Annotation of rpl/lapack/lapack/dgegv.f, revision 1.17

1.8       bertrand    1: *> \brief <b> DGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.14      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.8       bertrand    7: *
                      8: *> \htmlonly
1.14      bertrand    9: *> Download DGEGV + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgegv.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgegv.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgegv.f">
1.8       bertrand   15: *> [TXT]</a>
1.14      bertrand   16: *> \endhtmlonly
1.8       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
                     22: *                         BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
1.14      bertrand   23: *
1.8       bertrand   24: *       .. Scalar Arguments ..
                     25: *       CHARACTER          JOBVL, JOBVR
                     26: *       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
                     27: *       ..
                     28: *       .. Array Arguments ..
                     29: *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                     30: *      $                   B( LDB, * ), BETA( * ), VL( LDVL, * ),
                     31: *      $                   VR( LDVR, * ), WORK( * )
                     32: *       ..
1.14      bertrand   33: *
1.8       bertrand   34: *
                     35: *> \par Purpose:
                     36: *  =============
                     37: *>
                     38: *> \verbatim
                     39: *>
                     40: *> This routine is deprecated and has been replaced by routine DGGEV.
                     41: *>
                     42: *> DGEGV computes the eigenvalues and, optionally, the left and/or right
                     43: *> eigenvectors of a real matrix pair (A,B).
                     44: *> Given two square matrices A and B,
                     45: *> the generalized nonsymmetric eigenvalue problem (GNEP) is to find the
                     46: *> eigenvalues lambda and corresponding (non-zero) eigenvectors x such
                     47: *> that
                     48: *>
                     49: *>    A*x = lambda*B*x.
                     50: *>
                     51: *> An alternate form is to find the eigenvalues mu and corresponding
                     52: *> eigenvectors y such that
                     53: *>
                     54: *>    mu*A*y = B*y.
                     55: *>
                     56: *> These two forms are equivalent with mu = 1/lambda and x = y if
                     57: *> neither lambda nor mu is zero.  In order to deal with the case that
                     58: *> lambda or mu is zero or small, two values alpha and beta are returned
                     59: *> for each eigenvalue, such that lambda = alpha/beta and
                     60: *> mu = beta/alpha.
                     61: *>
                     62: *> The vectors x and y in the above equations are right eigenvectors of
                     63: *> the matrix pair (A,B).  Vectors u and v satisfying
                     64: *>
                     65: *>    u**H*A = lambda*u**H*B  or  mu*v**H*A = v**H*B
                     66: *>
                     67: *> are left eigenvectors of (A,B).
                     68: *>
                     69: *> Note: this routine performs "full balancing" on A and B
                     70: *> \endverbatim
                     71: *
                     72: *  Arguments:
                     73: *  ==========
                     74: *
                     75: *> \param[in] JOBVL
                     76: *> \verbatim
                     77: *>          JOBVL is CHARACTER*1
                     78: *>          = 'N':  do not compute the left generalized eigenvectors;
                     79: *>          = 'V':  compute the left generalized eigenvectors (returned
                     80: *>                  in VL).
                     81: *> \endverbatim
                     82: *>
                     83: *> \param[in] JOBVR
                     84: *> \verbatim
                     85: *>          JOBVR is CHARACTER*1
                     86: *>          = 'N':  do not compute the right generalized eigenvectors;
                     87: *>          = 'V':  compute the right generalized eigenvectors (returned
                     88: *>                  in VR).
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] N
                     92: *> \verbatim
                     93: *>          N is INTEGER
                     94: *>          The order of the matrices A, B, VL, and VR.  N >= 0.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in,out] A
                     98: *> \verbatim
                     99: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
                    100: *>          On entry, the matrix A.
                    101: *>          If JOBVL = 'V' or JOBVR = 'V', then on exit A
                    102: *>          contains the real Schur form of A from the generalized Schur
                    103: *>          factorization of the pair (A,B) after balancing.
                    104: *>          If no eigenvectors were computed, then only the diagonal
                    105: *>          blocks from the Schur form will be correct.  See DGGHRD and
                    106: *>          DHGEQZ for details.
