File:  [local] / rpl / lapack / lapack / dgejsv.f
Revision 1.13: download - view: text, annotated - select for diffs - revision graph
Thu Nov 26 11:44:15 2015 UTC (8 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_24, HEAD
Mise à jour de Lapack (3.6.0) et du numéro de version du RPL/2.

    1: *> \brief \b DGEJSV
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DGEJSV + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgejsv.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgejsv.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgejsv.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
   22: *                          M, N, A, LDA, SVA, U, LDU, V, LDV,
   23: *                          WORK, LWORK, IWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       IMPLICIT    NONE
   27: *       INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ),
   31: *      $            WORK( LWORK )
   32: *       INTEGER     IWORK( * )
   33: *       CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
   34: *       ..
   35: *  
   36: *
   37: *> \par Purpose:
   38: *  =============
   39: *>
   40: *> \verbatim
   41: *>
   42: *> DGEJSV computes the singular value decomposition (SVD) of a real M-by-N
   43: *> matrix [A], where M >= N. The SVD of [A] is written as
   44: *>
   45: *>              [A] = [U] * [SIGMA] * [V]^t,
   46: *>
   47: *> where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N
   48: *> diagonal elements, [U] is an M-by-N (or M-by-M) orthonormal matrix, and
   49: *> [V] is an N-by-N orthogonal matrix. The diagonal elements of [SIGMA] are
   50: *> the singular values of [A]. The columns of [U] and [V] are the left and
   51: *> the right singular vectors of [A], respectively. The matrices [U] and [V]
   52: *> are computed and stored in the arrays U and V, respectively. The diagonal
   53: *> of [SIGMA] is computed and stored in the array SVA.
   54: *> DGEJSV can sometimes compute tiny singular values and their singular vectors much
   55: *> more accurately than other SVD routines, see below under Further Details.*> \endverbatim
   56: *
   57: *  Arguments:
   58: *  ==========
   59: *
   60: *> \param[in] JOBA
   61: *> \verbatim
   62: *>          JOBA is CHARACTER*1
   63: *>        Specifies the level of accuracy:
   64: *>       = 'C': This option works well (high relative accuracy) if A = B * D,
   65: *>             with well-conditioned B and arbitrary diagonal matrix D.
   66: *>             The accuracy cannot be spoiled by COLUMN scaling. The
   67: *>             accuracy of the computed output depends on the condition of
   68: *>             B, and the procedure aims at the best theoretical accuracy.
   69: *>             The relative error max_{i=1:N}|d sigma_i| / sigma_i is
   70: *>             bounded by f(M,N)*epsilon* cond(B), independent of D.
   71: *>             The input matrix is preprocessed with the QRF with column
   72: *>             pivoting. This initial preprocessing and preconditioning by
   73: *>             a rank revealing QR factorization is common for all values of
   74: *>             JOBA. Additional actions are specified as follows:
   75: *>       = 'E': Computation as with 'C' with an additional estimate of the
   76: *>             condition number of B. It provides a realistic error bound.
   77: *>       = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings
   78: *>             D1, D2, and well-conditioned matrix C, this option gives
   79: *>             higher accuracy than the 'C' option. If the structure of the
   80: *>             input matrix is not known, and relative accuracy is
   81: *>             desirable, then this option is advisable. The input matrix A
   82: *>             is preprocessed with QR factorization with FULL (row and
   83: *>             column) pivoting.
   84: *>       = 'G'  Computation as with 'F' with an additional estimate of the
   85: *>             condition number of B, where A=D*B. If A has heavily weighted
   86: *>             rows, then using this condition number gives too pessimistic
   87: *>             error bound.
   88: *>       = 'A': Small singular values are the noise and the matrix is treated
   89: *>             as numerically rank defficient. The error in the computed
   90: *>             singular values is bounded by f(m,n)*epsilon*||A||.
   91: *>             The computed SVD A = U * S * V^t restores A up to
   92: *>             f(m,n)*epsilon*||A||.
   93: *>             This gives the procedure the licence to discard (set to zero)
   94: *>             all singular values below N*epsilon*||A||.
   95: *>       = 'R': Similar as in 'A'. Rank revealing property of the initial
   96: *>             QR factorization is used do reveal (using triangular factor)
   97: *>             a gap sigma_{r+1} < epsilon * sigma_r in which case the
   98: *>             numerical RANK is declared to be r. The SVD is computed with
   99: *>             absolute error bounds, but more accurately than with 'A'.
  100: *> \endverbatim
  101: *>
  102: *> \param[in] JOBU
  103: *> \verbatim
  104: *>          JOBU is CHARACTER*1
  105: *>        Specifies whether to compute the columns of U:
  106: *>       = 'U': N columns of U are returned in the array U.
  107: *>       = 'F': full set of M left sing. vectors is returned in the array U.
  108: *>       = 'W': U may be used as workspace of length M*N. See the description
  109: *>             of U.
  110: *>       = 'N': U is not computed.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] JOBV
  114: *> \verbatim
  115: *>          JOBV is CHARACTER*1
  116: *>        Specifies whether to compute the matrix V:
  117: *>       = 'V': N columns of V are returned in the array V; Jacobi rotations
  118: *>             are not explicitly accumulated.
  119: *>       = 'J': N columns of V are returned in the array V, but they are
  120: *>             computed as the product of Jacobi rotations. This option is
  121: *>             allowed only if JOBU .NE. 'N', i.e. in computing the full SVD.
  122: *>       = 'W': V may be used as workspace of length N*N. See the description
  123: *>             of V.
  124: *>       = 'N': V is not computed.
  125: *> \endverbatim
  126: *>
  127: *> \param[in] JOBR
  128: *> \verbatim
  129: *>          JOBR is CHARACTER*1
  130: *>        Specifies the RANGE for the singular values. Issues the licence to
  131: *>        set to zero small positive singular values if they are outside
  132: *>        specified range. If A .NE. 0 is scaled so that the largest singular
  133: *>        value of c*A is around DSQRT(BIG), BIG=SLAMCH('O'), then JOBR issues
  134: *>        the licence to kill columns of A whose norm in c*A is less than
  135: *>        DSQRT(SFMIN) (for JOBR.EQ.'R'), or less than SMALL=SFMIN/EPSLN,
  136: *>        where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E').
  137: *>       = 'N': Do not kill small columns of c*A. This option assumes that
  138: *>             BLAS and QR factorizations and triangular solvers are
  139: *>             implemented to work in that range. If the condition of A
  140: *>             is greater than BIG, use DGESVJ.
  141: *>       = 'R': RESTRICTED range for sigma(c*A) is [DSQRT(SFMIN), DSQRT(BIG)]
  142: *>             (roughly, as described above). This option is recommended.
  143: *>                                            ~~~~~~~~~~~~~~~~~~~~~~~~~~~
  144: *>        For computing the singular values in the FULL range [SFMIN,BIG]
  145: *>        use DGESVJ.
  146: *> \endverbatim
  147: *>
  148: *> \param[in] JOBT
  149: *> \verbatim
  150: *>          JOBT is CHARACTER*1
  151: *>        If the matrix is square then the procedure may determine to use
  152: *>        transposed A if A^t seems to be better with respect to convergence.
  153: *>        If the matrix is not square, JOBT is ignored. This is subject to
  154: *>        changes in the future.
  155: *>        The decision is based on two values of entropy over the adjoint
  156: *>        orbit of A^t * A. See the descriptions of WORK(6) and WORK(7).
  157: *>       = 'T': transpose if entropy test indicates possibly faster
  158: *>        convergence of Jacobi process if A^t is taken as input. If A is
  159: *>        replaced with A^t, then the row pivoting is included automatically.
  160: *>       = 'N': do not speculate.
  161: *>        This option can be used to compute only the singular values, or the
  162: *>        full SVD (U, SIGMA and V). For only one set of singular vectors
  163: *>        (U or V), the caller should provide both U and V, as one of the
  164: *>        matrices is used as workspace if the matrix A is transposed.
  165: *>        The implementer can easily remove this constraint and make the
  166: *>        code more complicated. See the descriptions of U and V.
  167: *> \endverbatim
  168: *>
  169: *> \param[in] JOBP
  170: *> \verbatim
  171: *>          JOBP is CHARACTER*1
  172: *>        Issues the licence to introduce structured perturbations to drown
  173: *>        denormalized numbers. This licence should be active if the
  174: *>        denormals are poorly implemented, causing slow computation,
  175: *>        especially in cases of fast convergence (!). For details see [1,2].
  176: *>        For the sake of simplicity, this perturbations are included only
  177: *>        when the full SVD or only the singular values are requested. The
  178: *>        implementer/user can easily add the perturbation for the cases of
  179: *>        computing one set of singular vectors.
  180: *>       = 'P': introduce perturbation
  181: *>       = 'N': do not perturb
  182: *> \endverbatim
  183: *>
  184: *> \param[in] M
  185: *> \verbatim
  186: *>          M is INTEGER
  187: *>         The number of rows of the input matrix A.  M >= 0.
  188: *> \endverbatim
  189: *>
  190: *> \param[in] N
  191: *> \verbatim
  192: *>          N is INTEGER
  193: *>         The number of columns of the input matrix A. M >= N >= 0.
  194: *> \endverbatim
  195: *>
  196: *> \param[in,out] A
  197: *> \verbatim
  198: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  199: *>          On entry, the M-by-N matrix A.
  200: *> \endverbatim
  201: *>
  202: *> \param[in] LDA
  203: *> \verbatim
  204: *>          LDA is INTEGER
  205: *>          The leading dimension of the array A.  LDA >= max(1,M).
  206: *> \endverbatim
  207: *>
  208: *> \param[out] SVA
  209: *> \verbatim
  210: *>          SVA is DOUBLE PRECISION array, dimension (N)
  211: *>          On exit,
  212: *>          - For WORK(1)/WORK(2) = ONE: The singular values of A. During the
  213: *>            computation SVA contains Euclidean column norms of the
  214: *>            iterated matrices in the array A.
  215: *>          - For WORK(1) .NE. WORK(2): The singular values of A are
  216: *>            (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if
  217: *>            sigma_max(A) overflows or if small singular values have been
  218: *>            saved from underflow by scaling the input matrix A.
  219: *>          - If JOBR='R' then some of the singular values may be returned
  220: *>            as exact zeros obtained by "set to zero" because they are
  221: *>            below the numerical rank threshold or are denormalized numbers.
  222: *> \endverbatim
  223: *>
  224: *> \param[out] U
  225: *> \verbatim
  226: *>          U is DOUBLE PRECISION array, dimension ( LDU, N )
  227: *>          If JOBU = 'U', then U contains on exit the M-by-N matrix of
  228: *>                         the left singular vectors.
  229: *>          If JOBU = 'F', then U contains on exit the M-by-M matrix of
  230: *>                         the left singular vectors, including an ONB
  231: *>                         of the orthogonal complement of the Range(A).
  232: *>          If JOBU = 'W'  .AND. (JOBV.EQ.'V' .AND. JOBT.EQ.'T' .AND. M.EQ.N),
  233: *>                         then U is used as workspace if the procedure
  234: *>                         replaces A with A^t. In that case, [V] is computed
  235: *>                         in U as left singular vectors of A^t and then
  236: *>                         copied back to the V array. This 'W' option is just
  237: *>                         a reminder to the caller that in this case U is
  238: *>                         reserved as workspace of length N*N.
  239: *>          If JOBU = 'N'  U is not referenced.
  240: *> \endverbatim
  241: *>
  242: *> \param[in] LDU
  243: *> \verbatim
  244: *>          LDU is INTEGER
  245: *>          The leading dimension of the array U,  LDU >= 1.
