Annotation of rpl/lapack/lapack/dgegv.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE DGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
                      2:      $                  BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
                      3: *
                      4: *  -- LAPACK driver routine (version 3.2) --
                      5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      7: *     November 2006
                      8: *
                      9: *     .. Scalar Arguments ..
                     10:       CHARACTER          JOBVL, JOBVR
                     11:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
                     12: *     ..
                     13: *     .. Array Arguments ..
                     14:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                     15:      $                   B( LDB, * ), BETA( * ), VL( LDVL, * ),
                     16:      $                   VR( LDVR, * ), WORK( * )
                     17: *     ..
                     18: *
                     19: *  Purpose
                     20: *  =======
                     21: *
                     22: *  This routine is deprecated and has been replaced by routine DGGEV.
                     23: *
                     24: *  DGEGV computes the eigenvalues and, optionally, the left and/or right
                     25: *  eigenvectors of a real matrix pair (A,B).
                     26: *  Given two square matrices A and B,
                     27: *  the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
                     28: *  eigenvalues lambda and corresponding (non-zero) eigenvectors x such
                     29: *  that
                     30: *
                     31: *     A*x = lambda*B*x.
                     32: *
                     33: *  An alternate form is to find the eigenvalues mu and corresponding
                     34: *  eigenvectors y such that
                     35: *
                     36: *     mu*A*y = B*y.
                     37: *
                     38: *  These two forms are equivalent with mu = 1/lambda and x = y if
                     39: *  neither lambda nor mu is zero.  In order to deal with the case that
                     40: *  lambda or mu is zero or small, two values alpha and beta are returned
                     41: *  for each eigenvalue, such that lambda = alpha/beta and
                     42: *  mu = beta/alpha.
                     43: *
                     44: *  The vectors x and y in the above equations are right eigenvectors of
                     45: *  the matrix pair (A,B).  Vectors u and v satisfying
                     46: *
                     47: *     u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B
                     48: *
                     49: *  are left eigenvectors of (A,B).
                     50: *
                     51: *  Note: this routine performs "full balancing" on A and B -- see
                     52: *  "Further Details", below.
                     53: *
                     54: *  Arguments
                     55: *  =========
                     56: *
                     57: *  JOBVL   (input) CHARACTER*1
                     58: *          = 'N':  do not compute the left generalized eigenvectors;
                     59: *          = 'V':  compute the left generalized eigenvectors (returned
                     60: *                  in VL).
                     61: *
                     62: *  JOBVR   (input) CHARACTER*1
                     63: *          = 'N':  do not compute the right generalized eigenvectors;
                     64: *          = 'V':  compute the right generalized eigenvectors (returned
                     65: *                  in VR).
                     66: *
                     67: *  N       (input) INTEGER
                     68: *          The order of the matrices A, B, VL, and VR.  N >= 0.
                     69: *
                     70: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
                     71: *          On entry, the matrix A.
                     72: *          If JOBVL = 'V' or JOBVR = 'V', then on exit A
                     73: *          contains the real Schur form of A from the generalized Schur
                     74: *          factorization of the pair (A,B) after balancing.
                     75: *          If no eigenvectors were computed, then only the diagonal
                     76: *          blocks from the Schur form will be correct.  See DGGHRD and
                     77: *          DHGEQZ for details.
                     78: *
                     79: *  LDA     (input) INTEGER
                     80: *          The leading dimension of A.  LDA >= max(1,N).
                     81: *
                     82: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
                     83: *          On entry, the matrix B.
                     84: *          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
                     85: *          upper triangular matrix obtained from B in the generalized
                     86: *          Schur factorization of the pair (A,B) after balancing.
                     87: *          If no eigenvectors were computed, then only those elements of
                     88: *          B corresponding to the diagonal blocks from the Schur form of
                     89: *          A will be correct.  See DGGHRD and DHGEQZ for details.
                     90: *
                     91: *  LDB     (input) INTEGER
                     92: *          The leading dimension of B.  LDB >= max(1,N).
                     93: *
                     94: *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
                     95: *          The real parts of each scalar alpha defining an eigenvalue of
                     96: *          GNEP.