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[in] LDA
                    110: *> \verbatim
                    111: *>          LDA is INTEGER
                    112: *>          The leading dimension of A.  LDA >= max(1,N).
                    113: *> \endverbatim
                    114: *>
                    115: *> \param[in,out] B
                    116: *> \verbatim
                    117: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
                    118: *>          On entry, the matrix B.
                    119: *>          If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the
                    120: *>          upper triangular matrix obtained from B in the generalized
                    121: *>          Schur factorization of the pair (A,B) after balancing.
                    122: *>          If no eigenvectors were computed, then only those elements of
                    123: *>          B corresponding to the diagonal blocks from the Schur form of
                    124: *>          A will be correct.  See DGGHRD and DHGEQZ for details.
                    125: *> \endverbatim
                    126: *>
                    127: *> \param[in] LDB
                    128: *> \verbatim
                    129: *>          LDB is INTEGER
                    130: *>          The leading dimension of B.  LDB >= max(1,N).
                    131: *> \endverbatim
                    132: *>
                    133: *> \param[out] ALPHAR
                    134: *> \verbatim
                    135: *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
                    136: *>          The real parts of each scalar alpha defining an eigenvalue of
                    137: *>          GNEP.
                    138: *> \endverbatim
                    139: *>
                    140: *> \param[out] ALPHAI
                    141: *> \verbatim
                    142: *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
                    143: *>          The imaginary parts of each scalar alpha defining an
                    144: *>          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th
                    145: *>          eigenvalue is real; if positive, then the j-th and
                    146: *>          (j+1)-st eigenvalues are a complex conjugate pair, with
                    147: *>          ALPHAI(j+1) = -ALPHAI(j).
                    148: *> \endverbatim
                    149: *>
                    150: *> \param[out] BETA
                    151: *> \verbatim
                    152: *>          BETA is DOUBLE PRECISION array, dimension (N)
                    153: *>          The scalars beta that define the eigenvalues of GNEP.
1.14      bertrand  154: *>
1.8       bertrand  155: *>          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
                    156: *>          beta = BETA(j) represent the j-th eigenvalue of the matrix
                    157: *>          pair (A,B), in one of the forms lambda = alpha/beta or
                    158: *>          mu = beta/alpha.  Since either lambda or mu may overflow,
                    159: *>          they should not, in general, be computed.
                    160: *> \endverbatim
                    161: *>
                    162: *> \param[out] VL
                    163: *> \verbatim
                    164: *>          VL is DOUBLE PRECISION array, dimension (LDVL,N)
                    165: *>          If JOBVL = 'V', the left eigenvectors u(j) are stored
                    166: *>          in the columns of VL, in the same order as their eigenvalues.
                    167: *>          If the j-th eigenvalue is real, then u(j) = VL(:,j).
                    168: *>          If the j-th and (j+1)-st eigenvalues form a complex conjugate
                    169: *>          pair, then
                    170: *>             u(j) = VL(:,j) + i*VL(:,j+1)
                    171: *>          and
                    172: *>            u(j+1) = VL(:,j) - i*VL(:,j+1).
                    173: *>
                    174: *>          Each eigenvector is scaled so that its largest component has
                    175: *>          abs(real part) + abs(imag. part) = 1, except for eigenvectors
                    176: *>          corresponding to an eigenvalue with alpha = beta = 0, which
                    177: *>          are set to zero.
                    178: *>          Not referenced if JOBVL = 'N'.
                    179: *> \endverbatim
                    180: *>
                    181: *> \param[in] LDVL
                    182: *> \verbatim
                    183: *>          LDVL is INTEGER
                    184: *>          The leading dimension of the matrix VL. LDVL >= 1, and
                    185: *>          if JOBVL = 'V', LDVL >= N.
                    186: *> \endverbatim
                    187: *>
                    188: *> \param[out] VR
                    189: *> \verbatim
                    190: *>          VR is DOUBLE PRECISION array, dimension (LDVR,N)
                    191: *>          If JOBVR = 'V', the right eigenvectors x(j) are stored
                    192: *>          in the columns of VR, in the same order as their eigenvalues.
                    193: *>          If the j-th eigenvalue is real, then x(j) = VR(:,j).