  246: *>          IF  JOBU = 'U' or 'F' or 'W',  then LDU >= M.
  247: *> \endverbatim
  248: *>
  249: *> \param[out] V
  250: *> \verbatim
  251: *>          V is DOUBLE PRECISION array, dimension ( LDV, N )
  252: *>          If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of
  253: *>                         the right singular vectors;
  254: *>          If JOBV = 'W', AND (JOBU.EQ.'U' AND JOBT.EQ.'T' AND M.EQ.N),
  255: *>                         then V is used as workspace if the pprocedure
  256: *>                         replaces A with A^t. In that case, [U] is computed
  257: *>                         in V as right singular vectors of A^t and then
  258: *>                         copied back to the U array. This 'W' option is just
  259: *>                         a reminder to the caller that in this case V is
  260: *>                         reserved as workspace of length N*N.
  261: *>          If JOBV = 'N'  V is not referenced.
  262: *> \endverbatim
  263: *>
  264: *> \param[in] LDV
  265: *> \verbatim
  266: *>          LDV is INTEGER
  267: *>          The leading dimension of the array V,  LDV >= 1.
  268: *>          If JOBV = 'V' or 'J' or 'W', then LDV >= N.
  269: *> \endverbatim
  270: *>
  271: *> \param[out] WORK
  272: *> \verbatim
  273: *>          WORK is DOUBLE PRECISION array, dimension at least LWORK.
  274: *>          On exit, if N.GT.0 .AND. M.GT.0 (else not referenced), 
  275: *>          WORK(1) = SCALE = WORK(2) / WORK(1) is the scaling factor such
  276: *>                    that SCALE*SVA(1:N) are the computed singular values
  277: *>                    of A. (See the description of SVA().)
  278: *>          WORK(2) = See the description of WORK(1).
  279: *>          WORK(3) = SCONDA is an estimate for the condition number of
  280: *>                    column equilibrated A. (If JOBA .EQ. 'E' or 'G')
  281: *>                    SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).
  282: *>                    It is computed using DPOCON. It holds
  283: *>                    N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
  284: *>                    where R is the triangular factor from the QRF of A.
  285: *>                    However, if R is truncated and the numerical rank is
  286: *>                    determined to be strictly smaller than N, SCONDA is
  287: *>                    returned as -1, thus indicating that the smallest
  288: *>                    singular values might be lost.
  289: *>
  290: *>          If full SVD is needed, the following two condition numbers are
  291: *>          useful for the analysis of the algorithm. They are provied for
  292: *>          a developer/implementer who is familiar with the details of
  293: *>          the method.
  294: *>
  295: *>          WORK(4) = an estimate of the scaled condition number of the
  296: *>                    triangular factor in the first QR factorization.
  297: *>          WORK(5) = an estimate of the scaled condition number of the
  298: *>                    triangular factor in the second QR factorization.
  299: *>          The following two parameters are computed if JOBT .EQ. 'T'.
  300: *>          They are provided for a developer/implementer who is familiar
  301: *>          with the details of the method.
  302: *>
  303: *>          WORK(6) = the entropy of A^t*A :: this is the Shannon entropy
  304: *>                    of diag(A^t*A) / Trace(A^t*A) taken as point in the
  305: *>                    probability simplex.
  306: *>          WORK(7) = the entropy of A*A^t.
  307: *> \endverbatim
  308: *>
  309: *> \param[in] LWORK
  310: *> \verbatim
  311: *>          LWORK is INTEGER
  312: *>          Length of WORK to confirm proper allocation of work space.
  313: *>          LWORK depends on the job:
  314: *>
  315: *>          If only SIGMA is needed ( JOBU.EQ.'N', JOBV.EQ.'N' ) and
  316: *>            -> .. no scaled condition estimate required (JOBE.EQ.'N'):
  317: *>               LWORK >= max(2*M+N,4*N+1,7). This is the minimal requirement.
  318: *>               ->> For optimal performance (blocked code) the optimal value
  319: *>               is LWORK >= max(2*M+N,3*N+(N+1)*NB,7). Here NB is the optimal
  320: *>               block size for DGEQP3 and DGEQRF.
  321: *>               In general, optimal LWORK is computed as 
  322: *>               LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), 7).        
  323: *>            -> .. an estimate of the scaled condition number of A is
  324: *>               required (JOBA='E', 'G'). In this case, LWORK is the maximum
  325: *>               of the above and N*N+4*N, i.e. LWORK >= max(2*M+N,N*N+4*N,7).
  326: *>               ->> For optimal performance (blocked code) the optimal value 
  327: *>               is LWORK >= max(2*M+N,3*N+(N+1)*NB, N*N+4*N, 7).
  328: *>               In general, the optimal length LWORK is computed as
  329: *>               LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), 
  330: *>                                                     N+N*N+LWORK(DPOCON),7).
  331: *>
  332: *>          If SIGMA and the right singular vectors are needed (JOBV.EQ.'V'),
  333: *>            -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7).
  334: *>            -> For optimal performance, LWORK >= max(2*M+N,3*N+(N+1)*NB,7),
  335: *>               where NB is the optimal block size for DGEQP3, DGEQRF, DGELQ,
  336: *>               DORMLQ. In general, the optimal length LWORK is computed as
  337: *>               LWORK >= max(2*M+N,N+LWORK(DGEQP3), N+LWORK(DPOCON), 
  338: *>                       N+LWORK(DGELQ), 2*N+LWORK(DGEQRF), N+LWORK(DORMLQ)).
  339: *>
  340: *>          If SIGMA and the left singular vectors are needed
  341: *>            -> the minimal requirement is LWORK >= max(2*M+N,4*N+1,7).
  342: *>            -> For optimal performance:
  343: *>               if JOBU.EQ.'U' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,7),
  344: *>               if JOBU.EQ.'F' :: LWORK >= max(2*M+N,3*N+(N+1)*NB,N+M*NB,7),
  345: *>               where NB is the optimal block size for DGEQP3, DGEQRF, DORMQR.
  346: *>               In general, the optimal length LWORK is computed as
  347: *>               LWORK >= max(2*M+N,N+LWORK(DGEQP3),N+LWORK(DPOCON),
  348: *>                        2*N+LWORK(DGEQRF), N+LWORK(DORMQR)). 
  349: *>               Here LWORK(DORMQR) equals N*NB (for JOBU.EQ.'U') or 
  350: *>               M*NB (for JOBU.EQ.'F').
  351: *>               
  352: *>          If the full SVD is needed: (JOBU.EQ.'U' or JOBU.EQ.'F') and 
  353: *>            -> if JOBV.EQ.'V'  
  354: *>               the minimal requirement is LWORK >= max(2*M+N,6*N+2*N*N). 
  355: *>            -> if JOBV.EQ.'J' the minimal requirement is 
  356: *>               LWORK >= max(2*M+N, 4*N+N*N,2*N+N*N+6).
  357: *>            -> For optimal performance, LWORK should be additionally
  358: *>               larger than N+M*NB, where NB is the optimal block size
  359: *>               for DORMQR.
  360: *> \endverbatim
  361: *>
  362: *> \param[out] IWORK
  363: *> \verbatim
  364: *>          IWORK is INTEGER array, dimension M+3*N.
  365: *>          On exit,
  366: *>          IWORK(1) = the numerical rank determined after the initial
  367: *>                     QR factorization with pivoting. See the descriptions
  368: *>                     of JOBA and JOBR.
  369: *>          IWORK(2) = the number of the computed nonzero singular values
  370: *>          IWORK(3) = if nonzero, a warning message:
  371: *>                     If IWORK(3).EQ.1 then some of the column norms of A
  372: *>                     were denormalized floats. The requested high accuracy
  373: *>                     is not warranted by the data.
  374: *> \endverbatim
  375: *>
  376: *> \param[out] INFO
  377: *> \verbatim
  378: *>          INFO is INTEGER
  379: *>           < 0  : if INFO = -i, then the i-th argument had an illegal value.
  380: *>           = 0 :  successfull exit;
  381: *>           > 0 :  DGEJSV  did not converge in the maximal allowed number
  382: *>                  of sweeps. The computed values may be inaccurate.
  383: *> \endverbatim
  384: *
  385: *  Authors:
  386: *  ========
  387: *
  388: *> \author Univ. of Tennessee 
  389: *> \author Univ. of California Berkeley 
  390: *> \author Univ. of Colorado Denver 
  391: *> \author NAG Ltd. 
  392: *
  393: *> \date November 2015
  394: *
  395: *> \ingroup doubleGEsing
  396: *
  397: *> \par Further Details:
  398: *  =====================
  399: *>
  400: *> \verbatim
  401: *>
  402: *>  DGEJSV implements a preconditioned Jacobi SVD algorithm. It uses DGEQP3,
  403: *>  DGEQRF, and DGELQF as preprocessors and preconditioners. Optionally, an
  404: *>  additional row pivoting can be used as a preprocessor, which in some
  405: *>  cases results in much higher accuracy. An example is matrix A with the
  406: *>  structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned
  407: *>  diagonal matrices and C is well-conditioned matrix. In that case, complete
  408: *>  pivoting in the first QR factorizations provides accuracy dependent on the
  409: *>  condition number of C, and independent of D1, D2. Such higher accuracy is
  410: *>  not completely understood theoretically, but it works well in practice.
  411: *>  Further, if A can be written as A = B*D, with well-conditioned B and some
  412: *>  diagonal D, then the high accuracy is guaranteed, both theoretically and
  413: *>  in software, independent of D. For more details see [1], [2].
  414: *>     The computational range for the singular values can be the full range
  415: *>  ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS
  416: *>  & LAPACK routines called by DGEJSV are implemented to work in that range.
  417: *>  If that is not the case, then the restriction for safe computation with
  418: *>  the singular values in the range of normalized IEEE numbers is that the
  419: *>  spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not
  420: *>  overflow. This code (DGEJSV) is best used in this restricted range,
  421: *>  meaning that singular values of magnitude below ||A||_2 / DLAMCH('O') are
  422: *>  returned as zeros. See JOBR for details on this.
  423: *>     Further, this implementation is somewhat slower than the one described
  424: *>  in [1,2] due to replacement of some non-LAPACK components, and because
  425: *>  the choice of some tuning parameters in the iterative part (DGESVJ) is
  426: *>  left to the implementer on a particular machine.
  427: *>     The rank revealing QR factorization (in this code: DGEQP3) should be
  428: *>  implemented as in [3]. We have a new version of DGEQP3 under development
  429: *>  that is more robust than the current one in LAPACK, with a cleaner cut in
  430: *>  rank defficient cases. It will be available in the SIGMA library [4].
  431: *>  If M is much larger than N, it is obvious that the inital QRF with
  432: *>  column pivoting can be preprocessed by the QRF without pivoting. That
  433: *>  well known trick is not used in DGEJSV because in some cases heavy row
  434: *>  weighting can be treated with complete pivoting. The overhead in cases
  435: *>  M much larger than N is then only due to pivoting, but the benefits in
  436: *>  terms of accuracy have prevailed. The implementer/user can incorporate
  437: *>  this extra QRF step easily. The implementer can also improve data movement
  438: *>  (matrix transpose, matrix copy, matrix transposed copy) - this
  439: *>  implementation of DGEJSV uses only the simplest, naive data movement.
  440: *> \endverbatim
  441: *
  442: *> \par Contributors:
  443: *  ==================
  444: *>
  445: *>  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
  446: *
  447: *> \par References:
  448: *  ================
  449: *>
  450: *> \verbatim
  451: *>
  452: *> [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I.
