Annotation of rpl/lapack/lapack/dgegv.f, revision 1.8

1.8     ! bertrand    1: *> \brief <b> DGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DGEGV + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgegv.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgegv.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgegv.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
        !            22: *                         BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       CHARACTER          JOBVL, JOBVR
        !            26: *       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
        !            27: *       ..
        !            28: *       .. Array Arguments ..
        !            29: *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
        !            30: *      $                   B( LDB, * ), BETA( * ), VL( LDVL, * ),
        !            31: *      $                   VR( LDVR, * ), WORK( * )
        !            32: *       ..
        !            33: *  
        !            34: *
        !            35: *> \par Purpose:
        !            36: *  =============
        !            37: *>
        !            38: *> \verbatim
        !            39: *>
        !            40: *> This routine is deprecated and has been replaced by routine DGGEV.
        !            41: *>
        !            42: *> DGEGV computes the eigenvalues and, optionally, the left and/or right
        !            43: *> eigenvectors of a real matrix pair (A,B).
        !            44: *> Given two square matrices A and B,
        !            45: *> the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
        !            46: *> eigenvalues lambda and corresponding (non-zero) eigenvectors x such
        !            47: *> that
        !            48: *>
        !            49: *>    A*x = lambda*B*x.
        !            50: *>
        !            51: *> An alternate form is to find the eigenvalues mu and corresponding
        !            52: *> eigenvectors y such that
        !            53: *>
        !            54: *>    mu*A*y = B*y.
        !            55: *>
        !            56: *> These two forms are equivalent with mu = 1/lambda and x = y if
        !            57: *> neither lambda nor mu is zero.  In order to deal with the case that
        !            58: *> lambda or mu is zero or small, two values alpha and beta are returned
        !            59: *> for each eigenvalue, such that lambda = alpha/beta and
        !            60: *> mu = beta/alpha.
        !            61: *>
        !            62: *> The vectors x and y in the above equations are right eigenvectors of
        !            63: *> the matrix pair (A,B).  Vectors u and v satisfying
        !            64: *>
        !            65: *>    u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B
        !            66: *>
        !            67: *> are left eigenvectors of (A,B).
        !            68: *>
        !            69: *> Note: this routine performs "full balancing" on A and B
        !            70: *> \endverbatim
        !            71: *
        !            72: *  Arguments:
        !            73: *  ==========
        !            74: *
        !            75: *> \param[in] JOBVL
        !            76: *> \verbatim
        !            77: *>          JOBVL is CHARACTER*1
        !            78: *>          = 'N':  do not compute the left generalized eigenvectors;
        !            79: *>          = 'V':  compute the left generalized eigenvectors (returned
        !            80: *>                  in VL).
        !            81: *> \endverbatim
        !            82: *>
        !            83: *> \param[in] JOBVR
        !            84: *> \verbatim
        !            85: *>          JOBVR is CHARACTER*1
        !            86: *>          = 'N':  do not compute the right generalized eigenvectors;
        !            87: *>          = 'V':  compute the right generalized eigenvectors (returned
        !            88: *>                  in VR).
        !            89: *> \endverbatim
        !            90: *>
        !            91: *> \param[in] N
        !            92: *> \verbatim
        !            93: *>          N is INTEGER
        !            94: *>          The order of the matrices A, B, VL, and VR.  N >= 0.
        !            95: *> \endverbatim
        !            96: *>
        !            97: *> \param[in,out] A
        !            98: *> \verbatim
        !            99: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
        !           100: *>          On entry, the matrix A.
        !           101: *>          If JOBVL = 'V' or JOBVR = 'V', then on exit A
        !           102: *>          contains the real Schur form of A from the generalized Schur
        !           103: *>          factorization of the pair (A,B) after balancing.
        !           104: *>          If no eigenvectors were computed, then only the diagonal
        !           105: *>          blocks from the Schur form will be correct.  See DGGHRD and
        !           106: *>          DHGEQZ for details.
        !           107: *> \endverbatim
        !           108: *>
        !           109: *> \param[in] LDA
        !           110: *> \verbatim
        !           111: *>          LDA is INTEGER
        !           112: *>          The leading dimension of A.  LDA >= max(1,N).
