Annotation of rpl/lapack/lapack/dgehrd.f, revision 1.19

1.9       bertrand    1: *> \brief \b DGEHRD
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.16      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.16      bertrand    9: *> Download DGEHRD + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgehrd.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgehrd.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgehrd.f">
1.9       bertrand   15: *> [TXT]</a>
1.16      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
1.16      bertrand   22: *
1.9       bertrand   23: *       .. Scalar Arguments ..
                     24: *       INTEGER            IHI, ILO, INFO, LDA, LWORK, N
                     25: *       ..
                     26: *       .. Array Arguments ..
                     27: *       DOUBLE PRECISION  A( LDA, * ), TAU( * ), WORK( * )
                     28: *       ..
1.16      bertrand   29: *
1.9       bertrand   30: *
                     31: *> \par Purpose:
                     32: *  =============
                     33: *>
                     34: *> \verbatim
                     35: *>
                     36: *> DGEHRD reduces a real general matrix A to upper Hessenberg form H by
                     37: *> an orthogonal similarity transformation:  Q**T * A * Q = H .
                     38: *> \endverbatim
                     39: *
                     40: *  Arguments:
                     41: *  ==========
                     42: *
                     43: *> \param[in] N
                     44: *> \verbatim
                     45: *>          N is INTEGER
                     46: *>          The order of the matrix A.  N >= 0.
                     47: *> \endverbatim
                     48: *>
                     49: *> \param[in] ILO
                     50: *> \verbatim
                     51: *>          ILO is INTEGER
                     52: *> \endverbatim
                     53: *>
                     54: *> \param[in] IHI
                     55: *> \verbatim
                     56: *>          IHI is INTEGER
                     57: *>
                     58: *>          It is assumed that A is already upper triangular in rows
                     59: *>          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
                     60: *>          set by a previous call to DGEBAL; otherwise they should be
                     61: *>          set to 1 and N respectively. See Further Details.
                     62: *>          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
                     63: *> \endverbatim
                     64: *>
                     65: *> \param[in,out] A
                     66: *> \verbatim
                     67: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     68: *>          On entry, the N-by-N general matrix to be reduced.
                     69: *>          On exit, the upper triangle and the first subdiagonal of A
                     70: *>          are overwritten with the upper Hessenberg matrix H, and the
                     71: *>          elements below the first subdiagonal, with the array TAU,
                     72: *>          represent the orthogonal matrix Q as a product of elementary
                     73: *>          reflectors. See Further Details.
                     74: *> \endverbatim
                     75: *>
                     76: *> \param[in] LDA
                     77: *> \verbatim
                     78: *>          LDA is INTEGER
                     79: *>          The leading dimension of the array A.  LDA >= max(1,N).
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[out] TAU
                     83: *> \verbatim
                     84: *>          TAU is DOUBLE PRECISION array, dimension (N-1)
                     85: *>          The scalar factors of the elementary reflectors (see Further
                     86: *>          Details). Elements 1:ILO-1 and IHI:N-1 of TAU are set to
                     87: *>          zero.
                     88: *> \endverbatim
                     89: *>
                     90: *> \param[out] WORK
                     91: *> \verbatim
                     92: *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
                     93: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                     94: *> \endverbatim
                     95: *>
                     96: *> \param[in] LWORK
                     97: *> \verbatim
                     98: *>          LWORK is INTEGER
                     99: *>          The length of the array WORK.  LWORK >= max(1,N).
1.14      bertrand  100: *>          For good performance, LWORK should generally be larger.
1.9       bertrand  101: *>
                    102: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    103: *>          only calculates the optimal size of the WORK array, returns
                    104: *>          this value as the first entry of the WORK array, and no error
                    105: *>          message related to LWORK is issued by XERBLA.
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[out] INFO
                    109: *> \verbatim
                    110: *>          INFO is INTEGER
                    111: *>          = 0:  successful exit
                    112: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    113: *> \endverbatim
                    114: *
                    115: *  Authors:
                    116: *  ========
                    117: *
1.16      bertrand  118: *> \author Univ. of Tennessee
                    119: *> \author Univ. of California Berkeley
                    120: *> \author Univ. of Colorado Denver
                    121: *> \author NAG Ltd.
1.9       bertrand  122: *
                    123: *> \ingroup doubleGEcomputational
                    124: *
                    125: *> \par Further Details:
                    126: *  =====================
                    127: *>
                    128: *> \verbatim
                    129: *>
                    130: *>  The matrix Q is represented as a product of (ihi-ilo) elementary
                    131: *>  reflectors
                    132: *>
                    133: *>     Q = H(ilo) H(ilo+1) . . . H(ihi-1).
                    134: *>
                    135: *>  Each H(i) has the form
                    136: *>
                    137: *>     H(i) = I - tau * v * v**T
                    138: *>
                    139: *>  where tau is a real scalar, and v is a real vector with
                    140: *>  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
                    141: *>  exit in A(i+2:ihi,i), and tau in TAU(i).