  453: *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342.
  454: *>     LAPACK Working note 169.
  455: *> [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II.
  456: *>     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362.
  457: *>     LAPACK Working note 170.
  458: *> [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR
  459: *>     factorization software - a case study.
  460: *>     ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28.
  461: *>     LAPACK Working note 176.
  462: *> [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV,
  463: *>     QSVD, (H,K)-SVD computations.
  464: *>     Department of Mathematics, University of Zagreb, 2008.
  465: *> \endverbatim
  466: *
  467: *>  \par Bugs, examples and comments:
  468: *   =================================
  469: *>
  470: *>  Please report all bugs and send interesting examples and/or comments to
  471: *>  drmac@math.hr. Thank you.
  472: *>
  473: *  =====================================================================
  474:       SUBROUTINE DGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP,
  475:      $                   M, N, A, LDA, SVA, U, LDU, V, LDV,
  476:      $                   WORK, LWORK, IWORK, INFO )
  477: *
  478: *  -- LAPACK computational routine (version 3.6.0) --
  479: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  480: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  481: *     November 2015
  482: *
  483: *     .. Scalar Arguments ..
  484:       IMPLICIT    NONE
  485:       INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N
  486: *     ..
  487: *     .. Array Arguments ..
  488:       DOUBLE PRECISION A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ),
  489:      $            WORK( LWORK )
  490:       INTEGER     IWORK( * )
  491:       CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV
  492: *     ..
  493: *
  494: *  ===========================================================================
  495: *
  496: *     .. Local Parameters ..
  497:       DOUBLE PRECISION   ZERO,  ONE
  498:       PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
  499: *     ..
  500: *     .. Local Scalars ..
  501:       DOUBLE PRECISION AAPP, AAQQ, AATMAX, AATMIN, BIG, BIG1, COND_OK,
  502:      $        CONDR1, CONDR2, ENTRA,  ENTRAT, EPSLN,  MAXPRJ, SCALEM,
  503:      $        SCONDA, SFMIN,  SMALL,  TEMP1,  USCAL1, USCAL2, XSC
  504:       INTEGER IERR,   N1,     NR,     NUMRANK,        p, q,   WARNING
  505:       LOGICAL ALMORT, DEFR,   ERREST, GOSCAL, JRACC,  KILL,   LSVEC,
  506:      $        L2ABER, L2KILL, L2PERT, L2RANK, L2TRAN,
  507:      $        NOSCAL, ROWPIV, RSVEC,  TRANSP
  508: *     ..
  509: *     .. Intrinsic Functions ..
  510:       INTRINSIC DABS, DLOG, MAX, MIN, DBLE, IDNINT, DSIGN, DSQRT
  511: *     ..
  512: *     .. External Functions ..
  513:       DOUBLE PRECISION  DLAMCH, DNRM2
  514:       INTEGER   IDAMAX
  515:       LOGICAL   LSAME
  516:       EXTERNAL  IDAMAX, LSAME, DLAMCH, DNRM2
  517: *     ..
  518: *     .. External Subroutines ..
  519:       EXTERNAL  DCOPY,  DGELQF, DGEQP3, DGEQRF, DLACPY, DLASCL,
  520:      $          DLASET, DLASSQ, DLASWP, DORGQR, DORMLQ,
  521:      $          DORMQR, DPOCON, DSCAL,  DSWAP,  DTRSM,  XERBLA
  522: *
  523:       EXTERNAL  DGESVJ
  524: *     ..
  525: *
  526: *     Test the input arguments
  527: *
  528:       LSVEC  = LSAME( JOBU, 'U' ) .OR. LSAME( JOBU, 'F' )
  529:       JRACC  = LSAME( JOBV, 'J' )
  530:       RSVEC  = LSAME( JOBV, 'V' ) .OR. JRACC
  531:       ROWPIV = LSAME( JOBA, 'F' ) .OR. LSAME( JOBA, 'G' )
  532:       L2RANK = LSAME( JOBA, 'R' )
  533:       L2ABER = LSAME( JOBA, 'A' )
  534:       ERREST = LSAME( JOBA, 'E' ) .OR. LSAME( JOBA, 'G' )
  535:       L2TRAN = LSAME( JOBT, 'T' )
  536:       L2KILL = LSAME( JOBR, 'R' )
  537:       DEFR   = LSAME( JOBR, 'N' )
  538:       L2PERT = LSAME( JOBP, 'P' )
  539: *
  540:       IF ( .NOT.(ROWPIV .OR. L2RANK .OR. L2ABER .OR.
  541:      $     ERREST .OR. LSAME( JOBA, 'C' ) )) THEN
  542:          INFO = - 1
  543:       ELSE IF ( .NOT.( LSVEC  .OR. LSAME( JOBU, 'N' ) .OR.
  544:      $                             LSAME( JOBU, 'W' )) ) THEN
  545:          INFO = - 2
  546:       ELSE IF ( .NOT.( RSVEC .OR. LSAME( JOBV, 'N' ) .OR.
  547:      $   LSAME( JOBV, 'W' )) .OR. ( JRACC .AND. (.NOT.LSVEC) ) ) THEN
  548:          INFO = - 3
  549:       ELSE IF ( .NOT. ( L2KILL .OR. DEFR ) )    THEN
  550:          INFO = - 4
  551:       ELSE IF ( .NOT. ( L2TRAN .OR. LSAME( JOBT, 'N' ) ) ) THEN
  552:          INFO = - 5
  553:       ELSE IF ( .NOT. ( L2PERT .OR. LSAME( JOBP, 'N' ) ) ) THEN
  554:          INFO = - 6
  555:       ELSE IF ( M .LT. 0 ) THEN
  556:          INFO = - 7
  557:       ELSE IF ( ( N .LT. 0 ) .OR. ( N .GT. M ) ) THEN
  558:          INFO = - 8
  559:       ELSE IF ( LDA .LT. M ) THEN
  560:          INFO = - 10
  561:       ELSE IF ( LSVEC .AND. ( LDU .LT. M ) ) THEN
  562:          INFO = - 13
  563:       ELSE IF ( RSVEC .AND. ( LDV .LT. N ) ) THEN
  564:          INFO = - 14
  565:       ELSE IF ( (.NOT.(LSVEC .OR. RSVEC .OR. ERREST).AND.
  566:      &                           (LWORK .LT. MAX(7,4*N+1,2*M+N))) .OR.
  567:      & (.NOT.(LSVEC .OR. RSVEC) .AND. ERREST .AND.
  568:      &                         (LWORK .LT. MAX(7,4*N+N*N,2*M+N))) .OR.
  569:      & (LSVEC .AND. (.NOT.RSVEC) .AND. (LWORK .LT. MAX(7,2*M+N,4*N+1)))
  570:      & .OR.
  571:      & (RSVEC .AND. (.NOT.LSVEC) .AND. (LWORK .LT. MAX(7,2*M+N,4*N+1)))
  572:      & .OR.
  573:      & (LSVEC .AND. RSVEC .AND. (.NOT.JRACC) .AND. 
  574:      &                          (LWORK.LT.MAX(2*M+N,6*N+2*N*N)))
  575:      & .OR. (LSVEC .AND. RSVEC .AND. JRACC .AND.
  576:      &                          LWORK.LT.MAX(2*M+N,4*N+N*N,2*N+N*N+6)))
  577:      &   THEN
  578:          INFO = - 17
  579:       ELSE
  580: *        #:)
  581:          INFO = 0
  582:       END IF
  583: *
  584:       IF ( INFO .NE. 0 ) THEN
  585: *       #:(
  586:          CALL XERBLA( 'DGEJSV', - INFO )
  587:          RETURN
  588:       END IF
  589: *
  590: *     Quick return for void matrix (Y3K safe)
  591: * #:)
  592:       IF ( ( M .EQ. 0 ) .OR. ( N .EQ. 0 ) ) RETURN
  593: *
  594: *     Determine whether the matrix U should be M x N or M x M
  595: *
  596:       IF ( LSVEC ) THEN
  597:          N1 = N
  598:          IF ( LSAME( JOBU, 'F' ) ) N1 = M
  599:       END IF
  600: *
  601: *     Set numerical parameters
  602: *
  603: *!    NOTE: Make sure DLAMCH() does not fail on the target architecture.
  604: *
  605:       EPSLN = DLAMCH('Epsilon')
  606:       SFMIN = DLAMCH('SafeMinimum')
  607:       SMALL = SFMIN / EPSLN
  608:       BIG   = DLAMCH('O')
  609: *     BIG   = ONE / SFMIN
  610: *
  611: *     Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N
  612: *
  613: *(!)  If necessary, scale SVA() to protect the largest norm from
  614: *     overflow. It is possible that this scaling pushes the smallest
  615: *     column norm left from the underflow threshold (extreme case).
  616: *
  617:       SCALEM  = ONE / DSQRT(DBLE(M)*DBLE(N))
  618:       NOSCAL  = .TRUE.
  619:       GOSCAL  = .TRUE.
  620:       DO 1874 p = 1, N
  621:          AAPP = ZERO
  622:          AAQQ = ONE
  623:          CALL DLASSQ( M, A(1,p), 1, AAPP, AAQQ )
  624:          IF ( AAPP .GT. BIG ) THEN
  625:             INFO = - 9
  626:             CALL XERBLA( 'DGEJSV', -INFO )
  627:             RETURN
  628:          END IF
  629:          AAQQ = DSQRT(AAQQ)
  630:          IF ( ( AAPP .LT. (BIG / AAQQ) ) .AND. NOSCAL  ) THEN
  631:             SVA(p)  = AAPP * AAQQ
  632:          ELSE
  633:             NOSCAL  = .FALSE.
  634:             SVA(p)  = AAPP * ( AAQQ * SCALEM )
  635:             IF ( GOSCAL ) THEN
  636:                GOSCAL = .FALSE.
  637:                CALL DSCAL( p-1, SCALEM, SVA, 1 )
  638:             END IF
  639:          END IF
  640:  1874 CONTINUE
  641: *
  642:       IF ( NOSCAL ) SCALEM = ONE
  643: *
  644:       AAPP = ZERO
  645:       AAQQ = BIG
  646:       DO 4781 p = 1, N
  647:          AAPP = MAX( AAPP, SVA(p) )
  648:          IF ( SVA(p) .NE. ZERO ) AAQQ = MIN( AAQQ, SVA(p) )
  649:  4781 CONTINUE
  650: *
  651: *     Quick return for zero M x N matrix
  652: * #:)
  653:       IF ( AAPP .EQ. ZERO ) THEN
  654:          IF ( LSVEC ) CALL DLASET( 'G', M, N1, ZERO, ONE, U, LDU )
  655:          IF ( RSVEC ) CALL DLASET( 'G', N, N,  ZERO, ONE, V, LDV )
  656:          WORK(1) = ONE
  657:          WORK(2) = ONE
  658:          IF ( ERREST ) WORK(3) = ONE
  659:          IF ( LSVEC .AND. RSVEC ) THEN
  660:             WORK(4) = ONE
  661:             WORK(5) = ONE
  662:          END IF
  663:          IF ( L2TRAN ) THEN
  664:             WORK(6) = ZERO
  665:             WORK(7) = ZERO
  666:          END IF
  667:          IWORK(1) = 0
  668:          IWORK(2) = 0
  669:          IWORK(3) = 0
  670:          RETURN
  671:       END IF
  672: *
  673: *     Issue warning if denormalized column norms detected. Override the
  674: *     high relative accuracy request. Issue licence to kill columns
  675: *     (set them to zero) whose norm is less than sigma_max / BIG (roughly).
