File:  [local] / rpl / lapack / lapack / dgegs.f
Revision 1.8: download - view: text, annotated - select for diffs - revision graph
Mon Nov 21 20:42:50 2011 UTC (12 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack.

    1: *> \brief <b> DGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DGEGS + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgegs.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgegs.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgegs.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
   22: *                         ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
   23: *                         LWORK, INFO )
   24:    25: *       .. Scalar Arguments ..
   26: *       CHARACTER          JOBVSL, JOBVSR
   27: *       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
   28: *       ..
   29: *       .. Array Arguments ..
   30: *       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
   31: *      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
   32: *      $                   VSR( LDVSR, * ), WORK( * )
   33: *       ..
   34: *  
   35: *
   36: *> \par Purpose:
   37: *  =============
   38: *>
   39: *> \verbatim
   40: *>
   41: *> This routine is deprecated and has been replaced by routine DGGES.
   42: *>
   43: *> DGEGS computes the eigenvalues, real Schur form, and, optionally,
   44: *> left and or/right Schur vectors of a real matrix pair (A,B).
   45: *> Given two square matrices A and B, the generalized real Schur
   46: *> factorization has the form
   47: *>
   48: *>   A = Q*S*Z**T,  B = Q*T*Z**T
   49: *>
   50: *> where Q and Z are orthogonal matrices, T is upper triangular, and S
   51: *> is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
   52: *> blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
   53: *> of eigenvalues of (A,B).  The columns of Q are the left Schur vectors
   54: *> and the columns of Z are the right Schur vectors.
   55: *>
   56: *> If only the eigenvalues of (A,B) are needed, the driver routine
   57: *> DGEGV should be used instead.  See DGEGV for a description of the
   58: *> eigenvalues of the generalized nonsymmetric eigenvalue problem
   59: *> (GNEP).
   60: *> \endverbatim
   61: *
   62: *  Arguments:
   63: *  ==========
   64: *
   65: *> \param[in] JOBVSL
   66: *> \verbatim
   67: *>          JOBVSL is CHARACTER*1
   68: *>          = 'N':  do not compute the left Schur vectors;
   69: *>          = 'V':  compute the left Schur vectors (returned in VSL).
   70: *> \endverbatim
   71: *>
   72: *> \param[in] JOBVSR
   73: *> \verbatim
   74: *>          JOBVSR is CHARACTER*1
   75: *>          = 'N':  do not compute the right Schur vectors;
   76: *>          = 'V':  compute the right Schur vectors (returned in VSR).
   77: *> \endverbatim
   78: *>
   79: *> \param[in] N
   80: *> \verbatim
   81: *>          N is INTEGER
   82: *>          The order of the matrices A, B, VSL, and VSR.  N >= 0.
   83: *> \endverbatim
   84: *>
   85: *> \param[in,out] A
   86: *> \verbatim
   87: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
   88: *>          On entry, the matrix A.
   89: *>          On exit, the upper quasi-triangular matrix S from the
   90: *>          generalized real Schur factorization.
   91: *> \endverbatim
   92: *>
   93: *> \param[in] LDA
   94: *> \verbatim
   95: *>          LDA is INTEGER
   96: *>          The leading dimension of A.  LDA >= max(1,N).
   97: *> \endverbatim
   98: *>
   99: *> \param[in,out] B
  100: *> \verbatim
  101: *>          B is DOUBLE PRECISION array, dimension (LDB, N)
  102: *>          On entry, the matrix B.
  103: *>          On exit, the upper triangular matrix T from the generalized
  104: *>          real Schur factorization.
  105: *> \endverbatim
  106: *>
  107: *> \param[in] LDB
  108: *> \verbatim
  109: *>          LDB is INTEGER
  110: *>          The leading dimension of B.  LDB >= max(1,N).
  111: *> \endverbatim
  112: *>
  113: *> \param[out] ALPHAR
  114: *> \verbatim
  115: *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
  116: *>          The real parts of each scalar alpha defining an eigenvalue
  117: *>          of GNEP.
  118: *> \endverbatim
  119: *>
  120: *> \param[out] ALPHAI
  121: *> \verbatim
  122: *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
  123: *>          The imaginary parts of each scalar alpha defining an
  124: *>          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th
  125: *>          eigenvalue is real; if positive, then the j-th and (j+1)-st
  126: *>          eigenvalues are a complex conjugate pair, with
  127: *>          ALPHAI(j+1) = -ALPHAI(j).
  128: *> \endverbatim
  129: *>
  130: *> \param[out] BETA
  131: *> \verbatim
  132: *>          BETA is DOUBLE PRECISION array, dimension (N)
  133: *>          The scalars beta that define the eigenvalues of GNEP.
