1524: *           first QRF. Also, scale the columns to make them unit in
 1525: *           Euclidean norm. This applies to all cases.
 1526: *
 1527:             TEMP1 = DSQRT(DBLE(N)) * EPSLN
 1528:             DO 1972 q = 1, N
 1529:                DO 972 p = 1, N
 1530:                   WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
 1531:   972          CONTINUE
 1532:                DO 973 p = 1, N
 1533:                   V(p,q) = WORK(2*N+N*NR+NR+p)
 1534:   973          CONTINUE
 1535:                XSC = ONE / DNRM2( N, V(1,q), 1 )
 1536:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1537:      $           CALL DSCAL( N, XSC, V(1,q), 1 )
 1538:  1972       CONTINUE
 1539: *           At this moment, V contains the right singular vectors of A.
 1540: *           Next, assemble the left singular vector matrix U (M x N).
 1541:             IF ( NR .LT. M ) THEN
 1542:                CALL DLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )
 1543:                IF ( NR .LT. N1 ) THEN
 1544:                   CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)
 1545:                   CALL DLASET('A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1),LDU)
 1546:                END IF
 1547:             END IF
 1548: *
 1549: *           The Q matrix from the first QRF is built into the left singular
 1550: *           matrix U. This applies to all cases.
 1551: *
 1552:             CALL DORMQR( 'Left', 'No_Tr', M, N1, N, A, LDA, WORK, U,
 1553:      $           LDU, WORK(N+1), LWORK-N, IERR )
 1554: 
 1555: *           The columns of U are normalized. The cost is O(M*N) flops.
 1556:             TEMP1 = DSQRT(DBLE(M)) * EPSLN
 1557:             DO 1973 p = 1, NR
 1558:                XSC = ONE / DNRM2( M, U(1,p), 1 )
 1559:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1560:      $          CALL DSCAL( M, XSC, U(1,p), 1 )
 1561:  1973       CONTINUE
 1562: *
 1563: *           If the initial QRF is computed with row pivoting, the left
 1564: *           singular vectors must be adjusted.
 1565: *
 1566:             IF ( ROWPIV )
 1567:      $          CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
 1568: *
 1569:          ELSE
 1570: *
 1571: *        .. the initial matrix A has almost orthogonal columns and
 1572: *        the second QRF is not needed
 1573: *
 1574:             CALL DLACPY( 'Upper', N, N, A, LDA, WORK(N+1), N )
 1575:             IF ( L2PERT ) THEN
 1576:                XSC = DSQRT(SMALL)
 1577:                DO 5970 p = 2, N
 1578:                   TEMP1 = XSC * WORK( N + (p-1)*N + p )
 1579:                   DO 5971 q = 1, p - 1
 1580:                      WORK(N+(q-1)*N+p)=-DSIGN(TEMP1,WORK(N+(p-1)*N+q))
 1581:  5971             CONTINUE
 1582:  5970          CONTINUE
 1583:             ELSE
 1584:                CALL DLASET( 'Lower',N-1,N-1,ZERO,ZERO,WORK(N+2),N )
 1585:             END IF
 1586: *
 1587:             CALL DGESVJ( 'Upper', 'U', 'N', N, N, WORK(N+1), N, SVA,
 1588:      $           N, U, LDU, WORK(N+N*N+1), LWORK-N-N*N, INFO )
 1589: *
 1590:             SCALEM  = WORK(N+N*N+1)
 1591:             NUMRANK = IDNINT(WORK(N+N*N+2))
 1592:             DO 6970 p = 1, N
 1593:                CALL DCOPY( N, WORK(N+(p-1)*N+1), 1, U(1,p), 1 )
 1594:                CALL DSCAL( N, SVA(p), WORK(N+(p-1)*N+1), 1 )
 1595:  6970       CONTINUE
 1596: *
 1597:             CALL DTRSM( 'Left', 'Upper', 'NoTrans', 'No UD', N, N,
 1598:      $           ONE, A, LDA, WORK(N+1), N )
 1599:             DO 6972 p = 1, N
 1600:                CALL DCOPY( N, WORK(N+p), N, V(IWORK(p),1), LDV )
 1601:  6972       CONTINUE
 1602:             TEMP1 = DSQRT(DBLE(N))*EPSLN
 1603:             DO 6971 p = 1, N
 1604:                XSC = ONE / DNRM2( N, V(1,p), 1 )
 1605:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1606:      $            CALL DSCAL( N, XSC, V(1,p), 1 )
 1607:  6971       CONTINUE
 1608: *
 1609: *           Assemble the left singular vector matrix U (M x N).