        !           113: *> \endverbatim
        !           114: *>
        !           115: *> \param[in,out] B
        !           116: *> \verbatim
        !           117: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
        !           118: *>          On entry, the matrix B.
        !           119: *>          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
        !           120: *>          upper triangular matrix obtained from B in the generalized
        !           121: *>          Schur factorization of the pair (A,B) after balancing.
        !           122: *>          If no eigenvectors were computed, then only those elements of
        !           123: *>          B corresponding to the diagonal blocks from the Schur form of
        !           124: *>          A will be correct.  See DGGHRD and DHGEQZ for details.
        !           125: *> \endverbatim
        !           126: *>
        !           127: *> \param[in] LDB
        !           128: *> \verbatim
        !           129: *>          LDB is INTEGER
        !           130: *>          The leading dimension of B.  LDB >= max(1,N).
        !           131: *> \endverbatim
        !           132: *>
        !           133: *> \param[out] ALPHAR
        !           134: *> \verbatim
        !           135: *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
        !           136: *>          The real parts of each scalar alpha defining an eigenvalue of
        !           137: *>          GNEP.
        !           138: *> \endverbatim
        !           139: *>
        !           140: *> \param[out] ALPHAI
        !           141: *> \verbatim
        !           142: *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
        !           143: *>          The imaginary parts of each scalar alpha defining an
        !           144: *>          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th
        !           145: *>          eigenvalue is real; if positive, then the j-th and
        !           146: *>          (j+1)-st eigenvalues are a complex conjugate pair, with
        !           147: *>          ALPHAI(j+1) = -ALPHAI(j).
        !           148: *> \endverbatim
        !           149: *>
        !           150: *> \param[out] BETA
        !           151: *> \verbatim
        !           152: *>          BETA is DOUBLE PRECISION array, dimension (N)
        !           153: *>          The scalars beta that define the eigenvalues of GNEP.
        !           154: *>          
        !           155: *>          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
        !           156: *>          beta = BETA(j) represent the j-th eigenvalue of the matrix
        !           157: *>          pair (A,B), in one of the forms lambda = alpha/beta or
        !           158: *>          mu = beta/alpha.  Since either lambda or mu may overflow,
        !           159: *>          they should not, in general, be computed.
        !           160: *> \endverbatim
        !           161: *>
        !           162: *> \param[out] VL
        !           163: *> \verbatim
        !           164: *>          VL is DOUBLE PRECISION array, dimension (LDVL,N)
        !           165: *>          If JOBVL = 'V', the left eigenvectors u(j) are stored
        !           166: *>          in the columns of VL, in the same order as their eigenvalues.
        !           167: *>          If the j-th eigenvalue is real, then u(j) = VL(:,j).
        !           168: *>          If the j-th and (j+1)-st eigenvalues form a complex conjugate
        !           169: *>          pair, then
        !           170: *>             u(j) = VL(:,j) + i*VL(:,j+1)
        !           171: *>          and
        !           172: *>            u(j+1) = VL(:,j) - i*VL(:,j+1).
        !           173: *>
        !           174: *>          Each eigenvector is scaled so that its largest component has
        !           175: *>          abs(real part) + abs(imag. part) = 1, except for eigenvectors
        !           176: *>          corresponding to an eigenvalue with alpha = beta = 0, which
        !           177: *>          are set to zero.
        !           178: *>          Not referenced if JOBVL = 'N'.
        !           179: *> \endverbatim
        !           180: *>
        !           181: *> \param[in] LDVL
        !           182: *> \verbatim
        !           183: *>          LDVL is INTEGER
        !           184: *>          The leading dimension of the matrix VL. LDVL >= 1, and
        !           185: *>          if JOBVL = 'V', LDVL >= N.
        !           186: *> \endverbatim
        !           187: *>
        !           188: *> \param[out] VR
        !           189: *> \verbatim
        !           190: *>          VR is DOUBLE PRECISION array, dimension (LDVR,N)
        !           191: *>          If JOBVR = 'V', the right eigenvectors x(j) are stored
        !           192: *>          in the columns of VR, in the same order as their eigenvalues.
