Annotation of rpl/lapack/lapack/dgegv.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
        !             2:      $                  BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
        !             3: *
        !             4: *  -- LAPACK driver routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       CHARACTER          JOBVL, JOBVR
        !            11:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
        !            12: *     ..
        !            13: *     .. Array Arguments ..
        !            14:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
        !            15:      $                   B( LDB, * ), BETA( * ), VL( LDVL, * ),
        !            16:      $                   VR( LDVR, * ), WORK( * )
        !            17: *     ..
        !            18: *
        !            19: *  Purpose
        !            20: *  =======
        !            21: *
        !            22: *  This routine is deprecated and has been replaced by routine DGGEV.
        !            23: *
        !            24: *  DGEGV computes the eigenvalues and, optionally, the left and/or right
        !            25: *  eigenvectors of a real matrix pair (A,B).
        !            26: *  Given two square matrices A and B,
        !            27: *  the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
        !            28: *  eigenvalues lambda and corresponding (non-zero) eigenvectors x such
        !            29: *  that
        !            30: *
        !            31: *     A*x = lambda*B*x.
        !            32: *
        !            33: *  An alternate form is to find the eigenvalues mu and corresponding
        !            34: *  eigenvectors y such that
        !            35: *
        !            36: *     mu*A*y = B*y.
        !            37: *
        !            38: *  These two forms are equivalent with mu = 1/lambda and x = y if
        !            39: *  neither lambda nor mu is zero.  In order to deal with the case that
        !            40: *  lambda or mu is zero or small, two values alpha and beta are returned
        !            41: *  for each eigenvalue, such that lambda = alpha/beta and
        !            42: *  mu = beta/alpha.
        !            43: *
        !            44: *  The vectors x and y in the above equations are right eigenvectors of
        !            45: *  the matrix pair (A,B).  Vectors u and v satisfying
        !            46: *
        !            47: *     u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B
        !            48: *
        !            49: *  are left eigenvectors of (A,B).
        !            50: *
        !            51: *  Note: this routine performs "full balancing" on A and B -- see
        !            52: *  "Further Details", below.
        !            53: *
        !            54: *  Arguments
        !            55: *  =========
        !            56: *
        !            57: *  JOBVL   (input) CHARACTER*1
        !            58: *          = 'N':  do not compute the left generalized eigenvectors;
        !            59: *          = 'V':  compute the left generalized eigenvectors (returned
        !            60: *                  in VL).
        !            61: *
        !            62: *  JOBVR   (input) CHARACTER*1
        !            63: *          = 'N':  do not compute the right generalized eigenvectors;
        !            64: *          = 'V':  compute the right generalized eigenvectors (returned
        !            65: *                  in VR).
        !            66: *
        !            67: *  N       (input) INTEGER
        !            68: *          The order of the matrices A, B, VL, and VR.  N >= 0.
        !            69: *
        !            70: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
        !            71: *          On entry, the matrix A.
        !            72: *          If JOBVL = 'V' or JOBVR = 'V', then on exit A
        !            73: *          contains the real Schur form of A from the generalized Schur
        !            74: *          factorization of the pair (A,B) after balancing.
        !            75: *          If no eigenvectors were computed, then only the diagonal
        !            76: *          blocks from the Schur form will be correct.  See DGGHRD and
        !            77: *          DHGEQZ for details.
        !            78: *
        !            79: *  LDA     (input) INTEGER
        !            80: *          The leading dimension of A.  LDA >= max(1,N).
        !            81: *
        !            82: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
        !            83: *          On entry, the matrix B.
        !            84: *          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
        !            85: *          upper triangular matrix obtained from B in the generalized
        !            86: *          Schur factorization of the pair (A,B) after balancing.
        !            87: *          If no eigenvectors were computed, then only those elements of
        !            88: *          B corresponding to the diagonal blocks from the Schur form of
        !            89: *          A will be correct.  See DGGHRD and DHGEQZ for details.
        !            90: *
        !            91: *  LDB     (input) INTEGER
        !            92: *          The leading dimension of B.  LDB >= max(1,N).
        !            93: *
        !            94: *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
        !            95: *          The real parts of each scalar alpha defining an eigenvalue of
        !            96: *          GNEP.