                    194: *>          If the j-th and (j+1)-st eigenvalues form a complex conjugate
                    195: *>          pair, then
                    196: *>            x(j) = VR(:,j) + i*VR(:,j+1)
                    197: *>          and
                    198: *>            x(j+1) = VR(:,j) - i*VR(:,j+1).
                    199: *>
                    200: *>          Each eigenvector is scaled so that its largest component has
                    201: *>          abs(real part) + abs(imag. part) = 1, except for eigenvalues
                    202: *>          corresponding to an eigenvalue with alpha = beta = 0, which
                    203: *>          are set to zero.
                    204: *>          Not referenced if JOBVR = 'N'.
                    205: *> \endverbatim
                    206: *>
                    207: *> \param[in] LDVR
                    208: *> \verbatim
                    209: *>          LDVR is INTEGER
                    210: *>          The leading dimension of the matrix VR. LDVR >= 1, and
                    211: *>          if JOBVR = 'V', LDVR >= N.
                    212: *> \endverbatim
                    213: *>
                    214: *> \param[out] WORK
                    215: *> \verbatim
                    216: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    217: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    218: *> \endverbatim
                    219: *>
                    220: *> \param[in] LWORK
                    221: *> \verbatim
                    222: *>          LWORK is INTEGER
                    223: *>          The dimension of the array WORK.  LWORK >= max(1,8*N).
                    224: *>          For good performance, LWORK must generally be larger.
                    225: *>          To compute the optimal value of LWORK, call ILAENV to get
                    226: *>          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute:
                    227: *>          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR;
                    228: *>          The optimal LWORK is:
                    229: *>              2*N + MAX( 6*N, N*(NB+1) ).
                    230: *>
                    231: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    232: *>          only calculates the optimal size of the WORK array, returns
                    233: *>          this value as the first entry of the WORK array, and no error
                    234: *>          message related to LWORK is issued by XERBLA.
                    235: *> \endverbatim
                    236: *>
                    237: *> \param[out] INFO
                    238: *> \verbatim
                    239: *>          INFO is INTEGER
                    240: *>          = 0:  successful exit
                    241: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    242: *>          = 1,...,N:
                    243: *>                The QZ iteration failed.  No eigenvectors have been
                    244: *>                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
                    245: *>                should be correct for j=INFO+1,...,N.
                    246: *>          > N:  errors that usually indicate LAPACK problems:
                    247: *>                =N+1: error return from DGGBAL
                    248: *>                =N+2: error return from DGEQRF
                    249: *>                =N+3: error return from DORMQR
                    250: *>                =N+4: error return from DORGQR
                    251: *>                =N+5: error return from DGGHRD
                    252: *>                =N+6: error return from DHGEQZ (other than failed
                    253: *>                                                iteration)
                    254: *>                =N+7: error return from DTGEVC
                    255: *>                =N+8: error return from DGGBAK (computing VL)
                    256: *>                =N+9: error return from DGGBAK (computing VR)
                    257: *>                =N+10: error return from DLASCL (various calls)
                    258: *> \endverbatim
                    259: *
                    260: *  Authors:
                    261: *  ========
                    262: *
1.14      bertrand  263: *> \author Univ. of Tennessee
                    264: *> \author Univ. of California Berkeley
                    265: *> \author Univ. of Colorado Denver
                    266: *> \author NAG Ltd.
1.8       bertrand  267: *
                    268: *> \ingroup doubleGEeigen
                    269: *
                    270: *> \par Further Details:
                    271: *  =====================
                    272: *>
                    273: *> \verbatim
                    274: *>
                    275: *>  Balancing
                    276: *>  ---------
                    277: *>
                    278: *>  This driver calls DGGBAL to both permute and scale rows and columns
                    279: *>  of A and B.  The permutations PL and PR are chosen so that PL*A*PR
                    280: *>  and PL*B*R will be upper triangular except for the diagonal blocks
                    281: *>  A(i:j,i:j) and B(i:j,i:j), with i and j as close together as
                    282: *>  possible.  The diagonal scaling matrices DL and DR are chosen so
                    283: *>  that the pair  DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to
                    284: *>  one (except for the elements that start out zero.)