                     97: *
                     98: *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
                     99: *          The imaginary parts of each scalar alpha defining an
                    100: *          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th
                    101: *          eigenvalue is real; if positive, then the j-th and
                    102: *          (j+1)-st eigenvalues are a complex conjugate pair, with
                    103: *          ALPHAI(j+1) = -ALPHAI(j).
                    104: *
                    105: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
                    106: *          The scalars beta that define the eigenvalues of GNEP.
                    107: *          
                    108: *          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
                    109: *          beta = BETA(j) represent the j-th eigenvalue of the matrix
                    110: *          pair (A,B), in one of the forms lambda = alpha/beta or
                    111: *          mu = beta/alpha.  Since either lambda or mu may overflow,
                    112: *          they should not, in general, be computed.
                    113: *
                    114: *  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)
                    115: *          If JOBVL = 'V', the left eigenvectors u(j) are stored
                    116: *          in the columns of VL, in the same order as their eigenvalues.
                    117: *          If the j-th eigenvalue is real, then u(j) = VL(:,j).
                    118: *          If the j-th and (j+1)-st eigenvalues form a complex conjugate
                    119: *          pair, then
                    120: *             u(j) = VL(:,j) + i*VL(:,j+1)
                    121: *          and
                    122: *            u(j+1) = VL(:,j) - i*VL(:,j+1).
                    123: *
                    124: *          Each eigenvector is scaled so that its largest component has
                    125: *          abs(real part) + abs(imag. part) = 1, except for eigenvectors
                    126: *          corresponding to an eigenvalue with alpha = beta = 0, which
                    127: *          are set to zero.
                    128: *          Not referenced if JOBVL = 'N'.
                    129: *
                    130: *  LDVL    (input) INTEGER
                    131: *          The leading dimension of the matrix VL. LDVL >= 1, and
                    132: *          if JOBVL = 'V', LDVL >= N.
                    133: *
                    134: *  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)
                    135: *          If JOBVR = 'V', the right eigenvectors x(j) are stored
                    136: *          in the columns of VR, in the same order as their eigenvalues.
                    137: *          If the j-th eigenvalue is real, then x(j) = VR(:,j).
                    138: *          If the j-th and (j+1)-st eigenvalues form a complex conjugate
                    139: *          pair, then
                    140: *            x(j) = VR(:,j) + i*VR(:,j+1)
                    141: *          and
                    142: *            x(j+1) = VR(:,j) - i*VR(:,j+1).
                    143: *
                    144: *          Each eigenvector is scaled so that its largest component has
                    145: *          abs(real part) + abs(imag. part) = 1, except for eigenvalues
                    146: *          corresponding to an eigenvalue with alpha = beta = 0, which
                    147: *          are set to zero.
                    148: *          Not referenced if JOBVR = 'N'.
                    149: *
                    150: *  LDVR    (input) INTEGER
                    151: *          The leading dimension of the matrix VR. LDVR >= 1, and
                    152: *          if JOBVR = 'V', LDVR >= N.
                    153: *
                    154: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    155: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    156: *
                    157: *  LWORK   (input) INTEGER
                    158: *          The dimension of the array WORK.  LWORK >= max(1,8*N).
                    159: *          For good performance, LWORK must generally be larger.
                    160: *          To compute the optimal value of LWORK, call ILAENV to get
                    161: *          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute:
                    162: *          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR;
                    163: *          The optimal LWORK is:
                    164: *              2*N + MAX( 6*N, N*(NB+1) ).
                    165: *
                    166: *          If LWORK = -1, then a workspace query is assumed; the routine
                    167: *          only calculates the optimal size of the WORK array, returns
                    168: *          this value as the first entry of the WORK array, and no error
                    169: *          message related to LWORK is issued by XERBLA.
                    170: *
                    171: *  INFO    (output) INTEGER
                    172: *          = 0:  successful exit
                    173: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    174: *          = 1,...,N:
                    175: *                The QZ iteration failed.  No eigenvectors have been
                    176: *                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
                    177: *                should be correct for j=INFO+1,...,N.