        !           193: *>          If the j-th eigenvalue is real, then x(j) = VR(:,j).
        !           194: *>          If the j-th and (j+1)-st eigenvalues form a complex conjugate
        !           195: *>          pair, then
        !           196: *>            x(j) = VR(:,j) + i*VR(:,j+1)
        !           197: *>          and
        !           198: *>            x(j+1) = VR(:,j) - i*VR(:,j+1).
        !           199: *>
        !           200: *>          Each eigenvector is scaled so that its largest component has
        !           201: *>          abs(real part) + abs(imag. part) = 1, except for eigenvalues
        !           202: *>          corresponding to an eigenvalue with alpha = beta = 0, which
        !           203: *>          are set to zero.
        !           204: *>          Not referenced if JOBVR = 'N'.
        !           205: *> \endverbatim
        !           206: *>
        !           207: *> \param[in] LDVR
        !           208: *> \verbatim
        !           209: *>          LDVR is INTEGER
        !           210: *>          The leading dimension of the matrix VR. LDVR >= 1, and
        !           211: *>          if JOBVR = 'V', LDVR >= N.
        !           212: *> \endverbatim
        !           213: *>
        !           214: *> \param[out] WORK
        !           215: *> \verbatim
        !           216: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           217: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           218: *> \endverbatim
        !           219: *>
        !           220: *> \param[in] LWORK
        !           221: *> \verbatim
        !           222: *>          LWORK is INTEGER
        !           223: *>          The dimension of the array WORK.  LWORK >= max(1,8*N).
        !           224: *>          For good performance, LWORK must generally be larger.
        !           225: *>          To compute the optimal value of LWORK, call ILAENV to get
        !           226: *>          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute:
        !           227: *>          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR;
        !           228: *>          The optimal LWORK is:
        !           229: *>              2*N + MAX( 6*N, N*(NB+1) ).
        !           230: *>
        !           231: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           232: *>          only calculates the optimal size of the WORK array, returns
        !           233: *>          this value as the first entry of the WORK array, and no error
        !           234: *>          message related to LWORK is issued by XERBLA.
        !           235: *> \endverbatim
        !           236: *>
        !           237: *> \param[out] INFO
        !           238: *> \verbatim
        !           239: *>          INFO is INTEGER
        !           240: *>          = 0:  successful exit
        !           241: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           242: *>          = 1,...,N:
        !           243: *>                The QZ iteration failed.  No eigenvectors have been
        !           244: *>                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
        !           245: *>                should be correct for j=INFO+1,...,N.
        !           246: *>          > N:  errors that usually indicate LAPACK problems:
        !           247: *>                =N+1: error return from DGGBAL
        !           248: *>                =N+2: error return from DGEQRF
        !           249: *>                =N+3: error return from DORMQR
        !           250: *>                =N+4: error return from DORGQR
        !           251: *>                =N+5: error return from DGGHRD
        !           252: *>                =N+6: error return from DHGEQZ (other than failed
        !           253: *>                                                iteration)
        !           254: *>                =N+7: error return from DTGEVC
        !           255: *>                =N+8: error return from DGGBAK (computing VL)
        !           256: *>                =N+9: error return from DGGBAK (computing VR)
        !           257: *>                =N+10: error return from DLASCL (various calls)
        !           258: *> \endverbatim
        !           259: *
        !           260: *  Authors:
        !           261: *  ========
        !           262: *
        !           263: *> \author Univ. of Tennessee 
        !           264: *> \author Univ. of California Berkeley 
        !           265: *> \author Univ. of Colorado Denver 
        !           266: *> \author NAG Ltd. 