        !            97: *
        !            98: *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
        !            99: *          The imaginary parts of each scalar alpha defining an
        !           100: *          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th
        !           101: *          eigenvalue is real; if positive, then the j-th and
        !           102: *          (j+1)-st eigenvalues are a complex conjugate pair, with
        !           103: *          ALPHAI(j+1) = -ALPHAI(j).
        !           104: *
        !           105: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
        !           106: *          The scalars beta that define the eigenvalues of GNEP.
        !           107: *          
        !           108: *          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
        !           109: *          beta = BETA(j) represent the j-th eigenvalue of the matrix
        !           110: *          pair (A,B), in one of the forms lambda = alpha/beta or
        !           111: *          mu = beta/alpha.  Since either lambda or mu may overflow,
        !           112: *          they should not, in general, be computed.
        !           113: *
        !           114: *  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)
        !           115: *          If JOBVL = 'V', the left eigenvectors u(j) are stored
        !           116: *          in the columns of VL, in the same order as their eigenvalues.
        !           117: *          If the j-th eigenvalue is real, then u(j) = VL(:,j).
        !           118: *          If the j-th and (j+1)-st eigenvalues form a complex conjugate
        !           119: *          pair, then
        !           120: *             u(j) = VL(:,j) + i*VL(:,j+1)
        !           121: *          and
        !           122: *            u(j+1) = VL(:,j) - i*VL(:,j+1).
        !           123: *
        !           124: *          Each eigenvector is scaled so that its largest component has
        !           125: *          abs(real part) + abs(imag. part) = 1, except for eigenvectors
        !           126: *          corresponding to an eigenvalue with alpha = beta = 0, which
        !           127: *          are set to zero.
        !           128: *          Not referenced if JOBVL = 'N'.
        !           129: *
        !           130: *  LDVL    (input) INTEGER
        !           131: *          The leading dimension of the matrix VL. LDVL >= 1, and
        !           132: *          if JOBVL = 'V', LDVL >= N.
        !           133: *
        !           134: *  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)
        !           135: *          If JOBVR = 'V', the right eigenvectors x(j) are stored
        !           136: *          in the columns of VR, in the same order as their eigenvalues.
        !           137: *          If the j-th eigenvalue is real, then x(j) = VR(:,j).
        !           138: *          If the j-th and (j+1)-st eigenvalues form a complex conjugate
        !           139: *          pair, then
        !           140: *            x(j) = VR(:,j) + i*VR(:,j+1)
        !           141: *          and
        !           142: *            x(j+1) = VR(:,j) - i*VR(:,j+1).
        !           143: *
        !           144: *          Each eigenvector is scaled so that its largest component has
        !           145: *          abs(real part) + abs(imag. part) = 1, except for eigenvalues
        !           146: *          corresponding to an eigenvalue with alpha = beta = 0, which
        !           147: *          are set to zero.
        !           148: *          Not referenced if JOBVR = 'N'.
        !           149: *
        !           150: *  LDVR    (input) INTEGER
        !           151: *          The leading dimension of the matrix VR. LDVR >= 1, and
        !           152: *          if JOBVR = 'V', LDVR >= N.
        !           153: *
        !           154: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           155: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           156: *
        !           157: *  LWORK   (input) INTEGER
        !           158: *          The dimension of the array WORK.  LWORK >= max(1,8*N).
        !           159: *          For good performance, LWORK must generally be larger.
        !           160: *          To compute the optimal value of LWORK, call ILAENV to get
        !           161: *          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute:
        !           162: *          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR;
        !           163: *          The optimal LWORK is:
        !           164: *              2*N + MAX( 6*N, N*(NB+1) ).
        !           165: *
        !           166: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           167: *          only calculates the optimal size of the WORK array, returns
        !           168: *          this value as the first entry of the WORK array, and no error
        !           169: *          message related to LWORK is issued by XERBLA.
        !           170: *
        !           171: *  INFO    (output) INTEGER
        !           172: *          = 0:  successful exit
        !           173: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           174: *          = 1,...,N:
        !           175: *                The QZ iteration failed.  No eigenvectors have been
        !           176: *                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
        !           177: *                should be correct for j=INFO+1,...,N.