 1610: *
 1611:             IF ( N .LT. M ) THEN
 1612:                CALL DLASET( 'A',  M-N, N, ZERO, ZERO, U(N+1,1), LDU )
 1613:                IF ( N .LT. N1 ) THEN
 1614:                   CALL DLASET( 'A',N,  N1-N, ZERO, ZERO,  U(1,N+1),LDU )
 1615:                   CALL DLASET( 'A',M-N,N1-N, ZERO, ONE,U(N+1,N+1),LDU )
 1616:                END IF
 1617:             END IF
 1618:             CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
 1619:      $           LDU, WORK(N+1), LWORK-N, IERR )
 1620:             TEMP1 = DSQRT(DBLE(M))*EPSLN
 1621:             DO 6973 p = 1, N1
 1622:                XSC = ONE / DNRM2( M, U(1,p), 1 )
 1623:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1624:      $            CALL DSCAL( M, XSC, U(1,p), 1 )
 1625:  6973       CONTINUE
 1626: *
 1627:             IF ( ROWPIV )
 1628:      $         CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
 1629: *
 1630:          END IF
 1631: *
 1632: *        end of the  >> almost orthogonal case <<  in the full SVD
 1633: *
 1634:          ELSE
 1635: *
 1636: *        This branch deploys a preconditioned Jacobi SVD with explicitly
 1637: *        accumulated rotations. It is included as optional, mainly for
 1638: *        experimental purposes. It does perform well, and can also be used.
 1639: *        In this implementation, this branch will be automatically activated
 1640: *        if the  condition number sigma_max(A) / sigma_min(A) is predicted
 1641: *        to be greater than the overflow threshold. This is because the
 1642: *        a posteriori computation of the singular vectors assumes robust
 1643: *        implementation of BLAS and some LAPACK procedures, capable of working
 1644: *        in presence of extreme values. Since that is not always the case, ...
 1645: *
 1646:          DO 7968 p = 1, NR
 1647:             CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1648:  7968    CONTINUE
 1649: *
 1650:          IF ( L2PERT ) THEN
 1651:             XSC = DSQRT(SMALL/EPSLN)
 1652:             DO 5969 q = 1, NR
 1653:                TEMP1 = XSC*DABS( V(q,q) )
 1654:                DO 5968 p = 1, N
 1655:                   IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )
 1656:      $                .OR. ( p .LT. q ) )
 1657:      $                V(p,q) = DSIGN( TEMP1, V(p,q) )
 1658:                   IF ( p .LT. q ) V(p,q) = - V(p,q)
 1659:  5968          CONTINUE
 1660:  5969       CONTINUE
 1661:          ELSE
 1662:             CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1663:          END IF
 1664: 
 1665:          CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
 1666:      $        LWORK-2*N, IERR )
 1667:          CALL DLACPY( 'L', N, NR, V, LDV, WORK(2*N+1), N )
 1668: *
 1669:          DO 7969 p = 1, NR
 1670:             CALL DCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
 1671:  7969    CONTINUE
 1672: 
 1673:          IF ( L2PERT ) THEN
 1674:             XSC = DSQRT(SMALL/EPSLN)
 1675:             DO 9970 q = 2, NR
 1676:                DO 9971 p = 1, q - 1
 1677:                   TEMP1 = XSC * MIN(DABS(U(p,p)),DABS(U(q,q)))
 1678:                   U(p,q) = - DSIGN( TEMP1, U(q,p) )
 1679:  9971          CONTINUE
 1680:  9970       CONTINUE
 1681:          ELSE
 1682:             CALL DLASET('U', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
 1683:          END IF
 1684: 
 1685:          CALL DGESVJ( 'G', 'U', 'V', NR, NR, U, LDU, SVA,
 1686:      $        N, V, LDV, WORK(2*N+N*NR+1), LWORK-2*N-N*NR, INFO )
 1687:          SCALEM  = WORK(2*N+N*NR+1)
 1688:          NUMRANK = IDNINT(WORK(2*N+N*NR+2))
 1689: 
 1690:          IF ( NR .LT. N ) THEN
 1691:             CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
 1692:             CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
 1693:             CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
 1694:          END IF
 1695: 
 1696:          CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
 1697:      $        V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 1698: *
 1699: *           Permute the rows of V using the (column) permutation from the
 1700: *           first QRF. Also, scale the columns to make them unit in
 1701: *           Euclidean norm. This applies to all cases.