        !           267: *
        !           268: *> \date November 2011
        !           269: *
        !           270: *> \ingroup doubleGEeigen
        !           271: *
        !           272: *> \par Further Details:
        !           273: *  =====================
        !           274: *>
        !           275: *> \verbatim
        !           276: *>
        !           277: *>  Balancing
        !           278: *>  ---------
        !           279: *>
        !           280: *>  This driver calls DGGBAL to both permute and scale rows and columns
        !           281: *>  of A and B.  The permutations PL and PR are chosen so that PL*A*PR
        !           282: *>  and PL*B*R will be upper triangular except for the diagonal blocks
        !           283: *>  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
        !           284: *>  possible.  The diagonal scaling matrices DL and DR are chosen so
        !           285: *>  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
        !           286: *>  one (except for the elements that start out zero.)
        !           287: *>
        !           288: *>  After the eigenvalues and eigenvectors of the balanced matrices
        !           289: *>  have been computed, DGGBAK transforms the eigenvectors back to what
        !           290: *>  they would have been (in perfect arithmetic) if they had not been
        !           291: *>  balanced.
        !           292: *>
        !           293: *>  Contents of A and B on Exit
        !           294: *>  -------- -- - --- - -- ----
        !           295: *>
        !           296: *>  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
        !           297: *>  both), then on exit the arrays A and B will contain the real Schur
        !           298: *>  form[*] of the "balanced" versions of A and B.  If no eigenvectors
        !           299: *>  are computed, then only the diagonal blocks will be correct.
        !           300: *>
        !           301: *>  [*] See DHGEQZ, DGEGS, or read the book "Matrix Computations",
        !           302: *>      by Golub & van Loan, pub. by Johns Hopkins U. Press.
        !           303: *> \endverbatim
        !           304: *>
        !           305: *  =====================================================================
1.1       bertrand  306:       SUBROUTINE DGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
                    307:      $                  BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
                    308: *
1.8     ! bertrand  309: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  310: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    311: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  312: *     November 2011
1.1       bertrand  313: *
                    314: *     .. Scalar Arguments ..
                    315:       CHARACTER          JOBVL, JOBVR
                    316:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
                    317: *     ..
                    318: *     .. Array Arguments ..
                    319:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                    320:      $                   B( LDB, * ), BETA( * ), VL( LDVL, * ),
                    321:      $                   VR( LDVR, * ), WORK( * )
                    322: *     ..
                    323: *
                    324: *  =====================================================================
                    325: *
                    326: *     .. Parameters ..
                    327:       DOUBLE PRECISION   ZERO, ONE
                    328:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    329: *     ..
                    330: *     .. Local Scalars ..
                    331:       LOGICAL            ILIMIT, ILV, ILVL, ILVR, LQUERY
                    332:       CHARACTER          CHTEMP
                    333:       INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
                    334:      $                   IN, IRIGHT, IROWS, ITAU, IWORK, JC, JR, LOPT,
                    335:      $                   LWKMIN, LWKOPT, NB, NB1, NB2, NB3
                    336:       DOUBLE PRECISION   ABSAI, ABSAR, ABSB, ANRM, ANRM1, ANRM2, BNRM,
                    337:      $                   BNRM1, BNRM2, EPS, ONEPLS, SAFMAX, SAFMIN,
                    338:      $                   SALFAI, SALFAR, SBETA, SCALE, TEMP
                    339: *     ..
                    340: *     .. Local Arrays ..
                    341:       LOGICAL            LDUMMA( 1 )
                    342: *     ..
                    343: *     .. External Subroutines ..
                    344:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY,
                    345:      $                   DLASCL, DLASET, DORGQR, DORMQR, DTGEVC, XERBLA
                    346: *     ..
                    347: *     .. External Functions ..
                    348:       LOGICAL            LSAME
                    349:       INTEGER            ILAENV
                    350:       DOUBLE PRECISION   DLAMCH, DLANGE
                    351:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
                    352: *     ..
                    353: *     .. Intrinsic Functions ..
                    354:       INTRINSIC          ABS, INT, MAX
                    355: *     ..
                    356: *     .. Executable Statements ..
                    357: *
                    358: *     Decode the input arguments
                    359: *
                    360:       IF( LSAME( JOBVL, 'N' ) ) THEN
                    361:          IJOBVL = 1
                    362:          ILVL = .FALSE.
                    363:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
                    364:          IJOBVL = 2
                    365:          ILVL = .TRUE.