                    178: *          > N:  errors that usually indicate LAPACK problems:
                    179: *                =N+1: error return from DGGBAL
                    180: *                =N+2: error return from DGEQRF
                    181: *                =N+3: error return from DORMQR
                    182: *                =N+4: error return from DORGQR
                    183: *                =N+5: error return from DGGHRD
                    184: *                =N+6: error return from DHGEQZ (other than failed
                    185: *                                                iteration)
                    186: *                =N+7: error return from DTGEVC
                    187: *                =N+8: error return from DGGBAK (computing VL)
                    188: *                =N+9: error return from DGGBAK (computing VR)
                    189: *                =N+10: error return from DLASCL (various calls)
                    190: *
                    191: *  Further Details
                    192: *  ===============
                    193: *
                    194: *  Balancing
                    195: *  ---------
                    196: *
                    197: *  This driver calls DGGBAL to both permute and scale rows and columns
                    198: *  of A and B.  The permutations PL and PR are chosen so that PL*A*PR
                    199: *  and PL*B*R will be upper triangular except for the diagonal blocks
                    200: *  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
                    201: *  possible.  The diagonal scaling matrices DL and DR are chosen so
                    202: *  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
                    203: *  one (except for the elements that start out zero.)
                    204: *
                    205: *  After the eigenvalues and eigenvectors of the balanced matrices
                    206: *  have been computed, DGGBAK transforms the eigenvectors back to what
                    207: *  they would have been (in perfect arithmetic) if they had not been
                    208: *  balanced.
                    209: *
                    210: *  Contents of A and B on Exit
                    211: *  -------- -- - --- - -- ----
                    212: *
                    213: *  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
                    214: *  both), then on exit the arrays A and B will contain the real Schur
                    215: *  form[*] of the "balanced" versions of A and B.  If no eigenvectors
                    216: *  are computed, then only the diagonal blocks will be correct.
                    217: *
                    218: *  [*] See DHGEQZ, DGEGS, or read the book "Matrix Computations",
                    219: *      by Golub & van Loan, pub. by Johns Hopkins U. Press.
                    220: *
                    221: *  =====================================================================
                    222: *
                    223: *     .. Parameters ..
                    224:       DOUBLE PRECISION   ZERO, ONE
                    225:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    226: *     ..
                    227: *     .. Local Scalars ..
                    228:       LOGICAL            ILIMIT, ILV, ILVL, ILVR, LQUERY
                    229:       CHARACTER          CHTEMP
                    230:       INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
                    231:      $                   IN, IRIGHT, IROWS, ITAU, IWORK, JC, JR, LOPT,
                    232:      $                   LWKMIN, LWKOPT, NB, NB1, NB2, NB3
                    233:       DOUBLE PRECISION   ABSAI, ABSAR, ABSB, ANRM, ANRM1, ANRM2, BNRM,
                    234:      $                   BNRM1, BNRM2, EPS, ONEPLS, SAFMAX, SAFMIN,
                    235:      $                   SALFAI, SALFAR, SBETA, SCALE, TEMP
                    236: *     ..
                    237: *     .. Local Arrays ..
                    238:       LOGICAL            LDUMMA( 1 )
                    239: *     ..
                    240: *     .. External Subroutines ..
                    241:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY,
                    242:      $                   DLASCL, DLASET, DORGQR, DORMQR, DTGEVC, XERBLA
                    243: *     ..
                    244: *     .. External Functions ..
                    245:       LOGICAL            LSAME
                    246:       INTEGER            ILAENV
                    247:       DOUBLE PRECISION   DLAMCH, DLANGE
                    248:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
                    249: *     ..
                    250: *     .. Intrinsic Functions ..
                    251:       INTRINSIC          ABS, INT, MAX
                    252: *     ..
                    253: *     .. Executable Statements ..
                    254: *
                    255: *     Decode the input arguments
                    256: *
                    257:       IF( LSAME( JOBVL, 'N' ) ) THEN
                    258:          IJOBVL = 1
                    259:          ILVL = .FALSE.
                    260:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
                    261:          IJOBVL = 2
                    262:          ILVL = .TRUE.