        !           178: *          > N:  errors that usually indicate LAPACK problems:
        !           179: *                =N+1: error return from DGGBAL
        !           180: *                =N+2: error return from DGEQRF
        !           181: *                =N+3: error return from DORMQR
        !           182: *                =N+4: error return from DORGQR
        !           183: *                =N+5: error return from DGGHRD
        !           184: *                =N+6: error return from DHGEQZ (other than failed
        !           185: *                                                iteration)
        !           186: *                =N+7: error return from DTGEVC
        !           187: *                =N+8: error return from DGGBAK (computing VL)
        !           188: *                =N+9: error return from DGGBAK (computing VR)
        !           189: *                =N+10: error return from DLASCL (various calls)
        !           190: *
        !           191: *  Further Details
        !           192: *  ===============
        !           193: *
        !           194: *  Balancing
        !           195: *  ---------
        !           196: *
        !           197: *  This driver calls DGGBAL to both permute and scale rows and columns
        !           198: *  of A and B.  The permutations PL and PR are chosen so that PL*A*PR
        !           199: *  and PL*B*R will be upper triangular except for the diagonal blocks
        !           200: *  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
        !           201: *  possible.  The diagonal scaling matrices DL and DR are chosen so
        !           202: *  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
        !           203: *  one (except for the elements that start out zero.)
        !           204: *
        !           205: *  After the eigenvalues and eigenvectors of the balanced matrices
        !           206: *  have been computed, DGGBAK transforms the eigenvectors back to what
        !           207: *  they would have been (in perfect arithmetic) if they had not been
        !           208: *  balanced.
        !           209: *
        !           210: *  Contents of A and B on Exit
        !           211: *  -------- -- - --- - -- ----
        !           212: *
        !           213: *  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
        !           214: *  both), then on exit the arrays A and B will contain the real Schur
        !           215: *  form[*] of the "balanced" versions of A and B.  If no eigenvectors
        !           216: *  are computed, then only the diagonal blocks will be correct.
        !           217: *
        !           218: *  [*] See DHGEQZ, DGEGS, or read the book "Matrix Computations",
        !           219: *      by Golub & van Loan, pub. by Johns Hopkins U. Press.
        !           220: *
        !           221: *  =====================================================================
        !           222: *
        !           223: *     .. Parameters ..
        !           224:       DOUBLE PRECISION   ZERO, ONE
        !           225:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           226: *     ..
        !           227: *     .. Local Scalars ..
        !           228:       LOGICAL            ILIMIT, ILV, ILVL, ILVR, LQUERY
        !           229:       CHARACTER          CHTEMP
        !           230:       INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
        !           231:      $                   IN, IRIGHT, IROWS, ITAU, IWORK, JC, JR, LOPT,
        !           232:      $                   LWKMIN, LWKOPT, NB, NB1, NB2, NB3
        !           233:       DOUBLE PRECISION   ABSAI, ABSAR, ABSB, ANRM, ANRM1, ANRM2, BNRM,
        !           234:      $                   BNRM1, BNRM2, EPS, ONEPLS, SAFMAX, SAFMIN,
        !           235:      $                   SALFAI, SALFAR, SBETA, SCALE, TEMP
        !           236: *     ..
        !           237: *     .. Local Arrays ..
        !           238:       LOGICAL            LDUMMA( 1 )
        !           239: *     ..
        !           240: *     .. External Subroutines ..
        !           241:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY,
        !           242:      $                   DLASCL, DLASET, DORGQR, DORMQR, DTGEVC, XERBLA
        !           243: *     ..
        !           244: *     .. External Functions ..
        !           245:       LOGICAL            LSAME
        !           246:       INTEGER            ILAENV
        !           247:       DOUBLE PRECISION   DLAMCH, DLANGE
        !           248:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
        !           249: *     ..
        !           250: *     .. Intrinsic Functions ..
        !           251:       INTRINSIC          ABS, INT, MAX
        !           252: *     ..
        !           253: *     .. Executable Statements ..
        !           254: *
        !           255: *     Decode the input arguments
        !           256: *
        !           257:       IF( LSAME( JOBVL, 'N' ) ) THEN
        !           258:          IJOBVL = 1
        !           259:          ILVL = .FALSE.
        !           260:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
        !           261:          IJOBVL = 2
        !           262:          ILVL = .TRUE.
        !           263:       ELSE
        !           264:          IJOBVL = -1
        !           265:          ILVL = .FALSE.
