--- rpl/lapack/lapack/dgegv.f 2010/08/07 13:22:13 1.5 +++ rpl/lapack/lapack/dgegv.f 2023/08/07 08:38:48 1.17 @@ -1,10 +1,312 @@ +*> \brief DGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices +* +* =========== DOCUMENTATION =========== +* +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ +* +*> \htmlonly +*> Download DGEGV + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> +*> [TXT] +*> \endhtmlonly +* +* Definition: +* =========== +* +* SUBROUTINE DGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI, +* BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO ) +* +* .. Scalar Arguments .. +* CHARACTER JOBVL, JOBVR +* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N +* .. +* .. Array Arguments .. +* DOUBLE PRECISION A( LDA, * ), ALPHAI( * ), ALPHAR( * ), +* $ B( LDB, * ), BETA( * ), VL( LDVL, * ), +* $ VR( LDVR, * ), WORK( * ) +* .. +* +* +*> \par Purpose: +* ============= +*> +*> \verbatim +*> +*> This routine is deprecated and has been replaced by routine DGGEV. +*> +*> DGEGV computes the eigenvalues and, optionally, the left and/or right +*> eigenvectors of a real matrix pair (A,B). +*> Given two square matrices A and B, +*> the generalized nonsymmetric eigenvalue problem (GNEP) is to find the +*> eigenvalues lambda and corresponding (non-zero) eigenvectors x such +*> that +*> +*> A*x = lambda*B*x. +*> +*> An alternate form is to find the eigenvalues mu and corresponding +*> eigenvectors y such that +*> +*> mu*A*y = B*y. +*> +*> These two forms are equivalent with mu = 1/lambda and x = y if +*> neither lambda nor mu is zero. In order to deal with the case that +*> lambda or mu is zero or small, two values alpha and beta are returned +*> for each eigenvalue, such that lambda = alpha/beta and +*> mu = beta/alpha. +*> +*> The vectors x and y in the above equations are right eigenvectors of +*> the matrix pair (A,B). Vectors u and v satisfying +*> +*> u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B +*> +*> are left eigenvectors of (A,B). +*> +*> Note: this routine performs "full balancing" on A and B +*> \endverbatim +* +* Arguments: +* ========== +* +*> \param[in] JOBVL +*> \verbatim +*> JOBVL is CHARACTER*1 +*> = 'N': do not compute the left generalized eigenvectors; +*> = 'V': compute the left generalized eigenvectors (returned +*> in VL). +*> \endverbatim +*> +*> \param[in] JOBVR +*> \verbatim +*> JOBVR is CHARACTER*1 +*> = 'N': do not compute the right generalized eigenvectors; +*> = 'V': compute the right generalized eigenvectors (returned +*> in VR). +*> \endverbatim +*> +*> \param[in] N +*> \verbatim +*> N is INTEGER +*> The order of the matrices A, B, VL, and VR. N >= 0. +*> \endverbatim +*> +*> \param[in,out] A +*> \verbatim +*> A is DOUBLE PRECISION array, dimension (LDA, N) +*> On entry, the matrix A. +*> If JOBVL = 'V' or JOBVR = 'V', then on exit A +*> contains the real Schur form of A from the generalized Schur +*> factorization of the pair (A,B) after balancing. +*> If no eigenvectors were computed, then only the diagonal +*> blocks from the Schur form will be correct. See DGGHRD and +*> DHGEQZ for details. +*> \endverbatim +*> +*> \param[in] LDA +*> \verbatim +*> LDA is INTEGER +*> The leading dimension of A. LDA >= max(1,N). +*> \endverbatim +*> +*> \param[in,out] B +*> \verbatim +*> B is DOUBLE PRECISION array, dimension (LDB, N) +*> On entry, the matrix B. +*> If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the +*> upper triangular matrix obtained from B in the generalized +*> Schur factorization of the pair (A,B) after balancing. +*> If no eigenvectors were computed, then only those elements of +*> B corresponding to the diagonal blocks from the Schur form of +*> A will be correct. See DGGHRD and DHGEQZ for details. +*> \endverbatim +*> +*> \param[in] LDB +*> \verbatim +*> LDB is INTEGER +*> The leading dimension of B. LDB >= max(1,N). +*> \endverbatim +*> +*> \param[out] ALPHAR +*> \verbatim +*> ALPHAR is DOUBLE PRECISION array, dimension (N) +*> The real parts of each scalar alpha defining an eigenvalue of +*> GNEP. +*> \endverbatim +*> +*> \param[out] ALPHAI +*> \verbatim +*> ALPHAI is DOUBLE PRECISION array, dimension (N) +*> The imaginary parts of each scalar alpha defining an +*> eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th +*> eigenvalue is real; if positive, then the j-th and +*> (j+1)-st eigenvalues are a complex conjugate pair, with +*> ALPHAI(j+1) = -ALPHAI(j). +*> \endverbatim +*> +*> \param[out] BETA +*> \verbatim +*> BETA is DOUBLE PRECISION array, dimension (N) +*> The scalars beta that define the eigenvalues of GNEP. +*> +*> Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and +*> beta = BETA(j) represent the j-th eigenvalue of the matrix +*> pair (A,B), in one of the forms lambda = alpha/beta or +*> mu = beta/alpha. Since either lambda or mu may overflow, +*> they should not, in general, be computed. +*> \endverbatim +*> +*> \param[out] VL +*> \verbatim +*> VL is DOUBLE PRECISION array, dimension (LDVL,N) +*> If JOBVL = 'V', the left eigenvectors u(j) are stored +*> in the columns of VL, in the same order as their eigenvalues. +*> If the j-th eigenvalue is real, then u(j) = VL(:,j). +*> If the j-th and (j+1)-st eigenvalues form a complex conjugate +*> pair, then +*> u(j) = VL(:,j) + i*VL(:,j+1) +*> and +*> u(j+1) = VL(:,j) - i*VL(:,j+1). +*> +*> Each eigenvector is scaled so that its largest component has +*> abs(real part) + abs(imag. part) = 1, except for eigenvectors +*> corresponding to an eigenvalue with alpha = beta = 0, which +*> are set to zero. +*> Not referenced if JOBVL = 'N'. +*> \endverbatim +*> +*> \param[in] LDVL +*> \verbatim +*> LDVL is INTEGER +*> The leading dimension of the matrix VL. LDVL >= 1, and +*> if JOBVL = 'V', LDVL >= N. +*> \endverbatim +*> +*> \param[out] VR +*> \verbatim +*> VR is DOUBLE PRECISION array, dimension (LDVR,N) +*> If JOBVR = 'V', the right eigenvectors x(j) are stored +*> in the columns of VR, in the same order as their eigenvalues. +*> If the j-th eigenvalue is real, then x(j) = VR(:,j). +*> If the j-th and (j+1)-st eigenvalues form a complex conjugate +*> pair, then +*> x(j) = VR(:,j) + i*VR(:,j+1) +*> and +*> x(j+1) = VR(:,j) - i*VR(:,j+1). +*> +*> Each eigenvector is scaled so that its largest component has +*> abs(real part) + abs(imag. part) = 1, except for eigenvalues +*> corresponding to an eigenvalue with alpha = beta = 0, which +*> are set to zero. +*> Not referenced if JOBVR = 'N'. +*> \endverbatim +*> +*> \param[in] LDVR +*> \verbatim +*> LDVR is INTEGER +*> The leading dimension of the matrix VR. LDVR >= 1, and +*> if JOBVR = 'V', LDVR >= N. +*> \endverbatim +*> +*> \param[out] WORK +*> \verbatim +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. +*> \endverbatim +*> +*> \param[in] LWORK +*> \verbatim +*> LWORK is INTEGER +*> The dimension of the array WORK. LWORK >= max(1,8*N). +*> For good performance, LWORK must generally be larger. +*> To compute the optimal value of LWORK, call ILAENV to get +*> blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute: +*> NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR; +*> The optimal LWORK is: +*> 2*N + MAX( 6*N, N*(NB+1) ). +*> +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the optimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. +*> \endverbatim +*> +*> \param[out] INFO +*> \verbatim +*> INFO is INTEGER +*> = 0: successful exit +*> < 0: if INFO = -i, the i-th argument had an illegal value. +*> = 1,...,N: +*> The QZ iteration failed. No eigenvectors have been +*> calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) +*> should be correct for j=INFO+1,...,N. +*> > N: errors that usually indicate LAPACK problems: +*> =N+1: error return from DGGBAL +*> =N+2: error return from DGEQRF +*> =N+3: error return from DORMQR +*> =N+4: error return from DORGQR +*> =N+5: error return from DGGHRD +*> =N+6: error return from DHGEQZ (other than failed +*> iteration) +*> =N+7: error return from DTGEVC +*> =N+8: error return from DGGBAK (computing VL) +*> =N+9: error return from DGGBAK (computing VR) +*> =N+10: error return from DLASCL (various calls) +*> \endverbatim +* +* Authors: +* ======== +* +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. +* +*> \ingroup doubleGEeigen +* +*> \par Further Details: +* ===================== +*> +*> \verbatim +*> +*> Balancing +*> --------- +*> +*> This driver calls DGGBAL to both permute and scale rows and columns +*> of A and B. The permutations PL and PR are chosen so that PL*A*PR +*> and PL*B*R will be upper triangular except for the diagonal blocks +*> A(i:j,i:j) and B(i:j,i:j), with i and j as close together as +*> possible. The diagonal scaling matrices DL and DR are chosen so +*> that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to +*> one (except for the elements that start out zero.) +*> +*> After the eigenvalues and eigenvectors of the balanced