                    263:       ELSE
                    264:          IJOBVL = -1
                    265:          ILVL = .FALSE.
                    266:       END IF
                    267: *
                    268:       IF( LSAME( JOBVR, 'N' ) ) THEN
                    269:          IJOBVR = 1
                    270:          ILVR = .FALSE.
                    271:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
                    272:          IJOBVR = 2
                    273:          ILVR = .TRUE.
                    274:       ELSE
                    275:          IJOBVR = -1
                    276:          ILVR = .FALSE.
                    277:       END IF
                    278:       ILV = ILVL .OR. ILVR
                    279: *
                    280: *     Test the input arguments
                    281: *
                    282:       LWKMIN = MAX( 8*N, 1 )
                    283:       LWKOPT = LWKMIN
                    284:       WORK( 1 ) = LWKOPT
                    285:       LQUERY = ( LWORK.EQ.-1 )
                    286:       INFO = 0
                    287:       IF( IJOBVL.LE.0 ) THEN
                    288:          INFO = -1
                    289:       ELSE IF( IJOBVR.LE.0 ) THEN
                    290:          INFO = -2
                    291:       ELSE IF( N.LT.0 ) THEN
                    292:          INFO = -3
                    293:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    294:          INFO = -5
                    295:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    296:          INFO = -7
                    297:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
                    298:          INFO = -12
                    299:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
                    300:          INFO = -14
                    301:       ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
                    302:          INFO = -16
                    303:       END IF
                    304: *
                    305:       IF( INFO.EQ.0 ) THEN
                    306:          NB1 = ILAENV( 1, 'DGEQRF', ' ', N, N, -1, -1 )
                    307:          NB2 = ILAENV( 1, 'DORMQR', ' ', N, N, N, -1 )
                    308:          NB3 = ILAENV( 1, 'DORGQR', ' ', N, N, N, -1 )
                    309:          NB = MAX( NB1, NB2, NB3 )
                    310:          LOPT = 2*N + MAX( 6*N, N*( NB+1 ) )
                    311:          WORK( 1 ) = LOPT
                    312:       END IF
                    313: *
                    314:       IF( INFO.NE.0 ) THEN
                    315:          CALL XERBLA( 'DGEGV ', -INFO )
                    316:          RETURN
                    317:       ELSE IF( LQUERY ) THEN
                    318:          RETURN
                    319:       END IF
                    320: *
                    321: *     Quick return if possible
                    322: *
                    323:       IF( N.EQ.0 )
                    324:      $   RETURN
                    325: *
                    326: *     Get machine constants
                    327: *
                    328:       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
                    329:       SAFMIN = DLAMCH( 'S' )
                    330:       SAFMIN = SAFMIN + SAFMIN
                    331:       SAFMAX = ONE / SAFMIN
                    332:       ONEPLS = ONE + ( 4*EPS )
                    333: *
                    334: *     Scale A
                    335: *
                    336:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
                    337:       ANRM1 = ANRM
                    338:       ANRM2 = ONE
                    339:       IF( ANRM.LT.ONE ) THEN
                    340:          IF( SAFMAX*ANRM.LT.ONE ) THEN
                    341:             ANRM1 = SAFMIN
                    342:             ANRM2 = SAFMAX*ANRM
                    343:          END IF
                    344:       END IF
                    345: *
                    346:       IF( ANRM.GT.ZERO ) THEN
                    347:          CALL DLASCL( 'G', -1, -1, ANRM, ONE, N, N, A, LDA, IINFO )
                    348:          IF( IINFO.NE.0 ) THEN
                    349:             INFO = N + 10
                    350:             RETURN
                    351:          END IF
                    352:       END IF
                    353: *
                    354: *     Scale B
                    355: *
                    356:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
                    357:       BNRM1 = BNRM
                    358:       BNRM2 = ONE
                    359:       IF( BNRM.LT.ONE ) THEN
                    360:          IF( SAFMAX*BNRM.LT.ONE ) THEN
                    361:             BNRM1 = SAFMIN
                    362:             BNRM2 = SAFMAX*BNRM
                    363:          END IF
                    364:       END IF
                    365: *
                    366:       IF( BNRM.GT.ZERO ) THEN
                    367:          CALL DLASCL( 'G', -1, -1, BNRM, ONE, N, N, B, LDB, IINFO )
                    368:          IF( IINFO.NE.0 ) THEN
                    369:             INFO = N + 10
                    370:             RETURN
                    371:          END IF
                    372:       END IF
                    373: *
                    374: *     Permute the matrix to make it more nearly triangular
                    375: *     Workspace layout:  (8*N words -- "work" requires 6*N words)
                    376: *        left_permutation, right_permutation, work...