        !           266:       END IF
        !           267: *
        !           268:       IF( LSAME( JOBVR, 'N' ) ) THEN
        !           269:          IJOBVR = 1
        !           270:          ILVR = .FALSE.
        !           271:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
        !           272:          IJOBVR = 2
        !           273:          ILVR = .TRUE.
        !           274:       ELSE
        !           275:          IJOBVR = -1
        !           276:          ILVR = .FALSE.
        !           277:       END IF
        !           278:       ILV = ILVL .OR. ILVR
        !           279: *
        !           280: *     Test the input arguments
        !           281: *
        !           282:       LWKMIN = MAX( 8*N, 1 )
        !           283:       LWKOPT = LWKMIN
        !           284:       WORK( 1 ) = LWKOPT
        !           285:       LQUERY = ( LWORK.EQ.-1 )
        !           286:       INFO = 0
        !           287:       IF( IJOBVL.LE.0 ) THEN
        !           288:          INFO = -1
        !           289:       ELSE IF( IJOBVR.LE.0 ) THEN
        !           290:          INFO = -2
        !           291:       ELSE IF( N.LT.0 ) THEN
        !           292:          INFO = -3
        !           293:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           294:          INFO = -5
        !           295:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
        !           296:          INFO = -7
        !           297:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
        !           298:          INFO = -12
        !           299:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
        !           300:          INFO = -14
        !           301:       ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
        !           302:          INFO = -16
        !           303:       END IF
        !           304: *
        !           305:       IF( INFO.EQ.0 ) THEN
        !           306:          NB1 = ILAENV( 1, 'DGEQRF', ' ', N, N, -1, -1 )
        !           307:          NB2 = ILAENV( 1, 'DORMQR', ' ', N, N, N, -1 )
        !           308:          NB3 = ILAENV( 1, 'DORGQR', ' ', N, N, N, -1 )
        !           309:          NB = MAX( NB1, NB2, NB3 )
        !           310:          LOPT = 2*N + MAX( 6*N, N*( NB+1 ) )
        !           311:          WORK( 1 ) = LOPT
        !           312:       END IF
        !           313: *
        !           314:       IF( INFO.NE.0 ) THEN
        !           315:          CALL XERBLA( 'DGEGV ', -INFO )
        !           316:          RETURN
        !           317:       ELSE IF( LQUERY ) THEN
        !           318:          RETURN
        !           319:       END IF
        !           320: *
        !           321: *     Quick return if possible
        !           322: *
        !           323:       IF( N.EQ.0 )
        !           324:      $   RETURN
        !           325: *
        !           326: *     Get machine constants
        !           327: *
        !           328:       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
        !           329:       SAFMIN = DLAMCH( 'S' )
        !           330:       SAFMIN = SAFMIN + SAFMIN
        !           331:       SAFMAX = ONE / SAFMIN
        !           332:       ONEPLS = ONE + ( 4*EPS )
        !           333: *
        !           334: *     Scale A
        !           335: *
        !           336:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
        !           337:       ANRM1 = ANRM
        !           338:       ANRM2 = ONE
        !           339:       IF( ANRM.LT.ONE ) THEN
        !           340:          IF( SAFMAX*ANRM.LT.ONE ) THEN
        !           341:             ANRM1 = SAFMIN
        !           342:             ANRM2 = SAFMAX*ANRM
        !           343:          END IF
        !           344:       END IF
        !           345: *
        !           346:       IF( ANRM.GT.ZERO ) THEN
        !           347:          CALL DLASCL( 'G', -1, -1, ANRM, ONE, N, N, A, LDA, IINFO )
        !           348:          IF( IINFO.NE.0 ) THEN
        !           349:             INFO = N + 10
        !           350:             RETURN
        !           351:          END IF
        !           352:       END IF
        !           353: *
        !           354: *     Scale B
        !           355: *
        !           356:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
        !           357:       BNRM1 = BNRM
        !           358:       BNRM2 = ONE
        !           359:       IF( BNRM.LT.ONE ) THEN
        !           360:          IF( SAFMAX*BNRM.LT.ONE ) THEN
        !           361:             BNRM1 = SAFMIN
        !           362:             BNRM2 = SAFMAX*BNRM
        !           363:          END IF
        !           364:       END IF
        !           365: *
        !           366:       IF( BNRM.GT.ZERO ) THEN
        !           367:          CALL DLASCL( 'G', -1, -1, BNRM, ONE, N, N, B, LDB, IINFO )
        !           368:          IF( IINFO.NE.0 ) THEN
        !           369:             INFO = N + 10
        !           370:             RETURN
        !           371:          END IF
        !           372:       END IF
        !           373: *
        !           374: *     Permute the matrix to make it more nearly triangular
        !           375: *     Workspace layout:  (8*N words -- "work" requires 6*N words)
        !           376: *        left_permutation, right_permutation, work...