                    285: *>
                    286: *>  After the eigenvalues and eigenvectors of the balanced matrices
                    287: *>  have been computed, DGGBAK transforms the eigenvectors back to what
                    288: *>  they would have been (in perfect arithmetic) if they had not been
                    289: *>  balanced.
                    290: *>
                    291: *>  Contents of A and B on Exit
                    292: *>  -------- -- - --- - -- ----
                    293: *>
                    294: *>  If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or
                    295: *>  both), then on exit the arrays A and B will contain the real Schur
                    296: *>  form[*] of the "balanced" versions of A and B.  If no eigenvectors
                    297: *>  are computed, then only the diagonal blocks will be correct.
                    298: *>
                    299: *>  [*] See DHGEQZ, DGEGS, or read the book "Matrix Computations",
                    300: *>      by Golub & van Loan, pub. by Johns Hopkins U. Press.
                    301: *> \endverbatim
                    302: *>
                    303: *  =====================================================================
1.1       bertrand  304:       SUBROUTINE DGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI,
                    305:      $                  BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO )
                    306: *
1.17    ! bertrand  307: *  -- LAPACK driver routine --
1.1       bertrand  308: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    309: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                    310: *
                    311: *     .. Scalar Arguments ..
                    312:       CHARACTER          JOBVL, JOBVR
                    313:       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, N
                    314: *     ..
                    315: *     .. Array Arguments ..
                    316:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
                    317:      $                   B( LDB, * ), BETA( * ), VL( LDVL, * ),
                    318:      $                   VR( LDVR, * ), WORK( * )
                    319: *     ..
                    320: *
                    321: *  =====================================================================
                    322: *
                    323: *     .. Parameters ..
                    324:       DOUBLE PRECISION   ZERO, ONE
                    325:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    326: *     ..
                    327: *     .. Local Scalars ..
                    328:       LOGICAL            ILIMIT, ILV, ILVL, ILVR, LQUERY
                    329:       CHARACTER          CHTEMP
                    330:       INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
                    331:      $                   IN, IRIGHT, IROWS, ITAU, IWORK, JC, JR, LOPT,
                    332:      $                   LWKMIN, LWKOPT, NB, NB1, NB2, NB3
                    333:       DOUBLE PRECISION   ABSAI, ABSAR, ABSB, ANRM, ANRM1, ANRM2, BNRM,
                    334:      $                   BNRM1, BNRM2, EPS, ONEPLS, SAFMAX, SAFMIN,
                    335:      $                   SALFAI, SALFAR, SBETA, SCALE, TEMP
                    336: *     ..
                    337: *     .. Local Arrays ..
                    338:       LOGICAL            LDUMMA( 1 )
                    339: *     ..
                    340: *     .. External Subroutines ..
                    341:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY,
                    342:      $                   DLASCL, DLASET, DORGQR, DORMQR, DTGEVC, XERBLA
                    343: *     ..
                    344: *     .. External Functions ..
                    345:       LOGICAL            LSAME
                    346:       INTEGER            ILAENV
                    347:       DOUBLE PRECISION   DLAMCH, DLANGE
                    348:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
                    349: *     ..
                    350: *     .. Intrinsic Functions ..
                    351:       INTRINSIC          ABS, INT, MAX
                    352: *     ..
                    353: *     .. Executable Statements ..
                    354: *
                    355: *     Decode the input arguments
                    356: *
                    357:       IF( LSAME( JOBVL, 'N' ) ) THEN
                    358:          IJOBVL = 1
                    359:          ILVL = .FALSE.
                    360:       ELSE IF( LSAME( JOBVL, 'V' ) ) THEN
                    361:          IJOBVL = 2
                    362:          ILVL = .TRUE.
                    363:       ELSE
                    364:          IJOBVL = -1
                    365:          ILVL = .FALSE.
                    366:       END IF
                    367: *
                    368:       IF( LSAME( JOBVR, 'N' ) ) THEN
                    369:          IJOBVR = 1
                    370:          ILVR = .FALSE.
                    371:       ELSE IF( LSAME( JOBVR, 'V' ) ) THEN
                    372:          IJOBVR = 2
                    373:          ILVR = .TRUE.
                    374:       ELSE
                    375:          IJOBVR = -1
                    376:          ILVR = .FALSE.