                    366:       ELSE
                    367:          IJOBVL = -1
                    368:          ILVL = .FALSE.
                    369:       END IF
                    370: *
                    371:       IF( LSAME( JOBVR, 'N' ) ) THEN
                    372:          IJOBVR = 1
                    373:          ILVR = .FALSE.
                    374:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
                    375:          IJOBVR = 2
                    376:          ILVR = .TRUE.
                    377:       ELSE
                    378:          IJOBVR = -1
                    379:          ILVR = .FALSE.
                    380:       END IF
                    381:       ILV = ILVL .OR. ILVR
                    382: *
                    383: *     Test the input arguments
                    384: *
                    385:       LWKMIN = MAX( 8*N, 1 )
                    386:       LWKOPT = LWKMIN
                    387:       WORK( 1 ) = LWKOPT
                    388:       LQUERY = ( LWORK.EQ.-1 )
                    389:       INFO = 0
                    390:       IF( IJOBVL.LE.0 ) THEN
                    391:          INFO = -1
                    392:       ELSE IF( IJOBVR.LE.0 ) THEN
                    393:          INFO = -2
                    394:       ELSE IF( N.LT.0 ) THEN
                    395:          INFO = -3
                    396:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    397:          INFO = -5
                    398:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    399:          INFO = -7
                    400:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
                    401:          INFO = -12
                    402:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
                    403:          INFO = -14
                    404:       ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
                    405:          INFO = -16
                    406:       END IF
                    407: *
                    408:       IF( INFO.EQ.0 ) THEN
                    409:          NB1 = ILAENV( 1, 'DGEQRF', ' ', N, N, -1, -1 )
                    410:          NB2 = ILAENV( 1, 'DORMQR', ' ', N, N, N, -1 )
                    411:          NB3 = ILAENV( 1, 'DORGQR', ' ', N, N, N, -1 )
                    412:          NB = MAX( NB1, NB2, NB3 )
                    413:          LOPT = 2*N + MAX( 6*N, N*( NB+1 ) )
                    414:          WORK( 1 ) = LOPT
                    415:       END IF
                    416: *
                    417:       IF( INFO.NE.0 ) THEN
                    418:          CALL XERBLA( 'DGEGV ', -INFO )
                    419:          RETURN
                    420:       ELSE IF( LQUERY ) THEN
                    421:          RETURN
                    422:       END IF
                    423: *
                    424: *     Quick return if possible
                    425: *
                    426:       IF( N.EQ.0 )
                    427:      $   RETURN
                    428: *
                    429: *     Get machine constants
                    430: *
                    431:       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
                    432:       SAFMIN = DLAMCH( 'S' )
                    433:       SAFMIN = SAFMIN + SAFMIN
                    434:       SAFMAX = ONE / SAFMIN
                    435:       ONEPLS = ONE + ( 4*EPS )
                    436: *
                    437: *     Scale A
                    438: *
                    439:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
                    440:       ANRM1 = ANRM
                    441:       ANRM2 = ONE
                    442:       IF( ANRM.LT.ONE ) THEN
                    443:          IF( SAFMAX*ANRM.LT.ONE ) THEN
                    444:             ANRM1 = SAFMIN
                    445:             ANRM2 = SAFMAX*ANRM
                    446:          END IF
                    447:       END IF
                    448: *
                    449:       IF( ANRM.GT.ZERO ) THEN
                    450:          CALL DLASCL( 'G', -1, -1, ANRM, ONE, N, N, A, LDA, IINFO )
                    451:          IF( IINFO.NE.0 ) THEN
                    452:             INFO = N + 10
                    453:             RETURN
                    454:          END IF
                    455:       END IF
                    456: *
                    457: *     Scale B
                    458: *
                    459:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
                    460:       BNRM1 = BNRM
                    461:       BNRM2 = ONE
                    462:       IF( BNRM.LT.ONE ) THEN
                    463:          IF( SAFMAX*BNRM.LT.ONE ) THEN
                    464:             BNRM1 = SAFMIN
                    465:             BNRM2 = SAFMAX*BNRM
                    466:          END IF
                    467:       END IF
                    468: *
                    469:       IF( BNRM.GT.ZERO ) THEN
                    470:          CALL DLASCL( 'G', -1, -1, BNRM, ONE, N, N, B, LDB, IINFO )
                    471:          IF( IINFO.NE.0 ) THEN
                    472:             INFO = N + 10
                    473:             RETURN
                    474:          END IF
                    475:       END IF
                    476: *
                    477: *     Permute the matrix to make it more nearly triangular
                    478: *     Workspace layout:  (8*N words -- "work" requires 6*N words)
                    479: *        left_permutation, right_permutation, work...