        !           377: *
        !           378:       ILEFT = 1
        !           379:       IRIGHT = N + 1
        !           380:       IWORK = IRIGHT + N
        !           381:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
        !           382:      $             WORK( IRIGHT ), WORK( IWORK ), IINFO )
        !           383:       IF( IINFO.NE.0 ) THEN
        !           384:          INFO = N + 1
        !           385:          GO TO 120
        !           386:       END IF
        !           387: *
        !           388: *     Reduce B to triangular form, and initialize VL and/or VR
        !           389: *     Workspace layout:  ("work..." must have at least N words)
        !           390: *        left_permutation, right_permutation, tau, work...
        !           391: *
        !           392:       IROWS = IHI + 1 - ILO
        !           393:       IF( ILV ) THEN
        !           394:          ICOLS = N + 1 - ILO
        !           395:       ELSE
        !           396:          ICOLS = IROWS
        !           397:       END IF
        !           398:       ITAU = IWORK
        !           399:       IWORK = ITAU + IROWS
        !           400:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
        !           401:      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
        !           402:       IF( IINFO.GE.0 )
        !           403:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
        !           404:       IF( IINFO.NE.0 ) THEN
        !           405:          INFO = N + 2
        !           406:          GO TO 120
        !           407:       END IF
        !           408: *
        !           409:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
        !           410:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
        !           411:      $             LWORK+1-IWORK, IINFO )
        !           412:       IF( IINFO.GE.0 )
        !           413:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
        !           414:       IF( IINFO.NE.0 ) THEN
        !           415:          INFO = N + 3
        !           416:          GO TO 120
        !           417:       END IF
        !           418: *
        !           419:       IF( ILVL ) THEN
        !           420:          CALL DLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
        !           421:          CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
        !           422:      $                VL( ILO+1, ILO ), LDVL )
        !           423:          CALL DORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
        !           424:      $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
        !           425:      $                IINFO )
        !           426:          IF( IINFO.GE.0 )
        !           427:      $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
        !           428:          IF( IINFO.NE.0 ) THEN
        !           429:             INFO = N + 4
        !           430:             GO TO 120
        !           431:          END IF
        !           432:       END IF
        !           433: *
        !           434:       IF( ILVR )
        !           435:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
        !           436: *
        !           437: *     Reduce to generalized Hessenberg form
        !           438: *
        !           439:       IF( ILV ) THEN
        !           440: *
        !           441: *        Eigenvectors requested -- work on whole matrix.
        !           442: *
        !           443:          CALL DGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
        !           444:      $                LDVL, VR, LDVR, IINFO )
        !           445:       ELSE
        !           446:          CALL DGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
        !           447:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IINFO )
        !           448:       END IF
        !           449:       IF( IINFO.NE.0 ) THEN
        !           450:          INFO = N + 5
        !           451:          GO TO 120
        !           452:       END IF
        !           453: *
        !           454: *     Perform QZ algorithm
        !           455: *     Workspace layout:  ("work..." must have at least 1 word)
        !           456: *        left_permutation, right_permutation, work...