                    377:       END IF
                    378:       ILV = ILVL .OR. ILVR
                    379: *
                    380: *     Test the input arguments
                    381: *
                    382:       LWKMIN = MAX( 8*N, 1 )
                    383:       LWKOPT = LWKMIN
                    384:       WORK( 1 ) = LWKOPT
                    385:       LQUERY = ( LWORK.EQ.-1 )
                    386:       INFO = 0
                    387:       IF( IJOBVL.LE.0 ) THEN
                    388:          INFO = -1
                    389:       ELSE IF( IJOBVR.LE.0 ) THEN
                    390:          INFO = -2
                    391:       ELSE IF( N.LT.0 ) THEN
                    392:          INFO = -3
                    393:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    394:          INFO = -5
                    395:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
                    396:          INFO = -7
                    397:       ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN
                    398:          INFO = -12
                    399:       ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN
                    400:          INFO = -14
                    401:       ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
                    402:          INFO = -16
                    403:       END IF
                    404: *
                    405:       IF( INFO.EQ.0 ) THEN
                    406:          NB1 = ILAENV( 1, 'DGEQRF', ' ', N, N, -1, -1 )
                    407:          NB2 = ILAENV( 1, 'DORMQR', ' ', N, N, N, -1 )
                    408:          NB3 = ILAENV( 1, 'DORGQR', ' ', N, N, N, -1 )
                    409:          NB = MAX( NB1, NB2, NB3 )
                    410:          LOPT = 2*N + MAX( 6*N, N*( NB+1 ) )
                    411:          WORK( 1 ) = LOPT
                    412:       END IF
                    413: *
                    414:       IF( INFO.NE.0 ) THEN
                    415:          CALL XERBLA( 'DGEGV ', -INFO )
                    416:          RETURN
                    417:       ELSE IF( LQUERY ) THEN
                    418:          RETURN
                    419:       END IF
                    420: *
                    421: *     Quick return if possible
                    422: *
                    423:       IF( N.EQ.0 )
                    424:      $   RETURN
                    425: *
                    426: *     Get machine constants
                    427: *
                    428:       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
                    429:       SAFMIN = DLAMCH( 'S' )
                    430:       SAFMIN = SAFMIN + SAFMIN
                    431:       SAFMAX = ONE / SAFMIN
                    432:       ONEPLS = ONE + ( 4*EPS )
                    433: *
                    434: *     Scale A
                    435: *
                    436:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
                    437:       ANRM1 = ANRM
                    438:       ANRM2 = ONE
                    439:       IF( ANRM.LT.ONE ) THEN
                    440:          IF( SAFMAX*ANRM.LT.ONE ) THEN
                    441:             ANRM1 = SAFMIN
                    442:             ANRM2 = SAFMAX*ANRM
                    443:          END IF
                    444:       END IF
                    445: *
                    446:       IF( ANRM.GT.ZERO ) THEN
                    447:          CALL DLASCL( 'G', -1, -1, ANRM, ONE, N, N, A, LDA, IINFO )
                    448:          IF( IINFO.NE.0 ) THEN
                    449:             INFO = N + 10
                    450:             RETURN
                    451:          END IF
                    452:       END IF
                    453: *
                    454: *     Scale B
                    455: *
                    456:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
                    457:       BNRM1 = BNRM
                    458:       BNRM2 = ONE
                    459:       IF( BNRM.LT.ONE ) THEN
                    460:          IF( SAFMAX*BNRM.LT.ONE ) THEN
                    461:             BNRM1 = SAFMIN
                    462:             BNRM2 = SAFMAX*BNRM
                    463:          END IF
                    464:       END IF
                    465: *
                    466:       IF( BNRM.GT.ZERO ) THEN
                    467:          CALL DLASCL( 'G', -1, -1, BNRM, ONE, N, N, B, LDB, IINFO )
                    468:          IF( IINFO.NE.0 ) THEN
                    469:             INFO = N + 10
                    470:             RETURN
                    471:          END IF
                    472:       END IF
                    473: *
                    474: *     Permute the matrix to make it more nearly triangular
                    475: *     Workspace layout:  (8*N words -- "work" requires 6*N words)
                    476: *        left_permutation, right_permutation, work...