                    480: *
                    481:       ILEFT = 1
                    482:       IRIGHT = N + 1
                    483:       IWORK = IRIGHT + N
                    484:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
                    485:      $             WORK( IRIGHT ), WORK( IWORK ), IINFO )
                    486:       IF( IINFO.NE.0 ) THEN
                    487:          INFO = N + 1
                    488:          GO TO 120
                    489:       END IF
                    490: *
                    491: *     Reduce B to triangular form, and initialize VL and/or VR
                    492: *     Workspace layout:  ("work..." must have at least N words)
                    493: *        left_permutation, right_permutation, tau, work...
                    494: *
                    495:       IROWS = IHI + 1 - ILO
                    496:       IF( ILV ) THEN
                    497:          ICOLS = N + 1 - ILO
                    498:       ELSE
                    499:          ICOLS = IROWS
                    500:       END IF
                    501:       ITAU = IWORK
                    502:       IWORK = ITAU + IROWS
                    503:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    504:      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
                    505:       IF( IINFO.GE.0 )
                    506:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    507:       IF( IINFO.NE.0 ) THEN
                    508:          INFO = N + 2
                    509:          GO TO 120
                    510:       END IF
                    511: *
                    512:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    513:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
                    514:      $             LWORK+1-IWORK, IINFO )
                    515:       IF( IINFO.GE.0 )
                    516:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    517:       IF( IINFO.NE.0 ) THEN
                    518:          INFO = N + 3
                    519:          GO TO 120
                    520:       END IF
                    521: *
                    522:       IF( ILVL ) THEN
                    523:          CALL DLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
                    524:          CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    525:      $                VL( ILO+1, ILO ), LDVL )
                    526:          CALL DORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
                    527:      $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
                    528:      $                IINFO )
                    529:          IF( IINFO.GE.0 )
                    530:      $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    531:          IF( IINFO.NE.0 ) THEN
                    532:             INFO = N + 4
                    533:             GO TO 120
                    534:          END IF
                    535:       END IF
                    536: *
                    537:       IF( ILVR )
                    538:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
                    539: *
                    540: *     Reduce to generalized Hessenberg form
                    541: *
                    542:       IF( ILV ) THEN
                    543: *
                    544: *        Eigenvectors requested -- work on whole matrix.
                    545: *
                    546:          CALL DGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
                    547:      $                LDVL, VR, LDVR, IINFO )
                    548:       ELSE
                    549:          CALL DGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
                    550:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IINFO )
                    551:       END IF
                    552:       IF( IINFO.NE.0 ) THEN
                    553:          INFO = N + 5
                    554:          GO TO 120
                    555:       END IF
                    556: *
                    557: *     Perform QZ algorithm
                    558: *     Workspace layout:  ("work..." must have at least 1 word)
                    559: *        left_permutation, right_permutation, work...