matrices +*> have been computed, DGGBAK transforms the eigenvectors back to what +*> they would have been (in perfect arithmetic) if they had not been +*> balanced. +*> +*> Contents of A and B on Exit +*> -------- -- - --- - -- ---- +*> +*> If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or +*> both), then on exit the arrays A and B will contain the real Schur +*> form[*] of the "balanced" versions of A and B. If no eigenvectors +*> are computed, then only the diagonal blocks will be correct. +*> +*> [*] See DHGEQZ, DGEGS, or read the book "Matrix Computations", +*> by Golub & van Loan, pub. by Johns Hopkins U. Press. +*> \endverbatim +*> +* ===================================================================== SUBROUTINE DGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, ALPHAI, $ BETA, VL, LDVL, VR, LDVR, WORK, LWORK, INFO ) * -* -- LAPACK driver routine (version 3.2) -- +* -- LAPACK driver routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- -* November 2006 * * .. Scalar Arguments .. CHARACTER JOBVL, JOBVR @@ -16,208 +318,6 @@ $ VR( LDVR, * ), WORK( * ) * .. * -* Purpose -* ======= -* -* This routine is deprecated and has been replaced by routine DGGEV. -* -* DGEGV computes the eigenvalues and, optionally, the left and/or right -* eigenvectors of a real matrix pair (A,B). -* Given two square matrices A and B, -* the generalized nonsymmetric eigenvalue problem (GNEP) is to find the -* eigenvalues lambda and corresponding (non-zero) eigenvectors x such -* that -* -* A*x = lambda*B*x. -* -* An alternate form is to find the eigenvalues mu and corresponding -* eigenvectors y such that -* -* mu*A*y = B*y. -* -* These two forms are equivalent with mu = 1/lambda and x = y if -* neither lambda nor mu is zero. In order to deal with the case that -* lambda or mu is zero or small, two values alpha and beta are returned -* for each eigenvalue, such that lambda = alpha/beta and -* mu = beta/alpha. -* -* The vectors x and y in the above equations are right eigenvectors of -* the matrix pair (A,B). Vectors u and v satisfying -* -* u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B -* -* are left eigenvectors of (A,B). -* -* Note: this routine performs "full balancing" on A and B -- see -* "Further Details", below. -* -* Arguments -* ========= -* -* JOBVL (input) CHARACTER*1 -* = 'N': do not compute the left generalized eigenvectors; -* = 'V': compute the left generalized eigenvectors (returned -* in VL). -* -* JOBVR (input) CHARACTER*1 -* = 'N': do not compute the right generalized eigenvectors; -* = 'V': compute the right generalized eigenvectors (returned -* in VR). -* -* N (input) INTEGER -* The order of the matrices A, B, VL, and VR. N >= 0. -* -* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) -* On entry, the matrix A. -* If JOBVL = 'V' or JOBVR = 'V', then on exit A -* contains the real Schur form of A from the generalized Schur -* factorization of the pair (A,B) after balancing. -* If no eigenvectors were computed, then only the diagonal -* blocks from the Schur form will be correct. See DGGHRD and -* DHGEQZ for details. -* -* LDA (input) INTEGER -* The leading dimension of A. LDA >= max(1,N). -* -* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) -* On entry, the matrix B. -* If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the -* upper triangular matrix obtained from B in the generalized -* Schur factorization of the pair (A,B) after balancing. -* If no eigenvectors were computed, then only those elements of -* B corresponding to the diagonal blocks from the Schur form of -* A will be correct. See DGGHRD and DHGEQZ for details. -* -* LDB (input) INTEGER -* The leading dimension of B. LDB >= max(1,N). -* -* ALPHAR (output) DOUBLE PRECISION array, dimension (N) -* The real parts of each scalar alpha defining an eigenvalue of -* GNEP. -* -* ALPHAI (output) DOUBLE PRECISION array, dimension (N) -* The imaginary parts of each scalar alpha defining an -* eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th -* eigenvalue is real; if positive, then the j-th and -* (j+1)-st eigenvalues are a complex conjugate pair, with -* ALPHAI(j+1) = -ALPHAI(j). -* -* BETA (output) DOUBLE PRECISION array, dimension (N) -* The scalars beta that define the eigenvalues of GNEP. -* -* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and -* beta = BETA(j) represent the j-th eigenvalue of the matrix -* pair (A,B), in one of the forms lambda = alpha/beta or -* mu = beta/alpha. Since either lambda or mu may overflow, -* they should not, in general, be computed. -* -* VL (output) DOUBLE PRECISION array, dimension (LDVL,N) -* If JOBVL = 'V', the left eigenvectors u(j) are stored -* in the columns of VL, in the same order as their eigenvalues. -* If the j-th eigenvalue is real, then u(j) = VL(:,j). -* If the j-th and (j+1)-st eigenvalues form a complex conjugate -* pair, then -* u(j) = VL(:,j) + i*VL(:,j+1) -* and -* u(j+1) = VL(:,j) - i*VL(:,j+1). -* -* Each eigenvector is scaled so that its largest component has -* abs(real part) + abs(imag. part) = 1, except for eigenvectors -* corresponding to an eigenvalue with alpha = beta = 0, which -* are set to zero. -* Not referenced if JOBVL = 'N'. -* -* LDVL (input) INTEGER -* The leading dimension of the matrix VL. LDVL >= 1, and -* if JOBVL = 'V', LDVL >= N. -* -* VR (output) DOUBLE PRECISION array, dimension (LDVR,N) -* If JOBVR = 'V', the right eigenvectors x(j) are stored -* in the columns of VR, in the same order as their eigenvalues. -* If the j-th eigenvalue is real, then x(j) = VR(:,j). -* If the j-th and (j+1)-st eigenvalues form a complex conjugate -* pair, then -* x(j) = VR(:,j) + i*VR(:,j+1) -* and -* x(j+1) = VR(:,j) - i*VR(:,j+1). -* -* Each eigenvector is scaled so that its largest component has -* abs(real part) + abs(imag. part) = 1, except for eigenvalues -* corresponding to an eigenvalue with alpha = beta = 0, which -* are set to zero. -* Not referenced if JOBVR = 'N'. -* -* LDVR (input) INTEGER -* The leading dimension of the matrix VR. LDVR >= 1, and -* if JOBVR = 'V', LDVR >= N. -* -* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) -* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. -* -* LWORK (input) INTEGER -* The dimension of the array WORK. LWORK >= max(1,8*N). -* For good performance, LWORK must generally be larger. -* To compute the optimal value of LWORK, call ILAENV to get -* blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute: -* NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR; -* The optimal LWORK is: -* 2*N + MAX( 6*N, N*(NB+1) ). -* -* If LWORK = -1, then a workspace query is assumed; the routine -* only calculates the optimal size of the WORK array, returns -* this value as the first entry of the WORK array, and no error -* message related to LWORK is issued by XERBLA. -* -* INFO (output) INTEGER -* = 0: successful exit -* < 0: if INFO = -i, the i-th argument had an illegal value. -* = 1,...,N: -* The QZ iteration failed. No eigenvectors have been -* calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) -* should be correct for j=INFO+1,...,N. -* > N: errors that usually indicate LAPACK problems: -* =N+1: error return from DGGBAL -* =N+2: error return from DGEQRF -* =N+3: error return from DORMQR -* =N+4: error return from DORGQR -* =N+5: error return from DGGHRD -* =N+6: error return from DHGEQZ (other than failed -* iteration) -* =N+7: error return from DTGEVC -* =N+8: error return from DGGBAK (computing VL) -* =N+9: error return from DGGBAK (computing VR) -* =N+10: error return from DLASCL (various calls) -* -* Further Details -* =============== -* -* Balancing -* --------- -* -* This driver calls DGGBAL to both permute and scale rows and columns -* of A and B. The permutations PL and PR are chosen so that PL*A*PR -* and PL*B*R will be upper triangular except for the diagonal blocks -* A(i:j,i:j) and B(i:j,i:j), with i and j as close together as -* possible. The diagonal scaling matrices DL and DR are chosen so -* that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to -* one (except for the elements that start out zero.) -* -* After the eigenvalues and eigenvectors of the balanced matrices -* have been computed, DGGBAK transforms the eigenvectors back to what -* they would have been (in perfect arithmetic) if they had not been -* balanced. -* -* Contents of A and B on Exit -* -------- -- - --- - -- ---- -* -* If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or -* both), then on exit the arrays A and B will contain the real Schur -* form[*] of the "balanced" versions of A and B. If no eigenvectors -* are computed, then only the diagonal blocks will be correct. -* -* [*] See DHGEQZ, DGEGS, or read the book "Matrix Computations", -* by Golub & van Loan, pub. by Johns Hopkins U. Press. -* * ===================================================================== * * .. Parameters ..