                    477: *
                    478:       ILEFT = 1
                    479:       IRIGHT = N + 1
                    480:       IWORK = IRIGHT + N
                    481:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
                    482:      $             WORK( IRIGHT ), WORK( IWORK ), IINFO )
                    483:       IF( IINFO.NE.0 ) THEN
                    484:          INFO = N + 1
                    485:          GO TO 120
                    486:       END IF
                    487: *
                    488: *     Reduce B to triangular form, and initialize VL and/or VR
                    489: *     Workspace layout:  ("work..." must have at least N words)
                    490: *        left_permutation, right_permutation, tau, work...
                    491: *
                    492:       IROWS = IHI + 1 - ILO
                    493:       IF( ILV ) THEN
                    494:          ICOLS = N + 1 - ILO
                    495:       ELSE
                    496:          ICOLS = IROWS
                    497:       END IF
                    498:       ITAU = IWORK
                    499:       IWORK = ITAU + IROWS
                    500:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
                    501:      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
                    502:       IF( IINFO.GE.0 )
                    503:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    504:       IF( IINFO.NE.0 ) THEN
                    505:          INFO = N + 2
                    506:          GO TO 120
                    507:       END IF
                    508: *
                    509:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
                    510:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
                    511:      $             LWORK+1-IWORK, IINFO )
                    512:       IF( IINFO.GE.0 )
                    513:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    514:       IF( IINFO.NE.0 ) THEN
                    515:          INFO = N + 3
                    516:          GO TO 120
                    517:       END IF
                    518: *
                    519:       IF( ILVL ) THEN
                    520:          CALL DLASET( 'Full', N, N, ZERO, ONE, VL, LDVL )
                    521:          CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
                    522:      $                VL( ILO+1, ILO ), LDVL )
                    523:          CALL DORGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL,
                    524:      $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
                    525:      $                IINFO )
                    526:          IF( IINFO.GE.0 )
                    527:      $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    528:          IF( IINFO.NE.0 ) THEN
                    529:             INFO = N + 4
                    530:             GO TO 120
                    531:          END IF
                    532:       END IF
                    533: *
                    534:       IF( ILVR )
                    535:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VR, LDVR )
                    536: *
                    537: *     Reduce to generalized Hessenberg form
                    538: *
                    539:       IF( ILV ) THEN
                    540: *
                    541: *        Eigenvectors requested -- work on whole matrix.
                    542: *
                    543:          CALL DGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL,
                    544:      $                LDVL, VR, LDVR, IINFO )
                    545:       ELSE
                    546:          CALL DGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA,
                    547:      $                B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IINFO )
                    548:       END IF
                    549:       IF( IINFO.NE.0 ) THEN
                    550:          INFO = N + 5
                    551:          GO TO 120
                    552:       END IF
                    553: *
                    554: *     Perform QZ algorithm
                    555: *     Workspace layout:  ("work..." must have at least 1 word)
                    556: *        left_permutation, right_permutation, work...