  134: *>          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
  135: *>          beta = BETA(j) represent the j-th eigenvalue of the matrix
  136: *>          pair (A,B), in one of the forms lambda = alpha/beta or
  137: *>          mu = beta/alpha.  Since either lambda or mu may overflow,
  138: *>          they should not, in general, be computed.
  139: *> \endverbatim
  140: *>
  141: *> \param[out] VSL
  142: *> \verbatim
  143: *>          VSL is DOUBLE PRECISION array, dimension (LDVSL,N)
  144: *>          If JOBVSL = 'V', the matrix of left Schur vectors Q.
  145: *>          Not referenced if JOBVSL = 'N'.
  146: *> \endverbatim
  147: *>
  148: *> \param[in] LDVSL
  149: *> \verbatim
  150: *>          LDVSL is INTEGER
  151: *>          The leading dimension of the matrix VSL. LDVSL >=1, and
  152: *>          if JOBVSL = 'V', LDVSL >= N.
  153: *> \endverbatim
  154: *>
  155: *> \param[out] VSR
  156: *> \verbatim
  157: *>          VSR is DOUBLE PRECISION array, dimension (LDVSR,N)
  158: *>          If JOBVSR = 'V', the matrix of right Schur vectors Z.
  159: *>          Not referenced if JOBVSR = 'N'.
  160: *> \endverbatim
  161: *>
  162: *> \param[in] LDVSR
  163: *> \verbatim
  164: *>          LDVSR is INTEGER
  165: *>          The leading dimension of the matrix VSR. LDVSR >= 1, and
  166: *>          if JOBVSR = 'V', LDVSR >= N.
  167: *> \endverbatim
  168: *>
  169: *> \param[out] WORK
  170: *> \verbatim
  171: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  172: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  173: *> \endverbatim
  174: *>
  175: *> \param[in] LWORK
  176: *> \verbatim
  177: *>          LWORK is INTEGER
  178: *>          The dimension of the array WORK.  LWORK >= max(1,4*N).
  179: *>          For good performance, LWORK must generally be larger.
  180: *>          To compute the optimal value of LWORK, call ILAENV to get
  181: *>          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute:
  182: *>          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR
  183: *>          The optimal LWORK is  2*N + N*(NB+1).
  184: *>
  185: *>          If LWORK = -1, then a workspace query is assumed; the routine
  186: *>          only calculates the optimal size of the WORK array, returns
  187: *>          this value as the first entry of the WORK array, and no error
  188: *>          message related to LWORK is issued by XERBLA.
  189: *> \endverbatim
  190: *>
  191: *> \param[out] INFO
  192: *> \verbatim
  193: *>          INFO is INTEGER
  194: *>          = 0:  successful exit
  195: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  196: *>          = 1,...,N:
  197: *>                The QZ iteration failed.  (A,B) are not in Schur
  198: *>                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
  199: *>                be correct for j=INFO+1,...,N.
  200: *>          > N:  errors that usually indicate LAPACK problems:
  201: *>                =N+1: error return from DGGBAL
  202: *>                =N+2: error return from DGEQRF
  203: *>                =N+3: error return from DORMQR
  204: *>                =N+4: error return from DORGQR
  205: *>                =N+5: error return from DGGHRD
  206: *>                =N+6: error return from DHGEQZ (other than failed
  207: *>                                                iteration)
  208: *>                =N+7: error return from DGGBAK (computing VSL)
  209: *>                =N+8: error return from DGGBAK (computing VSR)
  210: *>                =N+9: error return from DLASCL (various places)
  211: *> \endverbatim
  212: *
  213: *  Authors:
  214: *  ========
  215: *
  216: *> \author Univ. of Tennessee 
  217: *> \author Univ. of California Berkeley 
  218: *> \author Univ. of Colorado Denver 
  219: *> \author NAG Ltd. 
  220: *
  221: *> \date November 2011
  222: *
  223: *> \ingroup doubleGEeigen
  224: *
  225: *  =====================================================================
  226:       SUBROUTINE DGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
  227:      $                  ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
  228:      $                  LWORK, INFO )
  229: *
  230: *  -- LAPACK driver routine (version 3.4.0) --
  231: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  232: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  233: *     November 2011
  234: *
  235: *     .. Scalar Arguments ..
  236:       CHARACTER          JOBVSL, JOBVSR
  237:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
  238: *     ..
  239: *     .. Array Arguments ..
  240:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
  241:      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
  242:      $                   VSR( LDVSR, * ), WORK( * )
  243: *     ..
  244: *
  245: *  =====================================================================
  246: *
  247: *     .. Parameters ..
  248:       DOUBLE PRECISION   ZERO, ONE
  249:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  250: *     ..
  251: *     .. Local Scalars ..
  252:       LOGICAL            ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
  253:       INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
  254:      $                   IRIGHT, IROWS, ITAU, IWORK, LOPT, LWKMIN,
  255:      $                   LWKOPT, NB, NB1, NB2, NB3
  256:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
  257:      $                   SAFMIN, SMLNUM
  258: *     ..