  676: * #:(
  677:       WARNING = 0
  678:       IF ( AAQQ .LE. SFMIN ) THEN
  679:          L2RANK = .TRUE.
  680:          L2KILL = .TRUE.
  681:          WARNING = 1
  682:       END IF
  683: *
  684: *     Quick return for one-column matrix
  685: * #:)
  686:       IF ( N .EQ. 1 ) THEN
  687: *
  688:          IF ( LSVEC ) THEN
  689:             CALL DLASCL( 'G',0,0,SVA(1),SCALEM, M,1,A(1,1),LDA,IERR )
  690:             CALL DLACPY( 'A', M, 1, A, LDA, U, LDU )
  691: *           computing all M left singular vectors of the M x 1 matrix
  692:             IF ( N1 .NE. N  ) THEN
  693:                CALL DGEQRF( M, N, U,LDU, WORK, WORK(N+1),LWORK-N,IERR )
  694:                CALL DORGQR( M,N1,1, U,LDU,WORK,WORK(N+1),LWORK-N,IERR )
  695:                CALL DCOPY( M, A(1,1), 1, U(1,1), 1 )
  696:             END IF
  697:          END IF
  698:          IF ( RSVEC ) THEN
  699:              V(1,1) = ONE
  700:          END IF
  701:          IF ( SVA(1) .LT. (BIG*SCALEM) ) THEN
  702:             SVA(1)  = SVA(1) / SCALEM
  703:             SCALEM  = ONE
  704:          END IF
  705:          WORK(1) = ONE / SCALEM
  706:          WORK(2) = ONE
  707:          IF ( SVA(1) .NE. ZERO ) THEN
  708:             IWORK(1) = 1
  709:             IF ( ( SVA(1) / SCALEM) .GE. SFMIN ) THEN
  710:                IWORK(2) = 1
  711:             ELSE
  712:                IWORK(2) = 0
  713:             END IF
  714:          ELSE
  715:             IWORK(1) = 0
  716:             IWORK(2) = 0
  717:          END IF
  718:          IF ( ERREST ) WORK(3) = ONE
  719:          IF ( LSVEC .AND. RSVEC ) THEN
  720:             WORK(4) = ONE
  721:             WORK(5) = ONE
  722:          END IF
  723:          IF ( L2TRAN ) THEN
  724:             WORK(6) = ZERO
  725:             WORK(7) = ZERO
  726:          END IF
  727:          RETURN
  728: *
  729:       END IF
  730: *
  731:       TRANSP = .FALSE.
  732:       L2TRAN = L2TRAN .AND. ( M .EQ. N )
  733: *
  734:       AATMAX = -ONE
  735:       AATMIN =  BIG
  736:       IF ( ROWPIV .OR. L2TRAN ) THEN
  737: *
  738: *     Compute the row norms, needed to determine row pivoting sequence
  739: *     (in the case of heavily row weighted A, row pivoting is strongly
  740: *     advised) and to collect information needed to compare the
  741: *     structures of A * A^t and A^t * A (in the case L2TRAN.EQ..TRUE.).
  742: *
  743:          IF ( L2TRAN ) THEN
  744:             DO 1950 p = 1, M
  745:                XSC   = ZERO
  746:                TEMP1 = ONE
  747:                CALL DLASSQ( N, A(p,1), LDA, XSC, TEMP1 )
  748: *              DLASSQ gets both the ell_2 and the ell_infinity norm
  749: *              in one pass through the vector
  750:                WORK(M+N+p)  = XSC * SCALEM
  751:                WORK(N+p)    = XSC * (SCALEM*DSQRT(TEMP1))
  752:                AATMAX = MAX( AATMAX, WORK(N+p) )
  753:                IF (WORK(N+p) .NE. ZERO) AATMIN = MIN(AATMIN,WORK(N+p))
  754:  1950       CONTINUE
  755:          ELSE
  756:             DO 1904 p = 1, M
  757:                WORK(M+N+p) = SCALEM*DABS( A(p,IDAMAX(N,A(p,1),LDA)) )
  758:                AATMAX = MAX( AATMAX, WORK(M+N+p) )
  759:                AATMIN = MIN( AATMIN, WORK(M+N+p) )
  760:  1904       CONTINUE
  761:          END IF
  762: *
  763:       END IF
  764: *
  765: *     For square matrix A try to determine whether A^t  would be  better
  766: *     input for the preconditioned Jacobi SVD, with faster convergence.
  767: *     The decision is based on an O(N) function of the vector of column
  768: *     and row norms of A, based on the Shannon entropy. This should give
  769: *     the right choice in most cases when the difference actually matters.
  770: *     It may fail and pick the slower converging side.
  771: *
  772:       ENTRA  = ZERO
  773:       ENTRAT = ZERO
  774:       IF ( L2TRAN ) THEN
  775: *
  776:          XSC   = ZERO
  777:          TEMP1 = ONE
  778:          CALL DLASSQ( N, SVA, 1, XSC, TEMP1 )
  779:          TEMP1 = ONE / TEMP1
  780: *
  781:          ENTRA = ZERO
  782:          DO 1113 p = 1, N
  783:             BIG1  = ( ( SVA(p) / XSC )**2 ) * TEMP1
  784:             IF ( BIG1 .NE. ZERO ) ENTRA = ENTRA + BIG1 * DLOG(BIG1)
  785:  1113    CONTINUE
  786:          ENTRA = - ENTRA / DLOG(DBLE(N))
  787: *
  788: *        Now, SVA().^2/Trace(A^t * A) is a point in the probability simplex.
  789: *        It is derived from the diagonal of  A^t * A.  Do the same with the
  790: *        diagonal of A * A^t, compute the entropy of the corresponding
  791: *        probability distribution. Note that A * A^t and A^t * A have the
  792: *        same trace.
  793: *
  794:          ENTRAT = ZERO
  795:          DO 1114 p = N+1, N+M
  796:             BIG1 = ( ( WORK(p) / XSC )**2 ) * TEMP1
  797:             IF ( BIG1 .NE. ZERO ) ENTRAT = ENTRAT + BIG1 * DLOG(BIG1)
  798:  1114    CONTINUE
  799:          ENTRAT = - ENTRAT / DLOG(DBLE(M))
  800: *
  801: *        Analyze the entropies and decide A or A^t. Smaller entropy
  802: *        usually means better input for the algorithm.
  803: *
  804:          TRANSP = ( ENTRAT .LT. ENTRA )
  805: *
  806: *        If A^t is better than A, transpose A.
  807: *
  808:          IF ( TRANSP ) THEN
  809: *           In an optimal implementation, this trivial transpose
  810: *           should be replaced with faster transpose.
  811:             DO 1115 p = 1, N - 1
  812:                DO 1116 q = p + 1, N
  813:                    TEMP1 = A(q,p)
  814:                   A(q,p) = A(p,q)
  815:                   A(p,q) = TEMP1
  816:  1116          CONTINUE
  817:  1115       CONTINUE
  818:             DO 1117 p = 1, N
  819:                WORK(M+N+p) = SVA(p)
  820:                SVA(p)      = WORK(N+p)
  821:  1117       CONTINUE
  822:             TEMP1  = AAPP
  823:             AAPP   = AATMAX
  824:             AATMAX = TEMP1
  825:             TEMP1  = AAQQ
  826:             AAQQ   = AATMIN
  827:             AATMIN = TEMP1
  828:             KILL   = LSVEC
  829:             LSVEC  = RSVEC
  830:             RSVEC  = KILL
  831:             IF ( LSVEC ) N1 = N
  832: *
  833:             ROWPIV = .TRUE.
  834:          END IF
  835: *
  836:       END IF
  837: *     END IF L2TRAN
  838: *
  839: *     Scale the matrix so that its maximal singular value remains less
  840: *     than DSQRT(BIG) -- the matrix is scaled so that its maximal column
  841: *     has Euclidean norm equal to DSQRT(BIG/N). The only reason to keep
  842: *     DSQRT(BIG) instead of BIG is the fact that DGEJSV uses LAPACK and
  843: *     BLAS routines that, in some implementations, are not capable of
  844: *     working in the full interval [SFMIN,BIG] and that they may provoke
  845: *     overflows in the intermediate results. If the singular values spread
  846: *     from SFMIN to BIG, then DGESVJ will compute them. So, in that case,
  847: *     one should use DGESVJ instead of DGEJSV.
  848: *
  849:       BIG1   = DSQRT( BIG )
  850:       TEMP1  = DSQRT( BIG / DBLE(N) )
  851: *
  852:       CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, N, 1, SVA, N, IERR )
  853:       IF ( AAQQ .GT. (AAPP * SFMIN) ) THEN
  854:           AAQQ = ( AAQQ / AAPP ) * TEMP1
  855:       ELSE
  856:           AAQQ = ( AAQQ * TEMP1 ) / AAPP
  857:       END IF
  858:       TEMP1 = TEMP1 * SCALEM
  859:       CALL DLASCL( 'G', 0, 0, AAPP, TEMP1, M, N, A, LDA, IERR )
  860: *
  861: *     To undo scaling at the end of this procedure, multiply the
  862: *     computed singular values with USCAL2 / USCAL1.
  863: *
  864:       USCAL1 = TEMP1
  865:       USCAL2 = AAPP
  866: *
  867:       IF ( L2KILL ) THEN
  868: *        L2KILL enforces computation of nonzero singular values in
  869: *        the restricted range of condition number of the initial A,
  870: *        sigma_max(A) / sigma_min(A) approx. DSQRT(BIG)/DSQRT(SFMIN).
  871:          XSC = DSQRT( SFMIN )
  872:       ELSE
  873:          XSC = SMALL
  874: *
  875: *        Now, if the condition number of A is too big,
  876: *        sigma_max(A) / sigma_min(A) .GT. DSQRT(BIG/N) * EPSLN / SFMIN,
  877: *        as a precaution measure, the full SVD is computed using DGESVJ
  878: *        with accumulated Jacobi rotations. This provides numerically
  879: *        more robust computation, at the cost of slightly increased run
  880: *        time. Depending on the concrete implementation of BLAS and LAPACK
  881: *        (i.e. how they behave in presence of extreme ill-conditioning) the
  882: *        implementor may decide to remove this switch.
  883:          IF ( ( AAQQ.LT.DSQRT(SFMIN) ) .AND. LSVEC .AND. RSVEC ) THEN
  884:             JRACC = .TRUE.
  885:          END IF
  886: *
  887:       END IF
  888:       IF ( AAQQ .LT. XSC ) THEN
  889:          DO 700 p = 1, N
  890:             IF ( SVA(p) .LT. XSC ) THEN
  891:                CALL DLASET( 'A', M, 1, ZERO, ZERO, A(1,p), LDA )
  892:                SVA(p) = ZERO
  893:             END IF
  894:  700     CONTINUE
  895:       END IF
  896: *
  897: *     Preconditioning using QR factorization with pivoting
  898: *
  899:       IF ( ROWPIV ) THEN
  900: *        Optional row permutation (Bjoerck row pivoting):
  901: *        A result by Cox and Higham shows that the Bjoerck's
  902: *        row pivoting combined with standard column pivoting
  903: *        has similar effect as Powell-Reid complete pivoting.
  904: *        The ell-infinity norms of A are made nonincreasing.