                    557: *
                    558:       IWORK = ITAU
                    559:       IF( ILV ) THEN
                    560:          CHTEMP = 'S'
                    561:       ELSE
                    562:          CHTEMP = 'E'
                    563:       END IF
                    564:       CALL DHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB,
                    565:      $             ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR,
                    566:      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
                    567:       IF( IINFO.GE.0 )
                    568:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
                    569:       IF( IINFO.NE.0 ) THEN
                    570:          IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
                    571:             INFO = IINFO
                    572:          ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
                    573:             INFO = IINFO - N
                    574:          ELSE
                    575:             INFO = N + 6
                    576:          END IF
                    577:          GO TO 120
                    578:       END IF
                    579: *
                    580:       IF( ILV ) THEN
                    581: *
                    582: *        Compute Eigenvectors  (DTGEVC requires 6*N words of workspace)
                    583: *
                    584:          IF( ILVL ) THEN
                    585:             IF( ILVR ) THEN
                    586:                CHTEMP = 'B'
                    587:             ELSE
                    588:                CHTEMP = 'L'
                    589:             END IF
                    590:          ELSE
                    591:             CHTEMP = 'R'
                    592:          END IF
                    593: *
                    594:          CALL DTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL,
                    595:      $                VR, LDVR, N, IN, WORK( IWORK ), IINFO )
                    596:          IF( IINFO.NE.0 ) THEN
                    597:             INFO = N + 7
                    598:             GO TO 120
                    599:          END IF
                    600: *
                    601: *        Undo balancing on VL and VR, rescale
                    602: *
                    603:          IF( ILVL ) THEN
                    604:             CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
                    605:      $                   WORK( IRIGHT ), N, VL, LDVL, IINFO )
                    606:             IF( IINFO.NE.0 ) THEN
                    607:                INFO = N + 8
                    608:                GO TO 120
                    609:             END IF
                    610:             DO 50 JC = 1, N
                    611:                IF( ALPHAI( JC ).LT.ZERO )
                    612:      $            GO TO 50
                    613:                TEMP = ZERO
                    614:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    615:                   DO 10 JR = 1, N
                    616:                      TEMP = MAX( TEMP, ABS( VL( JR, JC ) ) )
                    617:    10             CONTINUE
                    618:                ELSE
                    619:                   DO 20 JR = 1, N
                    620:                      TEMP = MAX( TEMP, ABS( VL( JR, JC ) )+
                    621:      $                      ABS( VL( JR, JC+1 ) ) )
                    622:    20             CONTINUE
                    623:                END IF
                    624:                IF( TEMP.LT.SAFMIN )
                    625:      $            GO TO 50
                    626:                TEMP = ONE / TEMP
                    627:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    628:                   DO 30 JR = 1, N
                    629:                      VL( JR, JC ) = VL( JR, JC )*TEMP
                    630:    30             CONTINUE
                    631:                ELSE
                    632:                   DO 40 JR = 1, N
                    633:                      VL( JR, JC ) = VL( JR, JC )*TEMP
                    634:                      VL( JR, JC+1 ) = VL( JR, JC+1 )*TEMP
                    635:    40             CONTINUE
                    636:                END IF
                    637:    50       CONTINUE
                    638:          END IF
                    639:          IF( ILVR ) THEN
                    640:             CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
                    641:      $                   WORK( IRIGHT ), N, VR, LDVR, IINFO )
                    642:             IF( IINFO.NE.0 ) THEN
                    643:                INFO = N + 9
                    644:                GO TO 120
                    645:             END IF
                    646:             DO 100 JC = 1, N
                    647:                IF( ALPHAI( JC ).LT.ZERO )
                    648:      $            GO TO 100
                    649:                TEMP = ZERO
                    650:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    651:                   DO 60 JR = 1, N
                    652:                      TEMP = MAX( TEMP, ABS( VR( JR, JC ) ) )
                    653:    60             CONTINUE
                    654:                ELSE
                    655:                   DO 70 JR = 1, N
                    656:                      TEMP = MAX( TEMP, ABS( VR( JR, JC ) )+
                    657:      $                      ABS( VR( JR, JC+1 ) ) )
                    658:    70             CONTINUE
                    659:                END IF
                    660:                IF( TEMP.LT.SAFMIN )
                    661:      $            GO TO 100
                    662:                TEMP = ONE / TEMP
                    663:                IF( ALPHAI( JC ).EQ.ZERO ) THEN
                    664:                   DO 80 JR = 1, N
                    665:                      VR( JR, JC ) = VR( JR, JC )*TEMP
                    666:    80             CONTINUE
                    667:                ELSE
                    668:                   DO 90 JR = 1, N
                    669:                      VR( JR, JC ) = VR( JR, JC )*TEMP
                    670:                      VR( JR, JC+1 ) = VR( JR, JC+1 )*TEMP
                    671:    90             CONTINUE
                    672:                END IF
                    673:   100       CONTINUE
                    674:          END IF
                    675: *
                    676: *        End of eigenvector calculation
                    677: *
                    678:       END IF
                    679: *
                    680: *     Undo scaling in alpha, beta
                    681: *
                    682: *     Note: this does not give the alpha and beta for the unscaled
                    683: *     problem.
                    684: *
                    685: *     Un-scaling is limited to avoid underflow in alpha and beta
                    686: *     if they are significant.