                    377: *
                    378:       ILEFT = 1
                    379:       IRIGHT = N + 1
                    380:       IWORK = IRIGHT + N
                    381:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
                    382:      $             WORK( IRIGHT ), WORK( IWORK ), IINFO )
                    383:       IF( IINFO.NE.0 ) THEN
                    384:          INFO = N + 1
                    385:          GO TO 120
                    386:       END IF
                    387: *
                    388: *     Reduce B to triangular form, and initialize VL and/or VR
                    389: *     Workspace layout:  ("work..." must have at least N words)
                    390: *        left_permutation, right_permutation, tau, work...
                    391: *
                    392:       IROWS = IHI + 1 - ILO
                    393:       IF( ILV ) THEN
                    394:          ICOLS = N + 1 - ILO
                    395:       ELSE
                    396:          ICOLS = IROWS
                    397:       END IF
                    398:       ITAU = IWORK
                    399:       IWORK = ITAU + IROWS
                    400:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    401:      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
                    402:       IF( IINFO.GE.0 )
                    403:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    404:       IF( IINFO.NE.0 ) THEN
                    405:          INFO = N + 2
                    406:          GO TO 120
                    407:       END IF
                    408: *
                    409:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    410:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
                    411:      $             LWORK+1-IWORK, IINFO )
                    412:       IF( IINFO.GE.0 )
                    413:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    414:       IF( IINFO.NE.0 ) THEN
                    415:          INFO = N + 3
                    416:          GO TO 120
                    417:       END IF
                    418: *
                    419:       IF( ILVL ) THEN
                    420:          CALL DLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
                    421:          CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    422:      $                VL( ILO+1, ILO ), LDVL )
                    423:          CALL DORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
                    424:      $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
                    425:      $                IINFO )
                    426:          IF( IINFO.GE.0 )
                    427:      $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    428:          IF( IINFO.NE.0 ) THEN
                    429:             INFO = N + 4
                    430:             GO TO 120
                    431:          END IF
                    432:       END IF
                    433: *
                    434:       IF( ILVR )
                    435:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
                    436: *
                    437: *     Reduce to generalized Hessenberg form
                    438: *
                    439:       IF( ILV ) THEN
                    440: *
                    441: *        Eigenvectors requested -- work on whole matrix.
                    442: *
                    443:          CALL DGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
                    444:      $                LDVL, VR, LDVR, IINFO )
                    445:       ELSE
                    446:          CALL DGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
                    447:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IINFO )
                    448:       END IF
                    449:       IF( IINFO.NE.0 ) THEN
                    450:          INFO = N + 5
                    451:          GO TO 120
                    452:       END IF
                    453: *
                    454: *     Perform QZ algorithm
                    455: *     Workspace layout:  ("work..." must have at least 1 word)
                    456: *        left_permutation, right_permutation, work...