                    560: *
                    561:       IWORK = ITAU
                    562:       IF( ILV ) THEN
                    563:          CHTEMP = 'S'
                    564:       ELSE
                    565:          CHTEMP = 'E'
                    566:       END IF
                    567:       CALL DHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
                    568:      $             ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
                    569:      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
                    570:       IF( IINFO.GE.0 )
                    571:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    572:       IF( IINFO.NE.0 ) THEN
                    573:          IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
                    574:             INFO = IINFO
                    575:          ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
                    576:             INFO = IINFO - N
                    577:          ELSE
                    578:             INFO = N + 6
                    579:          END IF
                    580:          GO TO 120
                    581:       END IF
                    582: *
                    583:       IF( ILV ) THEN
                    584: *
                    585: *        Compute Eigenvectors  (DTGEVC requires 6*N words of workspace)
                    586: *
                    587:          IF( ILVL ) THEN
                    588:             IF( ILVR ) THEN
                    589:                CHTEMP = 'B'
                    590:             ELSE
                    591:                CHTEMP = 'L'
                    592:             END IF
                    593:          ELSE
                    594:             CHTEMP = 'R'
                    595:          END IF
                    596: *
                    597:          CALL DTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
                    598:      $                VR, LDVR, N, IN, WORK( IWORK ), IINFO )
                    599:          IF( IINFO.NE.0 ) THEN
                    600:             INFO = N + 7
                    601:             GO TO 120
                    602:          END IF
                    603: *
                    604: *        Undo balancing on VL and VR, rescale
                    605: *
                    606:          IF( ILVL ) THEN
                    607:             CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
                    608:      $                   WORK( IRIGHT ), N, VL, LDVL, IINFO )
                    609:             IF( IINFO.NE.0 ) THEN
                    610:                INFO = N + 8
                    611:                GO TO 120
                    612:             END IF
                    613:             DO 50 JC = 1, N
                    614:                IF( ALPHAI( JC ).LT.ZERO )
                    615:      $            GO TO 50
                    616:                TEMP = ZERO
                    617:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    618:                   DO 10 JR = 1, N
                    619:                      TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
                    620:    10             CONTINUE
                    621:                ELSE
                    622:                   DO 20 JR = 1, N
                    623:                      TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
                    624:      $                      ABS( VL( JR, JC+1 ) ) )
                    625:    20             CONTINUE
                    626:                END IF
                    627:                IF( TEMP.LT.SAFMIN )
                    628:      $            GO TO 50
                    629:                TEMP = ONE / TEMP
                    630:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    631:                   DO 30 JR = 1, N
                    632:                      VL( JR, JC ) = VL( JR, JC )*TEMP
                    633:    30             CONTINUE
                    634:                ELSE
                    635:                   DO 40 JR = 1, N
                    636:                      VL( JR, JC ) = VL( JR, JC )*TEMP
                    637:                      VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
                    638:    40             CONTINUE
                    639:                END IF
                    640:    50       CONTINUE
                    641:          END IF
                    642:          IF( ILVR ) THEN
                    643:             CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
                    644:      $                   WORK( IRIGHT ), N, VR, LDVR, IINFO )
                    645:             IF( IINFO.NE.0 ) THEN
                    646:                INFO = N + 9
                    647:                GO TO 120
                    648:             END IF
                    649:             DO 100 JC = 1, N
                    650:                IF( ALPHAI( JC ).LT.ZERO )
                    651:      $            GO TO 100
                    652:                TEMP = ZERO
                    653:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    654:                   DO 60 JR = 1, N
                    655:                      TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
                    656:    60             CONTINUE
                    657:                ELSE
                    658:                   DO 70 JR = 1, N
                    659:                      TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
                    660:      $                      ABS( VR( JR, JC+1 ) ) )
                    661:    70             CONTINUE
                    662:                END IF
                    663:                IF( TEMP.LT.SAFMIN )
                    664:      $            GO TO 100
                    665:                TEMP = ONE / TEMP
                    666:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    667:                   DO 80 JR = 1, N
                    668:                      VR( JR, JC ) = VR( JR, JC )*TEMP
                    669:    80             CONTINUE
                    670:                ELSE
                    671:                   DO 90 JR = 1, N
                    672:                      VR( JR, JC ) = VR( JR, JC )*TEMP
                    673:                      VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
                    674:    90             CONTINUE
                    675:                END IF
                    676:   100       CONTINUE
                    677:          END IF
                    678: *
                    679: *        End of eigenvector calculation
                    680: *
                    681:       END IF
                    682: *
                    683: *     Undo scaling in alpha, beta
                    684: *
                    685: *     Note: this does not give the alpha and beta for the unscaled
                    686: *     problem.
                    687: *
                    688: *     Un-scaling is limited to avoid underflow in alpha and beta
                    689: *     if they are significant.