        !           457: *
        !           458:       IWORK = ITAU
        !           459:       IF( ILV ) THEN
        !           460:          CHTEMP = 'S'
        !           461:       ELSE
        !           462:          CHTEMP = 'E'
        !           463:       END IF
        !           464:       CALL DHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
        !           465:      $             ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
        !           466:      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
        !           467:       IF( IINFO.GE.0 )
        !           468:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
        !           469:       IF( IINFO.NE.0 ) THEN
        !           470:          IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
        !           471:             INFO = IINFO
        !           472:          ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
        !           473:             INFO = IINFO - N
        !           474:          ELSE
        !           475:             INFO = N + 6
        !           476:          END IF
        !           477:          GO TO 120
        !           478:       END IF
        !           479: *
        !           480:       IF( ILV ) THEN
        !           481: *
        !           482: *        Compute Eigenvectors  (DTGEVC requires 6*N words of workspace)
        !           483: *
        !           484:          IF( ILVL ) THEN
        !           485:             IF( ILVR ) THEN
        !           486:                CHTEMP = 'B'
        !           487:             ELSE
        !           488:                CHTEMP = 'L'
        !           489:             END IF
        !           490:          ELSE
        !           491:             CHTEMP = 'R'
        !           492:          END IF
        !           493: *
        !           494:          CALL DTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
        !           495:      $                VR, LDVR, N, IN, WORK( IWORK ), IINFO )
        !           496:          IF( IINFO.NE.0 ) THEN
        !           497:             INFO = N + 7
        !           498:             GO TO 120
        !           499:          END IF
        !           500: *
        !           501: *        Undo balancing on VL and VR, rescale
        !           502: *
        !           503:          IF( ILVL ) THEN
        !           504:             CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
        !           505:      $                   WORK( IRIGHT ), N, VL, LDVL, IINFO )
        !           506:             IF( IINFO.NE.0 ) THEN
        !           507:                INFO = N + 8
        !           508:                GO TO 120
        !           509:             END IF
        !           510:             DO 50 JC = 1, N
        !           511:                IF( ALPHAI( JC ).LT.ZERO )
        !           512:      $            GO TO 50
        !           513:                TEMP = ZERO
        !           514:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
        !           515:                   DO 10 JR = 1, N
        !           516:                      TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
        !           517:    10             CONTINUE
        !           518:                ELSE
        !           519:                   DO 20 JR = 1, N
        !           520:                      TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
        !           521:      $                      ABS( VL( JR, JC+1 ) ) )
        !           522:    20             CONTINUE
        !           523:                END IF
        !           524:                IF( TEMP.LT.SAFMIN )
        !           525:      $            GO TO 50
        !           526:                TEMP = ONE / TEMP
        !           527:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
        !           528:                   DO 30 JR = 1, N
        !           529:                      VL( JR, JC ) = VL( JR, JC )*TEMP
        !           530:    30             CONTINUE
        !           531:                ELSE
        !           532:                   DO 40 JR = 1, N
        !           533:                      VL( JR, JC ) = VL( JR, JC )*TEMP
        !           534:                      VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
        !           535:    40             CONTINUE
        !           536:                END IF
        !           537:    50       CONTINUE
        !           538:          END IF
        !           539:          IF( ILVR ) THEN
        !           540:             CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
        !           541:      $                   WORK( IRIGHT ), N, VR, LDVR, IINFO )
        !           542:             IF( IINFO.NE.0 ) THEN
        !           543:                INFO = N + 9
        !           544:                GO TO 120
        !           545:             END IF
        !           546:             DO 100 JC = 1, N
        !           547:                IF( ALPHAI( JC ).LT.ZERO )
        !           548:      $            GO TO 100
        !           549:                TEMP = ZERO
        !           550:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
        !           551:                   DO 60 JR = 1, N
        !           552:                      TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
        !           553:    60             CONTINUE
        !           554:                ELSE
        !           555:                   DO 70 JR = 1, N
        !           556:                      TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
        !           557:      $                      ABS( VR( JR, JC+1 ) ) )
        !           558:    70             CONTINUE
        !           559:                END IF
        !           560:                IF( TEMP.LT.SAFMIN )
        !           561:      $            GO TO 100
        !           562:                TEMP = ONE / TEMP
        !           563:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
        !           564:                   DO 80 JR = 1, N
        !           565:                      VR( JR, JC ) = VR( JR, JC )*TEMP
        !           566:    80             CONTINUE
        !           567:                ELSE
        !           568:                   DO 90 JR = 1, N
        !           569:                      VR( JR, JC ) = VR( JR, JC )*TEMP
        !           570:                      VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
        !           571:    90             CONTINUE
        !           572:                END IF
        !           573:   100       CONTINUE
        !           574:          END IF
        !           575: *
        !           576: *        End of eigenvector calculation
        !           577: *
        !           578:       END IF
        !           579: *
        !           580: *     Undo scaling in alpha, beta
        !           581: *
        !           582: *     Note: this does not give the alpha and beta for the unscaled
        !           583: *     problem.