                    457: *
                    458:       IWORK = ITAU
                    459:       IF( ILV ) THEN
                    460:          CHTEMP = 'S'
                    461:       ELSE
                    462:          CHTEMP = 'E'
                    463:       END IF
                    464:       CALL DHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
                    465:      $             ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
                    466:      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
                    467:       IF( IINFO.GE.0 )
                    468:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    469:       IF( IINFO.NE.0 ) THEN
                    470:          IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
                    471:             INFO = IINFO
                    472:          ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
                    473:             INFO = IINFO - N
                    474:          ELSE
                    475:             INFO = N + 6
                    476:          END IF
                    477:          GO TO 120
                    478:       END IF
                    479: *
                    480:       IF( ILV ) THEN
                    481: *
                    482: *        Compute Eigenvectors  (DTGEVC requires 6*N words of workspace)
                    483: *
                    484:          IF( ILVL ) THEN
                    485:             IF( ILVR ) THEN
                    486:                CHTEMP = 'B'
                    487:             ELSE
                    488:                CHTEMP = 'L'
                    489:             END IF
                    490:          ELSE
                    491:             CHTEMP = 'R'
                    492:          END IF
                    493: *
                    494:          CALL DTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
                    495:      $                VR, LDVR, N, IN, WORK( IWORK ), IINFO )
                    496:          IF( IINFO.NE.0 ) THEN
                    497:             INFO = N + 7
                    498:             GO TO 120
                    499:          END IF
                    500: *
                    501: *        Undo balancing on VL and VR, rescale
                    502: *
                    503:          IF( ILVL ) THEN
                    504:             CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
                    505:      $                   WORK( IRIGHT ), N, VL, LDVL, IINFO )
                    506:             IF( IINFO.NE.0 ) THEN
                    507:                INFO = N + 8
                    508:                GO TO 120
                    509:             END IF
                    510:             DO 50 JC = 1, N
                    511:                IF( ALPHAI( JC ).LT.ZERO )
                    512:      $            GO TO 50
                    513:                TEMP = ZERO
                    514:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    515:                   DO 10 JR = 1, N
                    516:                      TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
                    517:    10             CONTINUE
                    518:                ELSE
                    519:                   DO 20 JR = 1, N
                    520:                      TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
                    521:      $                      ABS( VL( JR, JC+1 ) ) )
                    522:    20             CONTINUE
                    523:                END IF
                    524:                IF( TEMP.LT.SAFMIN )
                    525:      $            GO TO 50
                    526:                TEMP = ONE / TEMP
                    527:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    528:                   DO 30 JR = 1, N
                    529:                      VL( JR, JC ) = VL( JR, JC )*TEMP
                    530:    30             CONTINUE
                    531:                ELSE
                    532:                   DO 40 JR = 1, N
                    533:                      VL( JR, JC ) = VL( JR, JC )*TEMP
                    534:                      VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
                    535:    40             CONTINUE
                    536:                END IF
                    537:    50       CONTINUE
                    538:          END IF
                    539:          IF( ILVR ) THEN
                    540:             CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
                    541:      $                   WORK( IRIGHT ), N, VR, LDVR, IINFO )
                    542:             IF( IINFO.NE.0 ) THEN
                    543:                INFO = N + 9
                    544:                GO TO 120
                    545:             END IF
                    546:             DO 100 JC = 1, N
                    547:                IF( ALPHAI( JC ).LT.ZERO )
                    548:      $            GO TO 100
                    549:                TEMP = ZERO
                    550:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    551:                   DO 60 JR = 1, N
                    552:                      TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
                    553:    60             CONTINUE
                    554:                ELSE
                    555:                   DO 70 JR = 1, N
                    556:                      TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
                    557:      $                      ABS( VR( JR, JC+1 ) ) )
                    558:    70             CONTINUE
                    559:                END IF
                    560:                IF( TEMP.LT.SAFMIN )
                    561:      $            GO TO 100
                    562:                TEMP = ONE / TEMP
                    563:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    564:                   DO 80 JR = 1, N
                    565:                      VR( JR, JC ) = VR( JR, JC )*TEMP
                    566:    80             CONTINUE
                    567:                ELSE
                    568:                   DO 90 JR = 1, N
                    569:                      VR( JR, JC ) = VR( JR, JC )*TEMP
                    570:                      VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
                    571:    90             CONTINUE
                    572:                END IF
                    573:   100       CONTINUE
                    574:          END IF
                    575: *
                    576: *        End of eigenvector calculation
                    577: *
                    578:       END IF
                    579: *
                    580: *     Undo scaling in alpha, beta
                    581: *
                    582: *     Note: this does not give the alpha and beta for the unscaled
                    583: *     problem.
                    584: *
                    585: *     Un-scaling is limited to avoid underflow in alpha and beta
                    586: *     if they are significant.