  259: *     .. External Subroutines ..
  260:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY,
  261:      $                   DLASCL, DLASET, DORGQR, DORMQR, XERBLA
  262: *     ..
  263: *     .. External Functions ..
  264:       LOGICAL            LSAME
  265:       INTEGER            ILAENV
  266:       DOUBLE PRECISION   DLAMCH, DLANGE
  267:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
  268: *     ..
  269: *     .. Intrinsic Functions ..
  270:       INTRINSIC          INT, MAX
  271: *     ..
  272: *     .. Executable Statements ..
  273: *
  274: *     Decode the input arguments
  275: *
  276:       IF( LSAME( JOBVSL, 'N' ) ) THEN
  277:          IJOBVL = 1
  278:          ILVSL = .FALSE.
  279:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
  280:          IJOBVL = 2
  281:          ILVSL = .TRUE.
  282:       ELSE
  283:          IJOBVL = -1
  284:          ILVSL = .FALSE.
  285:       END IF
  286: *
  287:       IF( LSAME( JOBVSR, 'N' ) ) THEN
  288:          IJOBVR = 1
  289:          ILVSR = .FALSE.
  290:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
  291:          IJOBVR = 2
  292:          ILVSR = .TRUE.
  293:       ELSE
  294:          IJOBVR = -1
  295:          ILVSR = .FALSE.
  296:       END IF
  297: *
  298: *     Test the input arguments
  299: *
  300:       LWKMIN = MAX( 4*N, 1 )
  301:       LWKOPT = LWKMIN
  302:       WORK( 1 ) = LWKOPT
  303:       LQUERY = ( LWORK.EQ.-1 )
  304:       INFO = 0
  305:       IF( IJOBVL.LE.0 ) THEN
  306:          INFO = -1
  307:       ELSE IF( IJOBVR.LE.0 ) THEN
  308:          INFO = -2
  309:       ELSE IF( N.LT.0 ) THEN
  310:          INFO = -3
  311:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  312:          INFO = -5
  313:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  314:          INFO = -7
  315:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
  316:          INFO = -12
  317:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
  318:          INFO = -14
  319:       ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  320:          INFO = -16
  321:       END IF
  322: *
  323:       IF( INFO.EQ.0 ) THEN
  324:          NB1 = ILAENV( 1, 'DGEQRF', ' ', N, N, -1, -1 )
  325:          NB2 = ILAENV( 1, 'DORMQR', ' ', N, N, N, -1 )
  326:          NB3 = ILAENV( 1, 'DORGQR', ' ', N, N, N, -1 )
  327:          NB = MAX( NB1, NB2, NB3 )
  328:          LOPT = 2*N + N*( NB+1 )
  329:          WORK( 1 ) = LOPT
  330:       END IF
  331: *
  332:       IF( INFO.NE.0 ) THEN
  333:          CALL XERBLA( 'DGEGS ', -INFO )
  334:          RETURN
  335:       ELSE IF( LQUERY ) THEN
  336:          RETURN
  337:       END IF
  338: *
  339: *     Quick return if possible
  340: *
  341:       IF( N.EQ.0 )
  342:      $   RETURN
  343: *
  344: *     Get machine constants
  345: *
  346:       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
  347:       SAFMIN = DLAMCH( 'S' )
  348:       SMLNUM = N*SAFMIN / EPS
  349:       BIGNUM = ONE / SMLNUM
  350: *
  351: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  352: *
  353:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
  354:       ILASCL = .FALSE.
  355:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  356:          ANRMTO = SMLNUM
  357:          ILASCL = .TRUE.
  358:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  359:          ANRMTO = BIGNUM
  360:          ILASCL = .TRUE.
  361:       END IF
  362: *
  363:       IF( ILASCL ) THEN
  364:          CALL DLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO )
  365:          IF( IINFO.NE.0 ) THEN
  366:             INFO = N + 9
  367:             RETURN
  368:          END IF
  369:       END IF
  370: *
  371: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  372: *
  373:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
  374:       ILBSCL = .FALSE.
  375:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  376:          BNRMTO = SMLNUM
  377:          ILBSCL = .TRUE.
  378:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  379:          BNRMTO = BIGNUM
  380:          ILBSCL = .TRUE.
  381:       END IF
  382: *
  383:       IF( ILBSCL ) THEN
  384:          CALL DLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO )
  385:          IF( IINFO.NE.0 ) THEN
  386:             INFO = N + 9
  387:             RETURN
  388:          END IF
  389:       END IF
  390: *
  391: *     Permute the matrix to make it more nearly triangular
  392: *     Workspace layout:  (2*N words -- "work..." not actually used)
  393: *        left_permutation, right_permutation, work...