        !           584: *
        !           585: *     Un-scaling is limited to avoid underflow in alpha and beta
        !           586: *     if they are significant.
        !           587: *
        !           588:       DO 110 JC = 1, N
        !           589:          ABSAR = ABS( ALPHAR( JC ) )
        !           590:          ABSAI = ABS( ALPHAI( JC ) )
        !           591:          ABSB = ABS( BETA( JC ) )
        !           592:          SALFAR = ANRM*ALPHAR( JC )
        !           593:          SALFAI = ANRM*ALPHAI( JC )
        !           594:          SBETA = BNRM*BETA( JC )
        !           595:          ILIMIT = .FALSE.
        !           596:          SCALE = ONE
        !           597: *
        !           598: *        Check for significant underflow in ALPHAI
        !           599: *
        !           600:          IF( ABS( SALFAI ).LT.SAFMIN .AND. ABSAI.GE.
        !           601:      $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSB ) ) THEN
        !           602:             ILIMIT = .TRUE.
        !           603:             SCALE = ( ONEPLS*SAFMIN / ANRM1 ) /
        !           604:      $              MAX( ONEPLS*SAFMIN, ANRM2*ABSAI )
        !           605: *
        !           606:          ELSE IF( SALFAI.EQ.ZERO ) THEN
        !           607: *
        !           608: *           If insignificant underflow in ALPHAI, then make the
        !           609: *           conjugate eigenvalue real.
        !           610: *
        !           611:             IF( ALPHAI( JC ).LT.ZERO .AND. JC.GT.1 ) THEN
        !           612:                ALPHAI( JC-1 ) = ZERO
        !           613:             ELSE IF( ALPHAI( JC ).GT.ZERO .AND. JC.LT.N ) THEN
        !           614:                ALPHAI( JC+1 ) = ZERO
        !           615:             END IF
        !           616:          END IF
        !           617: *
        !           618: *        Check for significant underflow in ALPHAR
        !           619: *
        !           620:          IF( ABS( SALFAR ).LT.SAFMIN .AND. ABSAR.GE.
        !           621:      $       MAX( SAFMIN, EPS*ABSAI, EPS*ABSB ) ) THEN
        !           622:             ILIMIT = .TRUE.
        !           623:             SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / ANRM1 ) /
        !           624:      $              MAX( ONEPLS*SAFMIN, ANRM2*ABSAR ) )
        !           625:          END IF
        !           626: *
        !           627: *        Check for significant underflow in BETA
        !           628: *
        !           629:          IF( ABS( SBETA ).LT.SAFMIN .AND. ABSB.GE.
        !           630:      $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSAI ) ) THEN
        !           631:             ILIMIT = .TRUE.
        !           632:             SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / BNRM1 ) /
        !           633:      $              MAX( ONEPLS*SAFMIN, BNRM2*ABSB ) )
        !           634:          END IF
        !           635: *
        !           636: *        Check for possible overflow when limiting scaling
        !           637: *
        !           638:          IF( ILIMIT ) THEN
        !           639:             TEMP = ( SCALE*SAFMIN )*MAX( ABS( SALFAR ), ABS( SALFAI ),
        !           640:      $             ABS( SBETA ) )
        !           641:             IF( TEMP.GT.ONE )
        !           642:      $         SCALE = SCALE / TEMP
        !           643:             IF( SCALE.LT.ONE )
        !           644:      $         ILIMIT = .FALSE.
        !           645:          END IF
        !           646: *
        !           647: *        Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary.
        !           648: *
        !           649:          IF( ILIMIT ) THEN
        !           650:             SALFAR = ( SCALE*ALPHAR( JC ) )*ANRM
        !           651:             SALFAI = ( SCALE*ALPHAI( JC ) )*ANRM
        !           652:             SBETA = ( SCALE*BETA( JC ) )*BNRM
        !           653:          END IF
        !           654:          ALPHAR( JC ) = SALFAR
        !           655:          ALPHAI( JC ) = SALFAI
        !           656:          BETA( JC ) = SBETA
        !           657:   110 CONTINUE
        !           658: *
        !           659:   120 CONTINUE
        !           660:       WORK( 1 ) = LWKOPT
        !           661: *
        !           662:       RETURN
        !           663: *
        !           664: *     End of DGEGV
        !           665: *
        !           666:       END

CVSweb interface <joel.bertrand@systella.fr>