  905:          DO 1952 p = 1, M - 1
  906:             q = IDAMAX( M-p+1, WORK(M+N+p), 1 ) + p - 1
  907:             IWORK(2*N+p) = q
  908:             IF ( p .NE. q ) THEN
  909:                TEMP1       = WORK(M+N+p)
  910:                WORK(M+N+p) = WORK(M+N+q)
  911:                WORK(M+N+q) = TEMP1
  912:             END IF
  913:  1952    CONTINUE
  914:          CALL DLASWP( N, A, LDA, 1, M-1, IWORK(2*N+1), 1 )
  915:       END IF
  916: *
  917: *     End of the preparation phase (scaling, optional sorting and
  918: *     transposing, optional flushing of small columns).
  919: *
  920: *     Preconditioning
  921: *
  922: *     If the full SVD is needed, the right singular vectors are computed
  923: *     from a matrix equation, and for that we need theoretical analysis
  924: *     of the Businger-Golub pivoting. So we use DGEQP3 as the first RR QRF.
  925: *     In all other cases the first RR QRF can be chosen by other criteria
  926: *     (eg speed by replacing global with restricted window pivoting, such
  927: *     as in SGEQPX from TOMS # 782). Good results will be obtained using
  928: *     SGEQPX with properly (!) chosen numerical parameters.
  929: *     Any improvement of DGEQP3 improves overal performance of DGEJSV.
  930: *
  931: *     A * P1 = Q1 * [ R1^t 0]^t:
  932:       DO 1963 p = 1, N
  933: *        .. all columns are free columns
  934:          IWORK(p) = 0
  935:  1963 CONTINUE
  936:       CALL DGEQP3( M,N,A,LDA, IWORK,WORK, WORK(N+1),LWORK-N, IERR )
  937: *
  938: *     The upper triangular matrix R1 from the first QRF is inspected for
  939: *     rank deficiency and possibilities for deflation, or possible
  940: *     ill-conditioning. Depending on the user specified flag L2RANK,
  941: *     the procedure explores possibilities to reduce the numerical
  942: *     rank by inspecting the computed upper triangular factor. If
  943: *     L2RANK or L2ABER are up, then DGEJSV will compute the SVD of
  944: *     A + dA, where ||dA|| <= f(M,N)*EPSLN.
  945: *
  946:       NR = 1
  947:       IF ( L2ABER ) THEN
  948: *        Standard absolute error bound suffices. All sigma_i with
  949: *        sigma_i < N*EPSLN*||A|| are flushed to zero. This is an
  950: *        agressive enforcement of lower numerical rank by introducing a
  951: *        backward error of the order of N*EPSLN*||A||.
  952:          TEMP1 = DSQRT(DBLE(N))*EPSLN
  953:          DO 3001 p = 2, N
  954:             IF ( DABS(A(p,p)) .GE. (TEMP1*DABS(A(1,1))) ) THEN
  955:                NR = NR + 1
  956:             ELSE
  957:                GO TO 3002
  958:             END IF
  959:  3001    CONTINUE
  960:  3002    CONTINUE
  961:       ELSE IF ( L2RANK ) THEN
  962: *        .. similarly as above, only slightly more gentle (less agressive).
  963: *        Sudden drop on the diagonal of R1 is used as the criterion for
  964: *        close-to-rank-defficient.
  965:          TEMP1 = DSQRT(SFMIN)
  966:          DO 3401 p = 2, N
  967:             IF ( ( DABS(A(p,p)) .LT. (EPSLN*DABS(A(p-1,p-1))) ) .OR.
  968:      $           ( DABS(A(p,p)) .LT. SMALL ) .OR.
  969:      $           ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3402
  970:             NR = NR + 1
  971:  3401    CONTINUE
  972:  3402    CONTINUE
  973: *
  974:       ELSE
  975: *        The goal is high relative accuracy. However, if the matrix
  976: *        has high scaled condition number the relative accuracy is in
  977: *        general not feasible. Later on, a condition number estimator
  978: *        will be deployed to estimate the scaled condition number.
  979: *        Here we just remove the underflowed part of the triangular
  980: *        factor. This prevents the situation in which the code is
  981: *        working hard to get the accuracy not warranted by the data.
  982:          TEMP1  = DSQRT(SFMIN)
  983:          DO 3301 p = 2, N
  984:             IF ( ( DABS(A(p,p)) .LT. SMALL ) .OR.
  985:      $          ( L2KILL .AND. (DABS(A(p,p)) .LT. TEMP1) ) ) GO TO 3302
  986:             NR = NR + 1
  987:  3301    CONTINUE
  988:  3302    CONTINUE
  989: *
  990:       END IF
  991: *
  992:       ALMORT = .FALSE.
  993:       IF ( NR .EQ. N ) THEN
  994:          MAXPRJ = ONE
  995:          DO 3051 p = 2, N
  996:             TEMP1  = DABS(A(p,p)) / SVA(IWORK(p))
  997:             MAXPRJ = MIN( MAXPRJ, TEMP1 )
  998:  3051    CONTINUE
  999:          IF ( MAXPRJ**2 .GE. ONE - DBLE(N)*EPSLN ) ALMORT = .TRUE.
 1000:       END IF
 1001: *
 1002: *
 1003:       SCONDA = - ONE
 1004:       CONDR1 = - ONE
 1005:       CONDR2 = - ONE
 1006: *
 1007:       IF ( ERREST ) THEN
 1008:          IF ( N .EQ. NR ) THEN
 1009:             IF ( RSVEC ) THEN
 1010: *              .. V is available as workspace
 1011:                CALL DLACPY( 'U', N, N, A, LDA, V, LDV )
 1012:                DO 3053 p = 1, N
 1013:                   TEMP1 = SVA(IWORK(p))
 1014:                   CALL DSCAL( p, ONE/TEMP1, V(1,p), 1 )
 1015:  3053          CONTINUE
 1016:                CALL DPOCON( 'U', N, V, LDV, ONE, TEMP1,
 1017:      $              WORK(N+1), IWORK(2*N+M+1), IERR )
 1018:             ELSE IF ( LSVEC ) THEN
 1019: *              .. U is available as workspace
 1020:                CALL DLACPY( 'U', N, N, A, LDA, U, LDU )
 1021:                DO 3054 p = 1, N
 1022:                   TEMP1 = SVA(IWORK(p))
 1023:                   CALL DSCAL( p, ONE/TEMP1, U(1,p), 1 )
 1024:  3054          CONTINUE
 1025:                CALL DPOCON( 'U', N, U, LDU, ONE, TEMP1,
 1026:      $              WORK(N+1), IWORK(2*N+M+1), IERR )
 1027:             ELSE
 1028:                CALL DLACPY( 'U', N, N, A, LDA, WORK(N+1), N )
 1029:                DO 3052 p = 1, N
 1030:                   TEMP1 = SVA(IWORK(p))
 1031:                   CALL DSCAL( p, ONE/TEMP1, WORK(N+(p-1)*N+1), 1 )
 1032:  3052          CONTINUE
 1033: *           .. the columns of R are scaled to have unit Euclidean lengths.
 1034:                CALL DPOCON( 'U', N, WORK(N+1), N, ONE, TEMP1,
 1035:      $              WORK(N+N*N+1), IWORK(2*N+M+1), IERR )
 1036:             END IF
 1037:             SCONDA = ONE / DSQRT(TEMP1)
 1038: *           SCONDA is an estimate of DSQRT(||(R^t * R)^(-1)||_1).
 1039: *           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA
 1040:          ELSE
 1041:             SCONDA = - ONE
 1042:          END IF
 1043:       END IF
 1044: *
 1045:       L2PERT = L2PERT .AND. ( DABS( A(1,1)/A(NR,NR) ) .GT. DSQRT(BIG1) )
 1046: *     If there is no violent scaling, artificial perturbation is not needed.
 1047: *
 1048: *     Phase 3:
 1049: *
 1050:       IF ( .NOT. ( RSVEC .OR. LSVEC ) ) THEN
 1051: *
 1052: *         Singular Values only
 1053: *
 1054: *         .. transpose A(1:NR,1:N)
 1055:          DO 1946 p = 1, MIN( N-1, NR )
 1056:             CALL DCOPY( N-p, A(p,p+1), LDA, A(p+1,p), 1 )
 1057:  1946    CONTINUE
 1058: *
 1059: *        The following two DO-loops introduce small relative perturbation
 1060: *        into the strict upper triangle of the lower triangular matrix.
 1061: *        Small entries below the main diagonal are also changed.
 1062: *        This modification is useful if the computing environment does not
 1063: *        provide/allow FLUSH TO ZERO underflow, for it prevents many
 1064: *        annoying denormalized numbers in case of strongly scaled matrices.
 1065: *        The perturbation is structured so that it does not introduce any
 1066: *        new perturbation of the singular values, and it does not destroy
 1067: *        the job done by the preconditioner.
 1068: *        The licence for this perturbation is in the variable L2PERT, which
 1069: *        should be .FALSE. if FLUSH TO ZERO underflow is active.
 1070: *
 1071:          IF ( .NOT. ALMORT ) THEN
 1072: *
 1073:             IF ( L2PERT ) THEN
 1074: *              XSC = DSQRT(SMALL)
 1075:                XSC = EPSLN / DBLE(N)
 1076:                DO 4947 q = 1, NR
 1077:                   TEMP1 = XSC*DABS(A(q,q))
 1078:                   DO 4949 p = 1, N
 1079:                      IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )
 1080:      $                    .OR. ( p .LT. q ) )
 1081:      $                     A(p,q) = DSIGN( TEMP1, A(p,q) )
 1082:  4949             CONTINUE
 1083:  4947          CONTINUE
 1084:             ELSE
 1085:                CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, A(1,2),LDA )
 1086:             END IF
 1087: *
 1088: *            .. second preconditioning using the QR factorization
 1089: *
 1090:             CALL DGEQRF( N,NR, A,LDA, WORK, WORK(N+1),LWORK-N, IERR )
 1091: *
 1092: *           .. and transpose upper to lower triangular
 1093:             DO 1948 p = 1, NR - 1
 1094:                CALL DCOPY( NR-p, A(p,p+1), LDA, A(p+1,p), 1 )
 1095:  1948       CONTINUE
 1096: *
 1097:          END IF
 1098: *
 1099: *           Row-cyclic Jacobi SVD algorithm with column pivoting
 1100: *
 1101: *           .. again some perturbation (a "background noise") is added
 1102: *           to drown denormals
 1103:             IF ( L2PERT ) THEN
 1104: *              XSC = DSQRT(SMALL)
 1105:                XSC = EPSLN / DBLE(N)
 1106:                DO 1947 q = 1, NR
 1107:                   TEMP1 = XSC*DABS(A(q,q))
 1108:                   DO 1949 p = 1, NR
 1109:                      IF ( ( (p.GT.q) .AND. (DABS(A(p,q)).LE.TEMP1) )
 1110:      $                       .OR. ( p .LT. q ) )
 1111:      $                   A(p,q) = DSIGN( TEMP1, A(p,q) )
 1112:  1949             CONTINUE
 1113:  1947          CONTINUE
 1114:             ELSE
 1115:                CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, A(1,2), LDA )
 1116:             END IF
 1117: *
 1118: *           .. and one-sided Jacobi rotations are started on a lower
 1119: *           triangular matrix (plus perturbation which is ignored in
 1120: *           the part which destroys triangular form (confusing?!))