                    587: *
                    588:       DO 110 JC = 1, N
                    589:          ABSAR = ABS( ALPHAR( JC ) )
                    590:          ABSAI = ABS( ALPHAI( JC ) )
                    591:          ABSB = ABS( BETA( JC ) )
                    592:          SALFAR = ANRM*ALPHAR( JC )
                    593:          SALFAI = ANRM*ALPHAI( JC )
                    594:          SBETA = BNRM*BETA( JC )
                    595:          ILIMIT = .FALSE.
                    596:          SCALE = ONE
                    597: *
                    598: *        Check for significant underflow in ALPHAI
                    599: *
                    600:          IF( ABS( SALFAI ).LT.SAFMIN .AND. ABSAI.GE.
                    601:      $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSB ) ) THEN
                    602:             ILIMIT = .TRUE.
                    603:             SCALE = ( ONEPLS*SAFMIN / ANRM1 ) /
                    604:      $              MAX( ONEPLS*SAFMIN, ANRM2*ABSAI )
                    605: *
                    606:          ELSE IF( SALFAI.EQ.ZERO ) THEN
                    607: *
                    608: *           If insignificant underflow in ALPHAI, then make the
                    609: *           conjugate eigenvalue real.
                    610: *
                    611:             IF( ALPHAI( JC ).LT.ZERO .AND. JC.GT.1 ) THEN
                    612:                ALPHAI( JC-1 ) = ZERO
                    613:             ELSE IF( ALPHAI( JC ).GT.ZERO .AND. JC.LT.N ) THEN
                    614:                ALPHAI( JC+1 ) = ZERO
                    615:             END IF
                    616:          END IF
                    617: *
                    618: *        Check for significant underflow in ALPHAR
                    619: *
                    620:          IF( ABS( SALFAR ).LT.SAFMIN .AND. ABSAR.GE.
                    621:      $       MAX( SAFMIN, EPS*ABSAI, EPS*ABSB ) ) THEN
                    622:             ILIMIT = .TRUE.
                    623:             SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / ANRM1 ) /
                    624:      $              MAX( ONEPLS*SAFMIN, ANRM2*ABSAR ) )
                    625:          END IF
                    626: *
                    627: *        Check for significant underflow in BETA
                    628: *
                    629:          IF( ABS( SBETA ).LT.SAFMIN .AND. ABSB.GE.
                    630:      $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSAI ) ) THEN
                    631:             ILIMIT = .TRUE.
                    632:             SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / BNRM1 ) /
                    633:      $              MAX( ONEPLS*SAFMIN, BNRM2*ABSB ) )
                    634:          END IF
                    635: *
                    636: *        Check for possible overflow when limiting scaling
                    637: *
                    638:          IF( ILIMIT ) THEN
                    639:             TEMP = ( SCALE*SAFMIN )*MAX( ABS( SALFAR ), ABS( SALFAI ),
                    640:      $             ABS( SBETA ) )
                    641:             IF( TEMP.GT.ONE )
                    642:      $         SCALE = SCALE / TEMP
                    643:             IF( SCALE.LT.ONE )
                    644:      $         ILIMIT = .FALSE.
                    645:          END IF
                    646: *
                    647: *        Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary.
                    648: *
                    649:          IF( ILIMIT ) THEN
                    650:             SALFAR = ( SCALE*ALPHAR( JC ) )*ANRM
                    651:             SALFAI = ( SCALE*ALPHAI( JC ) )*ANRM
                    652:             SBETA = ( SCALE*BETA( JC ) )*BNRM
                    653:          END IF
                    654:          ALPHAR( JC ) = SALFAR
                    655:          ALPHAI( JC ) = SALFAI
                    656:          BETA( JC ) = SBETA
                    657:   110 CONTINUE
                    658: *
                    659:   120 CONTINUE
                    660:       WORK( 1 ) = LWKOPT
                    661: *
                    662:       RETURN
                    663: *
                    664: *     End of DGEGV
                    665: *
                    666:       END

CVSweb interface <joel.bertrand@systella.fr>