 1702: *
 1703:             TEMP1 = DSQRT(DBLE(N)) * EPSLN
 1704:             DO 7972 q = 1, N
 1705:                DO 8972 p = 1, N
 1706:                   WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
 1707:  8972          CONTINUE
 1708:                DO 8973 p = 1, N
 1709:                   V(p,q) = WORK(2*N+N*NR+NR+p)
 1710:  8973          CONTINUE
 1711:                XSC = ONE / DNRM2( N, V(1,q), 1 )
 1712:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1713:      $           CALL DSCAL( N, XSC, V(1,q), 1 )
 1714:  7972       CONTINUE
 1715: *
 1716: *           At this moment, V contains the right singular vectors of A.
 1717: *           Next, assemble the left singular vector matrix U (M x N).
 1718: *
 1719:          IF ( NR .LT. M ) THEN
 1720:             CALL DLASET( 'A',  M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )
 1721:             IF ( NR .LT. N1 ) THEN
 1722:                CALL DLASET( 'A',NR,  N1-NR, ZERO, ZERO,  U(1,NR+1),LDU )
 1723:                CALL DLASET( 'A',M-NR,N1-NR, ZERO, ONE,U(NR+1,NR+1),LDU )
 1724:             END IF
 1725:          END IF
 1726: *
 1727:          CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
 1728:      $        LDU, WORK(N+1), LWORK-N, IERR )
 1729: *
 1730:             IF ( ROWPIV )
 1731:      $         CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
 1732: *
 1733: *
 1734:          END IF
 1735:          IF ( TRANSP ) THEN
 1736: *           .. swap U and V because the procedure worked on A^t
 1737:             DO 6974 p = 1, N
 1738:                CALL DSWAP( N, U(1,p), 1, V(1,p), 1 )
 1739:  6974       CONTINUE
 1740:          END IF
 1741: *
 1742:       END IF
 1743: *     end of the full SVD
 1744: *
 1745: *     Undo scaling, if necessary (and possible)
 1746: *
 1747:       IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
 1748:          CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )
 1749:          USCAL1 = ONE
 1750:          USCAL2 = ONE
 1751:       END IF
 1752: *
 1753:       IF ( NR .LT. N ) THEN
 1754:          DO 3004 p = NR+1, N
 1755:             SVA(p) = ZERO
 1756:  3004    CONTINUE
 1757:       END IF
 1758: *
 1759:       WORK(1) = USCAL2 * SCALEM
 1760:       WORK(2) = USCAL1
 1761:       IF ( ERREST ) WORK(3) = SCONDA
 1762:       IF ( LSVEC .AND. RSVEC ) THEN
 1763:          WORK(4) = CONDR1
 1764:          WORK(5) = CONDR2
 1765:       END IF
 1766:       IF ( L2TRAN ) THEN
 1767:          WORK(6) = ENTRA
 1768:          WORK(7) = ENTRAT
 1769:       END IF
 1770: *
 1771:       IWORK(1) = NR
 1772:       IWORK(2) = NUMRANK
 1773:       IWORK(3) = WARNING
 1774: *
 1775:       RETURN
 1776: *     ..
 1777: *     .. END OF DGEJSV
 1778: *     ..
 1779:       END
 1780: *

CVSweb interface <joel.bertrand@systella.fr>