                    687: *
                    688:       DO 110 JC = 1, N
                    689:          ABSAR = ABS( ALPHAR( JC ) )
                    690:          ABSAI = ABS( ALPHAI( JC ) )
                    691:          ABSB = ABS( BETA( JC ) )
                    692:          SALFAR = ANRM*ALPHAR( JC )
                    693:          SALFAI = ANRM*ALPHAI( JC )
                    694:          SBETA = BNRM*BETA( JC )
                    695:          ILIMIT = .FALSE.
                    696:          SCALE = ONE
                    697: *
                    698: *        Check for significant underflow in ALPHAI
                    699: *
                    700:          IF( ABS( SALFAI ).LT.SAFMIN .AND. ABSAI.GE.
                    701:      $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSB ) ) THEN
                    702:             ILIMIT = .TRUE.
                    703:             SCALE = ( ONEPLS*SAFMIN / ANRM1 ) /
                    704:      $              MAX( ONEPLS*SAFMIN, ANRM2*ABSAI )
                    705: *
                    706:          ELSE IF( SALFAI.EQ.ZERO ) THEN
                    707: *
                    708: *           If insignificant underflow in ALPHAI, then make the
                    709: *           conjugate eigenvalue real.
                    710: *
                    711:             IF( ALPHAI( JC ).LT.ZERO .AND. JC.GT.1 ) THEN
                    712:                ALPHAI( JC-1 ) = ZERO
                    713:             ELSE IF( ALPHAI( JC ).GT.ZERO .AND. JC.LT.N ) THEN
                    714:                ALPHAI( JC+1 ) = ZERO
                    715:             END IF
                    716:          END IF
                    717: *
                    718: *        Check for significant underflow in ALPHAR
                    719: *
                    720:          IF( ABS( SALFAR ).LT.SAFMIN .AND. ABSAR.GE.
                    721:      $       MAX( SAFMIN, EPS*ABSAI, EPS*ABSB ) ) THEN
                    722:             ILIMIT = .TRUE.
                    723:             SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / ANRM1 ) /
                    724:      $              MAX( ONEPLS*SAFMIN, ANRM2*ABSAR ) )
                    725:          END IF
                    726: *
                    727: *        Check for significant underflow in BETA
                    728: *
                    729:          IF( ABS( SBETA ).LT.SAFMIN .AND. ABSB.GE.
                    730:      $       MAX( SAFMIN, EPS*ABSAR, EPS*ABSAI ) ) THEN
                    731:             ILIMIT = .TRUE.
                    732:             SCALE = MAX( SCALE, ( ONEPLS*SAFMIN / BNRM1 ) /
                    733:      $              MAX( ONEPLS*SAFMIN, BNRM2*ABSB ) )
                    734:          END IF
                    735: *
                    736: *        Check for possible overflow when limiting scaling
                    737: *
                    738:          IF( ILIMIT ) THEN
                    739:             TEMP = ( SCALE*SAFMIN )*MAX( ABS( SALFAR ), ABS( SALFAI ),
                    740:      $             ABS( SBETA ) )
                    741:             IF( TEMP.GT.ONE )
                    742:      $         SCALE = SCALE / TEMP
                    743:             IF( SCALE.LT.ONE )
                    744:      $         ILIMIT = .FALSE.
                    745:          END IF
                    746: *
                    747: *        Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary.
                    748: *
                    749:          IF( ILIMIT ) THEN
                    750:             SALFAR = ( SCALE*ALPHAR( JC ) )*ANRM
                    751:             SALFAI = ( SCALE*ALPHAI( JC ) )*ANRM
                    752:             SBETA = ( SCALE*BETA( JC ) )*BNRM
                    753:          END IF
                    754:          ALPHAR( JC ) = SALFAR
                    755:          ALPHAI( JC ) = SALFAI
                    756:          BETA( JC ) = SBETA
                    757:   110 CONTINUE
                    758: *
                    759:   120 CONTINUE
                    760:       WORK( 1 ) = LWKOPT
                    761: *
                    762:       RETURN
                    763: *
                    764: *     End of DGEGV
                    765: *
                    766:       END

CVSweb interface <joel.bertrand@systella.fr>