                    142: *>
                    143: *>  The contents of A are illustrated by the following example, with
                    144: *>  n = 7, ilo = 2 and ihi = 6:
                    145: *>
                    146: *>  on entry,                        on exit,
                    147: *>
                    148: *>  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
                    149: *>  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
                    150: *>  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
                    151: *>  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
                    152: *>  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
                    153: *>  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
                    154: *>  (                         a )    (                          a )
                    155: *>
                    156: *>  where a denotes an element of the original matrix A, h denotes a
                    157: *>  modified element of the upper Hessenberg matrix H, and vi denotes an
                    158: *>  element of the vector defining H(i).
                    159: *>
                    160: *>  This file is a slight modification of LAPACK-3.0's DGEHRD
                    161: *>  subroutine incorporating improvements proposed by Quintana-Orti and
                    162: *>  Van de Geijn (2006). (See DLAHR2.)
                    163: *> \endverbatim
                    164: *>
                    165: *  =====================================================================
1.1       bertrand  166:       SUBROUTINE DGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO )
                    167: *
1.19    ! bertrand  168: *  -- LAPACK computational routine --
1.1       bertrand  169: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    170: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    171: *
                    172: *     .. Scalar Arguments ..
                    173:       INTEGER            IHI, ILO, INFO, LDA, LWORK, N
                    174: *     ..
                    175: *     .. Array Arguments ..
                    176:       DOUBLE PRECISION  A( LDA, * ), TAU( * ), WORK( * )
                    177: *     ..
                    178: *
                    179: *  =====================================================================
                    180: *
                    181: *     .. Parameters ..
1.14      bertrand  182:       INTEGER            NBMAX, LDT, TSIZE
                    183:       PARAMETER          ( NBMAX = 64, LDT = NBMAX+1,
                    184:      $                     TSIZE = LDT*NBMAX )
1.1       bertrand  185:       DOUBLE PRECISION  ZERO, ONE
1.16      bertrand  186:       PARAMETER          ( ZERO = 0.0D+0,
1.1       bertrand  187:      $                     ONE = 1.0D+0 )
                    188: *     ..
                    189: *     .. Local Scalars ..
                    190:       LOGICAL            LQUERY
1.14      bertrand  191:       INTEGER            I, IB, IINFO, IWT, J, LDWORK, LWKOPT, NB,
1.1       bertrand  192:      $                   NBMIN, NH, NX
                    193:       DOUBLE PRECISION  EI
                    194: *     ..
                    195: *     .. External Subroutines ..
                    196:       EXTERNAL           DAXPY, DGEHD2, DGEMM, DLAHR2, DLARFB, DTRMM,
                    197:      $                   XERBLA
                    198: *     ..
                    199: *     .. Intrinsic Functions ..
                    200:       INTRINSIC          MAX, MIN
                    201: *     ..
                    202: *     .. External Functions ..
                    203:       INTEGER            ILAENV
                    204:       EXTERNAL           ILAENV
                    205: *     ..
                    206: *     .. Executable Statements ..
                    207: *
                    208: *     Test the input parameters
                    209: *
                    210:       INFO = 0
                    211:       LQUERY = ( LWORK.EQ.-1 )
                    212:       IF( N.LT.0 ) THEN
                    213:          INFO = -1
                    214:       ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
                    215:          INFO = -2
                    216:       ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
                    217:          INFO = -3
                    218:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    219:          INFO = -5
                    220:       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
                    221:          INFO = -8
                    222:       END IF
1.14      bertrand  223: *
                    224:       IF( INFO.EQ.0 ) THEN
                    225: *
                    226: *        Compute the workspace requirements
                    227: *
                    228:          NB = MIN( NBMAX, ILAENV( 1, 'DGEHRD', ' ', N, ILO, IHI, -1 ) )
                    229:          LWKOPT = N*NB + TSIZE
                    230:          WORK( 1 ) = LWKOPT
                    231:       END IF
1.16      bertrand  232: *
1.1       bertrand  233:       IF( INFO.NE.0 ) THEN
                    234:          CALL XERBLA( 'DGEHRD', -INFO )
                    235:          RETURN
                    236:       ELSE IF( LQUERY ) THEN
                    237:          RETURN
                    238:       END IF
                    239: *
                    240: *     Set elements 1:ILO-1 and IHI:N-1 of TAU to zero
                    241: *
                    242:       DO 10 I = 1, ILO - 1
                    243:          TAU( I ) = ZERO
                    244:    10 CONTINUE
                    245:       DO 20 I = MAX( 1, IHI ), N - 1
                    246:          TAU( I ) = ZERO