  394: *
  395:       ILEFT = 1
  396:       IRIGHT = N + 1
  397:       IWORK = IRIGHT + N
  398:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
  399:      $             WORK( IRIGHT ), WORK( IWORK ), IINFO )
  400:       IF( IINFO.NE.0 ) THEN
  401:          INFO = N + 1
  402:          GO TO 10
  403:       END IF
  404: *
  405: *     Reduce B to triangular form, and initialize VSL and/or VSR
  406: *     Workspace layout:  ("work..." must have at least N words)
  407: *        left_permutation, right_permutation, tau, work...
  408: *
  409:       IROWS = IHI + 1 - ILO
  410:       ICOLS = N + 1 - ILO
  411:       ITAU = IWORK
  412:       IWORK = ITAU + IROWS
  413:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  414:      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
  415:       IF( IINFO.GE.0 )
  416:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  417:       IF( IINFO.NE.0 ) THEN
  418:          INFO = N + 2
  419:          GO TO 10
  420:       END IF
  421: *
  422:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  423:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
  424:      $             LWORK+1-IWORK, IINFO )
  425:       IF( IINFO.GE.0 )
  426:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  427:       IF( IINFO.NE.0 ) THEN
  428:          INFO = N + 3
  429:          GO TO 10
  430:       END IF
  431: *
  432:       IF( ILVSL ) THEN
  433:          CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
  434:          CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  435:      $                VSL( ILO+1, ILO ), LDVSL )
  436:          CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
  437:      $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
  438:      $                IINFO )
  439:          IF( IINFO.GE.0 )
  440:      $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  441:          IF( IINFO.NE.0 ) THEN
  442:             INFO = N + 4
  443:             GO TO 10
  444:          END IF
  445:       END IF
  446: *
  447:       IF( ILVSR )
  448:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
  449: *
  450: *     Reduce to generalized Hessenberg form
  451: *
  452:       CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
  453:      $             LDVSL, VSR, LDVSR, IINFO )
  454:       IF( IINFO.NE.0 ) THEN
  455:          INFO = N + 5
  456:          GO TO 10
  457:       END IF
  458: *
  459: *     Perform QZ algorithm, computing Schur vectors if desired
  460: *     Workspace layout:  ("work..." must have at least 1 word)
  461: *        left_permutation, right_permutation, work...
  462: *
  463:       IWORK = ITAU
  464:       CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
  465:      $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
  466:      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
  467:       IF( IINFO.GE.0 )
  468:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  469:       IF( IINFO.NE.0 ) THEN
  470:          IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
  471:             INFO = IINFO
  472:          ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
  473:             INFO = IINFO - N
  474:          ELSE
  475:             INFO = N + 6
  476:          END IF
  477:          GO TO 10
  478:       END IF
  479: *
  480: *     Apply permutation to VSL and VSR
  481: *
  482:       IF( ILVSL ) THEN
  483:          CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
  484:      $                WORK( IRIGHT ), N, VSL, LDVSL, IINFO )
  485:          IF( IINFO.NE.0 ) THEN
  486:             INFO = N + 7
  487:             GO TO 10
  488:          END IF
  489:       END IF
  490:       IF( ILVSR ) THEN
  491:          CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
  492:      $                WORK( IRIGHT ), N, VSR, LDVSR, IINFO )
  493:          IF( IINFO.NE.0 ) THEN
  494:             INFO = N + 8
  495:             GO TO 10
  496:          END IF
  497:       END IF
  498: *
  499: *     Undo scaling
  500: *
  501:       IF( ILASCL ) THEN
  502:          CALL DLASCL( 'H', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO )
  503:          IF( IINFO.NE.0 ) THEN
  504:             INFO = N + 9
  505:             RETURN
  506:          END IF
  507:          CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAR, N,
  508:      $                IINFO )
  509:          IF( IINFO.NE.0 ) THEN
  510:             INFO = N + 9
  511:             RETURN
  512:          END IF
  513:          CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAI, N,
  514:      $                IINFO )
  515:          IF( IINFO.NE.0 ) THEN
  516:             INFO = N + 9
  517:             RETURN
  518:          END IF
  519:       END IF
  520: *
  521:       IF( ILBSCL ) THEN
  522:          CALL DLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO )
  523:          IF( IINFO.NE.0 ) THEN
  524:             INFO = N + 9
  525:             RETURN
  526:          END IF
  527:          CALL DLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO )
  528:          IF( IINFO.NE.0 ) THEN
  529:             INFO = N + 9
  530:             RETURN
  531:          END IF
  532:       END IF
  533: *
  534:    10 CONTINUE
  535:       WORK( 1 ) = LWKOPT
  536: *
  537:       RETURN
  538: *
  539: *     End of DGEGS
  540: *
  541:       END

CVSweb interface <joel.bertrand@systella.fr>