 1121: *
 1122:             CALL DGESVJ( 'L', 'NoU', 'NoV', NR, NR, A, LDA, SVA,
 1123:      $                      N, V, LDV, WORK, LWORK, INFO )
 1124: *
 1125:             SCALEM  = WORK(1)
 1126:             NUMRANK = IDNINT(WORK(2))
 1127: *
 1128: *
 1129:       ELSE IF ( RSVEC .AND. ( .NOT. LSVEC ) ) THEN
 1130: *
 1131: *        -> Singular Values and Right Singular Vectors <-
 1132: *
 1133:          IF ( ALMORT ) THEN
 1134: *
 1135: *           .. in this case NR equals N
 1136:             DO 1998 p = 1, NR
 1137:                CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1138:  1998       CONTINUE
 1139:             CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1140: *
 1141:             CALL DGESVJ( 'L','U','N', N, NR, V,LDV, SVA, NR, A,LDA,
 1142:      $                  WORK, LWORK, INFO )
 1143:             SCALEM  = WORK(1)
 1144:             NUMRANK = IDNINT(WORK(2))
 1145: 
 1146:          ELSE
 1147: *
 1148: *        .. two more QR factorizations ( one QRF is not enough, two require
 1149: *        accumulated product of Jacobi rotations, three are perfect )
 1150: *
 1151:             CALL DLASET( 'Lower', NR-1, NR-1, ZERO, ZERO, A(2,1), LDA )
 1152:             CALL DGELQF( NR, N, A, LDA, WORK, WORK(N+1), LWORK-N, IERR)
 1153:             CALL DLACPY( 'Lower', NR, NR, A, LDA, V, LDV )
 1154:             CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1155:             CALL DGEQRF( NR, NR, V, LDV, WORK(N+1), WORK(2*N+1),
 1156:      $                   LWORK-2*N, IERR )
 1157:             DO 8998 p = 1, NR
 1158:                CALL DCOPY( NR-p+1, V(p,p), LDV, V(p,p), 1 )
 1159:  8998       CONTINUE
 1160:             CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1161: *
 1162:             CALL DGESVJ( 'Lower', 'U','N', NR, NR, V,LDV, SVA, NR, U,
 1163:      $                  LDU, WORK(N+1), LWORK, INFO )
 1164:             SCALEM  = WORK(N+1)
 1165:             NUMRANK = IDNINT(WORK(N+2))
 1166:             IF ( NR .LT. N ) THEN
 1167:                CALL DLASET( 'A',N-NR, NR, ZERO,ZERO, V(NR+1,1),   LDV )
 1168:                CALL DLASET( 'A',NR, N-NR, ZERO,ZERO, V(1,NR+1),   LDV )
 1169:                CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE, V(NR+1,NR+1), LDV )
 1170:             END IF
 1171: *
 1172:          CALL DORMLQ( 'Left', 'Transpose', N, N, NR, A, LDA, WORK,
 1173:      $               V, LDV, WORK(N+1), LWORK-N, IERR )
 1174: *
 1175:          END IF
 1176: *
 1177:          DO 8991 p = 1, N
 1178:             CALL DCOPY( N, V(p,1), LDV, A(IWORK(p),1), LDA )
 1179:  8991    CONTINUE
 1180:          CALL DLACPY( 'All', N, N, A, LDA, V, LDV )
 1181: *
 1182:          IF ( TRANSP ) THEN
 1183:             CALL DLACPY( 'All', N, N, V, LDV, U, LDU )
 1184:          END IF
 1185: *
 1186:       ELSE IF ( LSVEC .AND. ( .NOT. RSVEC ) ) THEN
 1187: *
 1188: *        .. Singular Values and Left Singular Vectors                 ..
 1189: *
 1190: *        .. second preconditioning step to avoid need to accumulate
 1191: *        Jacobi rotations in the Jacobi iterations.
 1192:          DO 1965 p = 1, NR
 1193:             CALL DCOPY( N-p+1, A(p,p), LDA, U(p,p), 1 )
 1194:  1965    CONTINUE
 1195:          CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
 1196: *
 1197:          CALL DGEQRF( N, NR, U, LDU, WORK(N+1), WORK(2*N+1),
 1198:      $              LWORK-2*N, IERR )
 1199: *
 1200:          DO 1967 p = 1, NR - 1
 1201:             CALL DCOPY( NR-p, U(p,p+1), LDU, U(p+1,p), 1 )
 1202:  1967    CONTINUE
 1203:          CALL DLASET( 'Upper', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
 1204: *
 1205:          CALL DGESVJ( 'Lower', 'U', 'N', NR,NR, U, LDU, SVA, NR, A,
 1206:      $        LDA, WORK(N+1), LWORK-N, INFO )
 1207:          SCALEM  = WORK(N+1)
 1208:          NUMRANK = IDNINT(WORK(N+2))
 1209: *
 1210:          IF ( NR .LT. M ) THEN
 1211:             CALL DLASET( 'A',  M-NR, NR,ZERO, ZERO, U(NR+1,1), LDU )
 1212:             IF ( NR .LT. N1 ) THEN
 1213:                CALL DLASET( 'A',NR, N1-NR, ZERO, ZERO, U(1,NR+1), LDU )
 1214:                CALL DLASET( 'A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1), LDU )
 1215:             END IF
 1216:          END IF
 1217: *
 1218:          CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
 1219:      $               LDU, WORK(N+1), LWORK-N, IERR )
 1220: *
 1221:          IF ( ROWPIV )
 1222:      $       CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
 1223: *
 1224:          DO 1974 p = 1, N1
 1225:             XSC = ONE / DNRM2( M, U(1,p), 1 )
 1226:             CALL DSCAL( M, XSC, U(1,p), 1 )
 1227:  1974    CONTINUE
 1228: *
 1229:          IF ( TRANSP ) THEN
 1230:             CALL DLACPY( 'All', N, N, U, LDU, V, LDV )
 1231:          END IF
 1232: *
 1233:       ELSE
 1234: *
 1235: *        .. Full SVD ..
 1236: *
 1237:          IF ( .NOT. JRACC ) THEN
 1238: *
 1239:          IF ( .NOT. ALMORT ) THEN
 1240: *
 1241: *           Second Preconditioning Step (QRF [with pivoting])
 1242: *           Note that the composition of TRANSPOSE, QRF and TRANSPOSE is
 1243: *           equivalent to an LQF CALL. Since in many libraries the QRF
 1244: *           seems to be better optimized than the LQF, we do explicit
 1245: *           transpose and use the QRF. This is subject to changes in an
 1246: *           optimized implementation of DGEJSV.
 1247: *
 1248:             DO 1968 p = 1, NR
 1249:                CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1250:  1968       CONTINUE
 1251: *
 1252: *           .. the following two loops perturb small entries to avoid
 1253: *           denormals in the second QR factorization, where they are
 1254: *           as good as zeros. This is done to avoid painfully slow
 1255: *           computation with denormals. The relative size of the perturbation
 1256: *           is a parameter that can be changed by the implementer.
 1257: *           This perturbation device will be obsolete on machines with
 1258: *           properly implemented arithmetic.
 1259: *           To switch it off, set L2PERT=.FALSE. To remove it from  the
 1260: *           code, remove the action under L2PERT=.TRUE., leave the ELSE part.
 1261: *           The following two loops should be blocked and fused with the
 1262: *           transposed copy above.
 1263: *
 1264:             IF ( L2PERT ) THEN
 1265:                XSC = DSQRT(SMALL)
 1266:                DO 2969 q = 1, NR
 1267:                   TEMP1 = XSC*DABS( V(q,q) )
 1268:                   DO 2968 p = 1, N
 1269:                      IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )
 1270:      $                   .OR. ( p .LT. q ) )
 1271:      $                   V(p,q) = DSIGN( TEMP1, V(p,q) )
 1272:                      IF ( p .LT. q ) V(p,q) = - V(p,q)
 1273:  2968             CONTINUE
 1274:  2969          CONTINUE
 1275:             ELSE
 1276:                CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1277:             END IF
 1278: *
 1279: *           Estimate the row scaled condition number of R1
 1280: *           (If R1 is rectangular, N > NR, then the condition number
 1281: *           of the leading NR x NR submatrix is estimated.)
 1282: *
 1283:             CALL DLACPY( 'L', NR, NR, V, LDV, WORK(2*N+1), NR )
 1284:             DO 3950 p = 1, NR
 1285:                TEMP1 = DNRM2(NR-p+1,WORK(2*N+(p-1)*NR+p),1)
 1286:                CALL DSCAL(NR-p+1,ONE/TEMP1,WORK(2*N+(p-1)*NR+p),1)
 1287:  3950       CONTINUE
 1288:             CALL DPOCON('Lower',NR,WORK(2*N+1),NR,ONE,TEMP1,
 1289:      $                   WORK(2*N+NR*NR+1),IWORK(M+2*N+1),IERR)
 1290:             CONDR1 = ONE / DSQRT(TEMP1)
 1291: *           .. here need a second oppinion on the condition number
 1292: *           .. then assume worst case scenario
 1293: *           R1 is OK for inverse <=> CONDR1 .LT. DBLE(N)
 1294: *           more conservative    <=> CONDR1 .LT. DSQRT(DBLE(N))
 1295: *
 1296:             COND_OK = DSQRT(DBLE(NR))
 1297: *[TP]       COND_OK is a tuning parameter.
 1298: 
 1299:             IF ( CONDR1 .LT. COND_OK ) THEN
 1300: *              .. the second QRF without pivoting. Note: in an optimized
 1301: *              implementation, this QRF should be implemented as the QRF
 1302: *              of a lower triangular matrix.
 1303: *              R1^t = Q2 * R2
 1304:                CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
 1305:      $              LWORK-2*N, IERR )
 1306: *
 1307:                IF ( L2PERT ) THEN
 1308:                   XSC = DSQRT(SMALL)/EPSLN
 1309:                   DO 3959 p = 2, NR
 1310:                      DO 3958 q = 1, p - 1
 1311:                         TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
 1312:                         IF ( DABS(V(q,p)) .LE. TEMP1 )
 1313:      $                     V(q,p) = DSIGN( TEMP1, V(q,p) )
 1314:  3958                CONTINUE
 1315:  3959             CONTINUE
 1316:                END IF
 1317: *
 1318:                IF ( NR .NE. N )
 1319:      $         CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )
 1320: *              .. save ...
 1321: *
 1322: *           .. this transposed copy should be better than naive
 1323:                DO 1969 p = 1, NR - 1
 1324:                   CALL DCOPY( NR-p, V(p,p+1), LDV, V(p+1,p), 1 )
 1325:  1969          CONTINUE
 1326: *
 1327:                CONDR2 = CONDR1
 1328: *
 1329:             ELSE
 1330: *
 1331: *              .. ill-conditioned case: second QRF with pivoting
 1332: *              Note that windowed pivoting would be equaly good
 1333: *              numerically, and more run-time efficient. So, in
 1334: *              an optimal implementation, the next call to DGEQP3
 1335: *              should be replaced with eg. CALL SGEQPX (ACM TOMS #782)
 1336: *              with properly (carefully) chosen parameters.