                    690: *
                    691:       DO 110 JC = 1, N
                    692:          ABSAR = ABS( ALPHAR( JC ) )
                    693:          ABSAI = ABS( ALPHAI( JC ) )
                    694:          ABSB = ABS( BETA( JC ) )
                    695:          SALFAR = ANRM*ALPHAR( JC )
                    696:          SALFAI = ANRM*ALPHAI( JC )
                    697:          SBETA = BNRM*BETA( JC )
                    698:          ILIMIT = .FALSE.
                    699:          SCALE = ONE
                    700: *
                    701: *        Check for significant underflow in ALPHAI
                    702: *
                    703:          IF( ABS( SALFAI ).LT.SAFMIN .AND. ABSAI.GE.
                    704:      $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSB ) ) THEN
                    705:             ILIMIT = .TRUE.
                    706:             SCALE = ( ONEPLS*SAFMIN / ANRM1 ) /
                    707:      $              MAX( ONEPLS*SAFMIN, ANRM2*ABSAI )
                    708: *
                    709:          ELSE IF( SALFAI.EQ.ZERO ) THEN
                    710: *
                    711: *           If insignificant underflow in ALPHAI, then make the
                    712: *           conjugate eigenvalue real.
                    713: *
                    714:             IF( ALPHAI( JC ).LT.ZERO .AND. JC.GT.1 ) THEN
                    715:                ALPHAI( JC-1 ) = ZERO
                    716:             ELSE IF( ALPHAI( JC ).GT.ZERO .AND. JC.LT.N ) THEN
                    717:                ALPHAI( JC+1 ) = ZERO
                    718:             END IF
                    719:          END IF
                    720: *
                    721: *        Check for significant underflow in ALPHAR
                    722: *
                    723:          IF( ABS( SALFAR ).LT.SAFMIN .AND. ABSAR.GE.
                    724:      $       MAX( SAFMIN, EPS*ABSAI, EPS*ABSB ) ) THEN
                    725:             ILIMIT = .TRUE.
                    726:             SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / ANRM1 ) /
                    727:      $              MAX( ONEPLS*SAFMIN, ANRM2*ABSAR ) )
                    728:          END IF
                    729: *
                    730: *        Check for significant underflow in BETA
                    731: *
                    732:          IF( ABS( SBETA ).LT.SAFMIN .AND. ABSB.GE.
                    733:      $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSAI ) ) THEN
                    734:             ILIMIT = .TRUE.
                    735:             SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / BNRM1 ) /
                    736:      $              MAX( ONEPLS*SAFMIN, BNRM2*ABSB ) )
                    737:          END IF
                    738: *
                    739: *        Check for possible overflow when limiting scaling
                    740: *
                    741:          IF( ILIMIT ) THEN
                    742:             TEMP = ( SCALE*SAFMIN )*MAX( ABS( SALFAR ), ABS( SALFAI ),
                    743:      $             ABS( SBETA ) )
                    744:             IF( TEMP.GT.ONE )
                    745:      $         SCALE = SCALE / TEMP
                    746:             IF( SCALE.LT.ONE )
                    747:      $         ILIMIT = .FALSE.
                    748:          END IF
                    749: *
                    750: *        Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary.
                    751: *
                    752:          IF( ILIMIT ) THEN
                    753:             SALFAR = ( SCALE*ALPHAR( JC ) )*ANRM
                    754:             SALFAI = ( SCALE*ALPHAI( JC ) )*ANRM
                    755:             SBETA = ( SCALE*BETA( JC ) )*BNRM
                    756:          END IF
                    757:          ALPHAR( JC ) = SALFAR
                    758:          ALPHAI( JC ) = SALFAI
                    759:          BETA( JC ) = SBETA
                    760:   110 CONTINUE
                    761: *
                    762:   120 CONTINUE
                    763:       WORK( 1 ) = LWKOPT
                    764: *
                    765:       RETURN
                    766: *
                    767: *     End of DGEGV
                    768: *
                    769:       END

CVSweb interface <joel.bertrand@systella.fr>