                    247:    20 CONTINUE
                    248: *
                    249: *     Quick return if possible
                    250: *
                    251:       NH = IHI - ILO + 1
                    252:       IF( NH.LE.1 ) THEN
                    253:          WORK( 1 ) = 1
                    254:          RETURN
                    255:       END IF
                    256: *
                    257: *     Determine the block size
                    258: *
                    259:       NB = MIN( NBMAX, ILAENV( 1, 'DGEHRD', ' ', N, ILO, IHI, -1 ) )
                    260:       NBMIN = 2
                    261:       IF( NB.GT.1 .AND. NB.LT.NH ) THEN
                    262: *
                    263: *        Determine when to cross over from blocked to unblocked code
                    264: *        (last block is always handled by unblocked code)
                    265: *
                    266:          NX = MAX( NB, ILAENV( 3, 'DGEHRD', ' ', N, ILO, IHI, -1 ) )
                    267:          IF( NX.LT.NH ) THEN
                    268: *
                    269: *           Determine if workspace is large enough for blocked code
                    270: *
1.14      bertrand  271:             IF( LWORK.LT.N*NB+TSIZE ) THEN
1.1       bertrand  272: *
                    273: *              Not enough workspace to use optimal NB:  determine the
                    274: *              minimum value of NB, and reduce NB or force use of
                    275: *              unblocked code
                    276: *
                    277:                NBMIN = MAX( 2, ILAENV( 2, 'DGEHRD', ' ', N, ILO, IHI,
                    278:      $                 -1 ) )
1.14      bertrand  279:                IF( LWORK.GE.(N*NBMIN + TSIZE) ) THEN
                    280:                   NB = (LWORK-TSIZE) / N
1.1       bertrand  281:                ELSE
                    282:                   NB = 1
                    283:                END IF
                    284:             END IF
                    285:          END IF
                    286:       END IF
                    287:       LDWORK = N
                    288: *
                    289:       IF( NB.LT.NBMIN .OR. NB.GE.NH ) THEN
                    290: *
                    291: *        Use unblocked code below
                    292: *
                    293:          I = ILO
                    294: *
                    295:       ELSE
                    296: *
                    297: *        Use blocked code
                    298: *
1.14      bertrand  299:          IWT = 1 + N*NB
1.1       bertrand  300:          DO 40 I = ILO, IHI - 1 - NX, NB
                    301:             IB = MIN( NB, IHI-I )
                    302: *
                    303: *           Reduce columns i:i+ib-1 to Hessenberg form, returning the
1.8       bertrand  304: *           matrices V and T of the block reflector H = I - V*T*V**T
1.1       bertrand  305: *           which performs the reduction, and also the matrix Y = A*V*T
                    306: *
1.14      bertrand  307:             CALL DLAHR2( IHI, I, IB, A( 1, I ), LDA, TAU( I ),
                    308:      $                   WORK( IWT ), LDT, WORK, LDWORK )
1.1       bertrand  309: *
                    310: *           Apply the block reflector H to A(1:ihi,i+ib:ihi) from the
1.8       bertrand  311: *           right, computing  A := A - Y * V**T. V(i+ib,ib-1) must be set
1.1       bertrand  312: *           to 1
                    313: *
                    314:             EI = A( I+IB, I+IB-1 )
                    315:             A( I+IB, I+IB-1 ) = ONE
1.16      bertrand  316:             CALL DGEMM( 'No transpose', 'Transpose',
1.1       bertrand  317:      $                  IHI, IHI-I-IB+1,
                    318:      $                  IB, -ONE, WORK, LDWORK, A( I+IB, I ), LDA, ONE,
                    319:      $                  A( 1, I+IB ), LDA )
                    320:             A( I+IB, I+IB-1 ) = EI
                    321: *
                    322: *           Apply the block reflector H to A(1:i,i+1:i+ib-1) from the
                    323: *           right
                    324: *
                    325:             CALL DTRMM( 'Right', 'Lower', 'Transpose',
                    326:      $                  'Unit', I, IB-1,
                    327:      $                  ONE, A( I+1, I ), LDA, WORK, LDWORK )
                    328:             DO 30 J = 0, IB-2
                    329:                CALL DAXPY( I, -ONE, WORK( LDWORK*J+1 ), 1,
                    330:      $                     A( 1, I+J+1 ), 1 )
                    331:    30       CONTINUE
                    332: *
                    333: *           Apply the block reflector H to A(i+1:ihi,i+ib:n) from the
                    334: *           left
                    335: *
                    336:             CALL DLARFB( 'Left', 'Transpose', 'Forward',
                    337:      $                   'Columnwise',
1.14      bertrand  338:      $                   IHI-I, N-I-IB+1, IB, A( I+1, I ), LDA,
                    339:      $                   WORK( IWT ), LDT, A( I+1, I+IB ), LDA,
                    340:      $                   WORK, LDWORK )
1.1       bertrand  341:    40    CONTINUE
                    342:       END IF
                    343: *
                    344: *     Use unblocked code to reduce the rest of the matrix
                    345: *
                    346:       CALL DGEHD2( N, I, IHI, A, LDA, TAU, WORK, IINFO )
1.14      bertrand  347:       WORK( 1 ) = LWKOPT
1.1       bertrand  348: *
                    349:       RETURN
                    350: *
                    351: *     End of DGEHRD
                    352: *
                    353:       END

CVSweb interface <joel.bertrand@systella.fr>