 1337: *
 1338: *              R1^t * P2 = Q2 * R2
 1339:                DO 3003 p = 1, NR
 1340:                   IWORK(N+p) = 0
 1341:  3003          CONTINUE
 1342:                CALL DGEQP3( N, NR, V, LDV, IWORK(N+1), WORK(N+1),
 1343:      $                  WORK(2*N+1), LWORK-2*N, IERR )
 1344: **               CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
 1345: **     $              LWORK-2*N, IERR )
 1346:                IF ( L2PERT ) THEN
 1347:                   XSC = DSQRT(SMALL)
 1348:                   DO 3969 p = 2, NR
 1349:                      DO 3968 q = 1, p - 1
 1350:                         TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
 1351:                         IF ( DABS(V(q,p)) .LE. TEMP1 )
 1352:      $                     V(q,p) = DSIGN( TEMP1, V(q,p) )
 1353:  3968                CONTINUE
 1354:  3969             CONTINUE
 1355:                END IF
 1356: *
 1357:                CALL DLACPY( 'A', N, NR, V, LDV, WORK(2*N+1), N )
 1358: *
 1359:                IF ( L2PERT ) THEN
 1360:                   XSC = DSQRT(SMALL)
 1361:                   DO 8970 p = 2, NR
 1362:                      DO 8971 q = 1, p - 1
 1363:                         TEMP1 = XSC * MIN(DABS(V(p,p)),DABS(V(q,q)))
 1364:                         V(p,q) = - DSIGN( TEMP1, V(q,p) )
 1365:  8971                CONTINUE
 1366:  8970             CONTINUE
 1367:                ELSE
 1368:                   CALL DLASET( 'L',NR-1,NR-1,ZERO,ZERO,V(2,1),LDV )
 1369:                END IF
 1370: *              Now, compute R2 = L3 * Q3, the LQ factorization.
 1371:                CALL DGELQF( NR, NR, V, LDV, WORK(2*N+N*NR+1),
 1372:      $               WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, IERR )
 1373: *              .. and estimate the condition number
 1374:                CALL DLACPY( 'L',NR,NR,V,LDV,WORK(2*N+N*NR+NR+1),NR )
 1375:                DO 4950 p = 1, NR
 1376:                   TEMP1 = DNRM2( p, WORK(2*N+N*NR+NR+p), NR )
 1377:                   CALL DSCAL( p, ONE/TEMP1, WORK(2*N+N*NR+NR+p), NR )
 1378:  4950          CONTINUE
 1379:                CALL DPOCON( 'L',NR,WORK(2*N+N*NR+NR+1),NR,ONE,TEMP1,
 1380:      $              WORK(2*N+N*NR+NR+NR*NR+1),IWORK(M+2*N+1),IERR )
 1381:                CONDR2 = ONE / DSQRT(TEMP1)
 1382: *
 1383:                IF ( CONDR2 .GE. COND_OK ) THEN
 1384: *                 .. save the Householder vectors used for Q3
 1385: *                 (this overwrittes the copy of R2, as it will not be
 1386: *                 needed in this branch, but it does not overwritte the
 1387: *                 Huseholder vectors of Q2.).
 1388:                   CALL DLACPY( 'U', NR, NR, V, LDV, WORK(2*N+1), N )
 1389: *                 .. and the rest of the information on Q3 is in
 1390: *                 WORK(2*N+N*NR+1:2*N+N*NR+N)
 1391:                END IF
 1392: *
 1393:             END IF
 1394: *
 1395:             IF ( L2PERT ) THEN
 1396:                XSC = DSQRT(SMALL)
 1397:                DO 4968 q = 2, NR
 1398:                   TEMP1 = XSC * V(q,q)
 1399:                   DO 4969 p = 1, q - 1
 1400: *                    V(p,q) = - DSIGN( TEMP1, V(q,p) )
 1401:                      V(p,q) = - DSIGN( TEMP1, V(p,q) )
 1402:  4969             CONTINUE
 1403:  4968          CONTINUE
 1404:             ELSE
 1405:                CALL DLASET( 'U', NR-1,NR-1, ZERO,ZERO, V(1,2), LDV )
 1406:             END IF
 1407: *
 1408: *        Second preconditioning finished; continue with Jacobi SVD
 1409: *        The input matrix is lower trinagular.
 1410: *
 1411: *        Recover the right singular vectors as solution of a well
 1412: *        conditioned triangular matrix equation.
 1413: *
 1414:             IF ( CONDR1 .LT. COND_OK ) THEN
 1415: *
 1416:                CALL DGESVJ( 'L','U','N',NR,NR,V,LDV,SVA,NR,U,
 1417:      $              LDU,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,INFO )
 1418:                SCALEM  = WORK(2*N+N*NR+NR+1)
 1419:                NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
 1420:                DO 3970 p = 1, NR
 1421:                   CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )
 1422:                   CALL DSCAL( NR, SVA(p),    V(1,p), 1 )
 1423:  3970          CONTINUE
 1424: 
 1425: *        .. pick the right matrix equation and solve it
 1426: *
 1427:                IF ( NR .EQ. N ) THEN
 1428: * :))             .. best case, R1 is inverted. The solution of this matrix
 1429: *                 equation is Q2*V2 = the product of the Jacobi rotations
 1430: *                 used in DGESVJ, premultiplied with the orthogonal matrix
 1431: *                 from the second QR factorization.
 1432:                   CALL DTRSM( 'L','U','N','N', NR,NR,ONE, A,LDA, V,LDV )
 1433:                ELSE
 1434: *                 .. R1 is well conditioned, but non-square. Transpose(R2)
 1435: *                 is inverted to get the product of the Jacobi rotations
 1436: *                 used in DGESVJ. The Q-factor from the second QR
 1437: *                 factorization is then built in explicitly.
 1438:                   CALL DTRSM('L','U','T','N',NR,NR,ONE,WORK(2*N+1),
 1439:      $                 N,V,LDV)
 1440:                   IF ( NR .LT. N ) THEN
 1441:                     CALL DLASET('A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV)
 1442:                     CALL DLASET('A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV)
 1443:                     CALL DLASET('A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV)
 1444:                   END IF
 1445:                   CALL DORMQR('L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
 1446:      $                 V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR)
 1447:                END IF
 1448: *
 1449:             ELSE IF ( CONDR2 .LT. COND_OK ) THEN
 1450: *
 1451: * :)           .. the input matrix A is very likely a relative of
 1452: *              the Kahan matrix :)
 1453: *              The matrix R2 is inverted. The solution of the matrix equation
 1454: *              is Q3^T*V3 = the product of the Jacobi rotations (appplied to
 1455: *              the lower triangular L3 from the LQ factorization of
 1456: *              R2=L3*Q3), pre-multiplied with the transposed Q3.
 1457:                CALL DGESVJ( 'L', 'U', 'N', NR, NR, V, LDV, SVA, NR, U,
 1458:      $              LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )
 1459:                SCALEM  = WORK(2*N+N*NR+NR+1)
 1460:                NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
 1461:                DO 3870 p = 1, NR
 1462:                   CALL DCOPY( NR, V(1,p), 1, U(1,p), 1 )
 1463:                   CALL DSCAL( NR, SVA(p),    U(1,p), 1 )
 1464:  3870          CONTINUE
 1465:                CALL DTRSM('L','U','N','N',NR,NR,ONE,WORK(2*N+1),N,U,LDU)
 1466: *              .. apply the permutation from the second QR factorization
 1467:                DO 873 q = 1, NR
 1468:                   DO 872 p = 1, NR
 1469:                      WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 1470:  872              CONTINUE
 1471:                   DO 874 p = 1, NR
 1472:                      U(p,q) = WORK(2*N+N*NR+NR+p)
 1473:  874              CONTINUE
 1474:  873           CONTINUE
 1475:                IF ( NR .LT. N ) THEN
 1476:                   CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
 1477:                   CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
 1478:                   CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
 1479:                END IF
 1480:                CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
 1481:      $              V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 1482:             ELSE
 1483: *              Last line of defense.
 1484: * #:(          This is a rather pathological case: no scaled condition
 1485: *              improvement after two pivoted QR factorizations. Other
 1486: *              possibility is that the rank revealing QR factorization
 1487: *              or the condition estimator has failed, or the COND_OK
 1488: *              is set very close to ONE (which is unnecessary). Normally,
 1489: *              this branch should never be executed, but in rare cases of
 1490: *              failure of the RRQR or condition estimator, the last line of
 1491: *              defense ensures that DGEJSV completes the task.
 1492: *              Compute the full SVD of L3 using DGESVJ with explicit
 1493: *              accumulation of Jacobi rotations.
 1494:                CALL DGESVJ( 'L', 'U', 'V', NR, NR, V, LDV, SVA, NR, U,
 1495:      $              LDU, WORK(2*N+N*NR+NR+1), LWORK-2*N-N*NR-NR, INFO )
 1496:                SCALEM  = WORK(2*N+N*NR+NR+1)
 1497:                NUMRANK = IDNINT(WORK(2*N+N*NR+NR+2))
 1498:                IF ( NR .LT. N ) THEN
 1499:                   CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
 1500:                   CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
 1501:                   CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
 1502:                END IF
 1503:                CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
 1504:      $              V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 1505: *
 1506:                CALL DORMLQ( 'L', 'T', NR, NR, NR, WORK(2*N+1), N,
 1507:      $              WORK(2*N+N*NR+1), U, LDU, WORK(2*N+N*NR+NR+1),
 1508:      $              LWORK-2*N-N*NR-NR, IERR )
 1509:                DO 773 q = 1, NR
 1510:                   DO 772 p = 1, NR
 1511:                      WORK(2*N+N*NR+NR+IWORK(N+p)) = U(p,q)
 1512:  772              CONTINUE
 1513:                   DO 774 p = 1, NR
 1514:                      U(p,q) = WORK(2*N+N*NR+NR+p)
 1515:  774              CONTINUE
 1516:  773           CONTINUE
 1517: *
 1518:             END IF
 1519: *
 1520: *           Permute the rows of V using the (column) permutation from the
 1521: *           first QRF. Also, scale the columns to make them unit in
 1522: *           Euclidean norm. This applies to all cases.
 1523: *
 1524:             TEMP1 = DSQRT(DBLE(N)) * EPSLN
 1525:             DO 1972 q = 1, N
 1526:                DO 972 p = 1, N
 1527:                   WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
 1528:   972          CONTINUE
 1529:                DO 973 p = 1, N
 1530:                   V(p,q) = WORK(2*N+N*NR+NR+p)
 1531:   973          CONTINUE
 1532:                XSC = ONE / DNRM2( N, V(1,q), 1 )
 1533:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1534:      $           CALL DSCAL( N, XSC, V(1,q), 1 )
 1535:  1972       CONTINUE
 1536: *           At this moment, V contains the right singular vectors of A.
 1537: *           Next, assemble the left singular vector matrix U (M x N).
 1538:             IF ( NR .LT. M ) THEN
 1539:                CALL DLASET( 'A', M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )
 1540:                IF ( NR .LT. N1 ) THEN
 1541:                   CALL DLASET('A',NR,N1-NR,ZERO,ZERO,U(1,NR+1),LDU)
 1542:                   CALL DLASET('A',M-NR,N1-NR,ZERO,ONE,U(NR+1,NR+1),LDU)
 1543:                END IF
 1544:             END IF
 1545: *
 1546: *           The Q matrix from the first QRF is built into the left singular
 1547: *           matrix U. This applies to all cases.
 1548: *
 1549:             CALL DORMQR( 'Left', 'No_Tr', M, N1, N, A, LDA, WORK, U,
 1550:      $           LDU, WORK(N+1), LWORK-N, IERR )
 1551: 
 1552: *           The columns of U are normalized. The cost is O(M*N) flops.
 1553:             TEMP1 = DSQRT(DBLE(M)) * EPSLN
 1554:             DO 1973 p = 1, NR
 1555:                XSC = ONE / DNRM2( M, U(1,p), 1 )
 1556:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1557:      $          CALL DSCAL( M, XSC, U(1,p), 1 )
 1558:  1973       CONTINUE
 1559: *
 1560: *           If the initial QRF is computed with row pivoting, the left
 1561: *           singular vectors must be adjusted.
 1562: *
 1563:             IF ( ROWPIV )
 1564:      $          CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
 1565: *
 1566:          ELSE
 1567: *
 1568: *        .. the initial matrix A has almost orthogonal columns and
 1569: *        the second QRF is not needed
 1570: *
 1571:             CALL DLACPY( 'Upper', N, N, A, LDA, WORK(N+1), N )
 1572:             IF ( L2PERT ) THEN
 1573:                XSC = DSQRT(SMALL)
 1574:                DO 5970 p = 2, N
 1575:                   TEMP1 = XSC * WORK( N + (p-1)*N + p )
 1576:                   DO 5971 q = 1, p - 1
 1577:                      WORK(N+(q-1)*N+p)=-DSIGN(TEMP1,WORK(N+(p-1)*N+q))
 1578:  5971             CONTINUE
 1579:  5970          CONTINUE
 1580:             ELSE
 1581:                CALL DLASET( 'Lower',N-1,N-1,ZERO,ZERO,WORK(N+2),N )
 1582:             END IF
 1583: *
 1584:             CALL DGESVJ( 'Upper', 'U', 'N', N, N, WORK(N+1), N, SVA,
 1585:      $           N, U, LDU, WORK(N+N*N+1), LWORK-N-N*N, INFO )
 1586: *
 1587:             SCALEM  = WORK(N+N*N+1)
 1588:             NUMRANK = IDNINT(WORK(N+N*N+2))
 1589:             DO 6970 p = 1, N
 1590:                CALL DCOPY( N, WORK(N+(p-1)*N+1), 1, U(1,p), 1 )
 1591:                CALL DSCAL( N, SVA(p), WORK(N+(p-1)*N+1), 1 )
 1592:  6970       CONTINUE
 1593: *
 1594:             CALL DTRSM( 'Left', 'Upper', 'NoTrans', 'No UD', N, N,
 1595:      $           ONE, A, LDA, WORK(N+1), N )
 1596:             DO 6972 p = 1, N
 1597:                CALL DCOPY( N, WORK(N+p), N, V(IWORK(p),1), LDV )
 1598:  6972       CONTINUE
 1599:             TEMP1 = DSQRT(DBLE(N))*EPSLN
 1600:             DO 6971 p = 1, N
 1601:                XSC = ONE / DNRM2( N, V(1,p), 1 )
 1602:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1603:      $            CALL DSCAL( N, XSC, V(1,p), 1 )
 1604:  6971       CONTINUE
 1605: *
 1606: *           Assemble the left singular vector matrix U (M x N).
 1607: *
 1608:             IF ( N .LT. M ) THEN
 1609:                CALL DLASET( 'A',  M-N, N, ZERO, ZERO, U(N+1,1), LDU )
 1610:                IF ( N .LT. N1 ) THEN
 1611:                   CALL DLASET( 'A',N,  N1-N, ZERO, ZERO,  U(1,N+1),LDU )
 1612:                   CALL DLASET( 'A',M-N,N1-N, ZERO, ONE,U(N+1,N+1),LDU )
 1613:                END IF
 1614:             END IF
 1615:             CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
 1616:      $           LDU, WORK(N+1), LWORK-N, IERR )
 1617:             TEMP1 = DSQRT(DBLE(M))*EPSLN
 1618:             DO 6973 p = 1, N1
 1619:                XSC = ONE / DNRM2( M, U(1,p), 1 )
 1620:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1621:      $            CALL DSCAL( M, XSC, U(1,p), 1 )
 1622:  6973       CONTINUE
 1623: *
 1624:             IF ( ROWPIV )
 1625:      $         CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
 1626: *
 1627:          END IF
 1628: *
 1629: *        end of the  >> almost orthogonal case <<  in the full SVD
 1630: *
 1631:          ELSE
 1632: *
 1633: *        This branch deploys a preconditioned Jacobi SVD with explicitly
 1634: *        accumulated rotations. It is included as optional, mainly for
 1635: *        experimental purposes. It does perfom well, and can also be used.
 1636: *        In this implementation, this branch will be automatically activated
 1637: *        if the  condition number sigma_max(A) / sigma_min(A) is predicted
 1638: *        to be greater than the overflow threshold. This is because the
 1639: *        a posteriori computation of the singular vectors assumes robust
 1640: *        implementation of BLAS and some LAPACK procedures, capable of working
 1641: *        in presence of extreme values. Since that is not always the case, ...
 1642: *
 1643:          DO 7968 p = 1, NR
 1644:             CALL DCOPY( N-p+1, A(p,p), LDA, V(p,p), 1 )
 1645:  7968    CONTINUE
 1646: *
 1647:          IF ( L2PERT ) THEN
 1648:             XSC = DSQRT(SMALL/EPSLN)
 1649:             DO 5969 q = 1, NR
 1650:                TEMP1 = XSC*DABS( V(q,q) )
 1651:                DO 5968 p = 1, N
 1652:                   IF ( ( p .GT. q ) .AND. ( DABS(V(p,q)) .LE. TEMP1 )
 1653:      $                .OR. ( p .LT. q ) )
 1654:      $                V(p,q) = DSIGN( TEMP1, V(p,q) )
 1655:                   IF ( p .LT. q ) V(p,q) = - V(p,q)
 1656:  5968          CONTINUE
 1657:  5969       CONTINUE
 1658:          ELSE
 1659:             CALL DLASET( 'U', NR-1, NR-1, ZERO, ZERO, V(1,2), LDV )
 1660:          END IF
 1661: 
 1662:          CALL DGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1),
 1663:      $        LWORK-2*N, IERR )
 1664:          CALL DLACPY( 'L', N, NR, V, LDV, WORK(2*N+1), N )
 1665: *
 1666:          DO 7969 p = 1, NR
 1667:             CALL DCOPY( NR-p+1, V(p,p), LDV, U(p,p), 1 )
 1668:  7969    CONTINUE
 1669: 
 1670:          IF ( L2PERT ) THEN
 1671:             XSC = DSQRT(SMALL/EPSLN)
 1672:             DO 9970 q = 2, NR
 1673:                DO 9971 p = 1, q - 1
 1674:                   TEMP1 = XSC * MIN(DABS(U(p,p)),DABS(U(q,q)))
 1675:                   U(p,q) = - DSIGN( TEMP1, U(q,p) )
 1676:  9971          CONTINUE
 1677:  9970       CONTINUE
 1678:          ELSE
 1679:             CALL DLASET('U', NR-1, NR-1, ZERO, ZERO, U(1,2), LDU )
 1680:          END IF
 1681: 
 1682:          CALL DGESVJ( 'G', 'U', 'V', NR, NR, U, LDU, SVA,
 1683:      $        N, V, LDV, WORK(2*N+N*NR+1), LWORK-2*N-N*NR, INFO )
 1684:          SCALEM  = WORK(2*N+N*NR+1)
 1685:          NUMRANK = IDNINT(WORK(2*N+N*NR+2))
 1686: 
 1687:          IF ( NR .LT. N ) THEN
 1688:             CALL DLASET( 'A',N-NR,NR,ZERO,ZERO,V(NR+1,1),LDV )
 1689:             CALL DLASET( 'A',NR,N-NR,ZERO,ZERO,V(1,NR+1),LDV )
 1690:             CALL DLASET( 'A',N-NR,N-NR,ZERO,ONE,V(NR+1,NR+1),LDV )
 1691:          END IF
 1692: 
 1693:          CALL DORMQR( 'L','N',N,N,NR,WORK(2*N+1),N,WORK(N+1),
 1694:      $        V,LDV,WORK(2*N+N*NR+NR+1),LWORK-2*N-N*NR-NR,IERR )
 1695: *
 1696: *           Permute the rows of V using the (column) permutation from the
 1697: *           first QRF. Also, scale the columns to make them unit in
 1698: *           Euclidean norm. This applies to all cases.
 1699: *
 1700:             TEMP1 = DSQRT(DBLE(N)) * EPSLN
 1701:             DO 7972 q = 1, N
 1702:                DO 8972 p = 1, N
 1703:                   WORK(2*N+N*NR+NR+IWORK(p)) = V(p,q)
 1704:  8972          CONTINUE
 1705:                DO 8973 p = 1, N
 1706:                   V(p,q) = WORK(2*N+N*NR+NR+p)
 1707:  8973          CONTINUE
 1708:                XSC = ONE / DNRM2( N, V(1,q), 1 )
 1709:                IF ( (XSC .LT. (ONE-TEMP1)) .OR. (XSC .GT. (ONE+TEMP1)) )
 1710:      $           CALL DSCAL( N, XSC, V(1,q), 1 )
 1711:  7972       CONTINUE
 1712: *
 1713: *           At this moment, V contains the right singular vectors of A.
 1714: *           Next, assemble the left singular vector matrix U (M x N).
 1715: *
 1716:          IF ( NR .LT. M ) THEN
 1717:             CALL DLASET( 'A',  M-NR, NR, ZERO, ZERO, U(NR+1,1), LDU )
 1718:             IF ( NR .LT. N1 ) THEN
 1719:                CALL DLASET( 'A',NR,  N1-NR, ZERO, ZERO,  U(1,NR+1),LDU )
 1720:                CALL DLASET( 'A',M-NR,N1-NR, ZERO, ONE,U(NR+1,NR+1),LDU )
 1721:             END IF
 1722:          END IF
 1723: *
 1724:          CALL DORMQR( 'Left', 'No Tr', M, N1, N, A, LDA, WORK, U,
 1725:      $        LDU, WORK(N+1), LWORK-N, IERR )
 1726: *
 1727:             IF ( ROWPIV )
 1728:      $         CALL DLASWP( N1, U, LDU, 1, M-1, IWORK(2*N+1), -1 )
 1729: *
 1730: *
 1731:          END IF
 1732:          IF ( TRANSP ) THEN
 1733: *           .. swap U and V because the procedure worked on A^t
 1734:             DO 6974 p = 1, N
 1735:                CALL DSWAP( N, U(1,p), 1, V(1,p), 1 )
 1736:  6974       CONTINUE
 1737:          END IF
 1738: *
 1739:       END IF
 1740: *     end of the full SVD
 1741: *
 1742: *     Undo scaling, if necessary (and possible)
 1743: *
 1744:       IF ( USCAL2 .LE. (BIG/SVA(1))*USCAL1 ) THEN
 1745:          CALL DLASCL( 'G', 0, 0, USCAL1, USCAL2, NR, 1, SVA, N, IERR )
 1746:          USCAL1 = ONE
 1747:          USCAL2 = ONE
 1748:       END IF
 1749: *
 1750:       IF ( NR .LT. N ) THEN
 1751:          DO 3004 p = NR+1, N
 1752:             SVA(p) = ZERO
 1753:  3004    CONTINUE
 1754:       END IF
 1755: *
 1756:       WORK(1) = USCAL2 * SCALEM
 1757:       WORK(2) = USCAL1
 1758:       IF ( ERREST ) WORK(3) = SCONDA
 1759:       IF ( LSVEC .AND. RSVEC ) THEN
 1760:          WORK(4) = CONDR1
 1761:          WORK(5) = CONDR2
 1762:       END IF
 1763:       IF ( L2TRAN ) THEN
 1764:          WORK(6) = ENTRA
 1765:          WORK(7) = ENTRAT
 1766:       END IF
 1767: *
 1768:       IWORK(1) = NR
 1769:       IWORK(2) = NUMRANK
 1770:       IWORK(3) = WARNING
 1771: *
 1772:       RETURN
 1773: *     ..
 1774: *     .. END OF DGEJSV
 1775: *     ..
 1776:       END
 1777: *

CVSweb interface <joel.bertrand@systella.fr>