File:  [local] / rpl / lapack / lapack / dgegs.f
Revision 1.3: download - view: text, annotated - select for diffs - revision graph
Fri Aug 6 15:28:36 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Cohérence

    1:       SUBROUTINE DGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHAR,
    2:      $                  ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
    3:      $                  LWORK, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBVSL, JOBVSR
   12:       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N
   13: *     ..
   14: *     .. Array Arguments ..
   15:       DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
   16:      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ),
   17:      $                   VSR( LDVSR, * ), WORK( * )
   18: *     ..
   19: *
   20: *  Purpose
   21: *  =======
   22: *
   23: *  This routine is deprecated and has been replaced by routine DGGES.
   24: *
   25: *  DGEGS computes the eigenvalues, real Schur form, and, optionally,
   26: *  left and or/right Schur vectors of a real matrix pair (A,B).
   27: *  Given two square matrices A and B, the generalized real Schur
   28: *  factorization has the form
   29: *
   30: *    A = Q*S*Z**T,  B = Q*T*Z**T
   31: *
   32: *  where Q and Z are orthogonal matrices, T is upper triangular, and S
   33: *  is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal
   34: *  blocks, the 2-by-2 blocks corresponding to complex conjugate pairs
   35: *  of eigenvalues of (A,B).  The columns of Q are the left Schur vectors
   36: *  and the columns of Z are the right Schur vectors.
   37: *
   38: *  If only the eigenvalues of (A,B) are needed, the driver routine
   39: *  DGEGV should be used instead.  See DGEGV for a description of the
   40: *  eigenvalues of the generalized nonsymmetric eigenvalue problem
   41: *  (GNEP).
   42: *
   43: *  Arguments
   44: *  =========
   45: *
   46: *  JOBVSL  (input) CHARACTER*1
   47: *          = 'N':  do not compute the left Schur vectors;
   48: *          = 'V':  compute the left Schur vectors (returned in VSL).
   49: *
   50: *  JOBVSR  (input) CHARACTER*1
   51: *          = 'N':  do not compute the right Schur vectors;
   52: *          = 'V':  compute the right Schur vectors (returned in VSR).
   53: *
   54: *  N       (input) INTEGER
   55: *          The order of the matrices A, B, VSL, and VSR.  N >= 0.
   56: *
   57: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
   58: *          On entry, the matrix A.
   59: *          On exit, the upper quasi-triangular matrix S from the
   60: *          generalized real Schur factorization.
   61: *
   62: *  LDA     (input) INTEGER
   63: *          The leading dimension of A.  LDA >= max(1,N).
   64: *
   65: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)
   66: *          On entry, the matrix B.
   67: *          On exit, the upper triangular matrix T from the generalized
   68: *          real Schur factorization.
   69: *
   70: *  LDB     (input) INTEGER
   71: *          The leading dimension of B.  LDB >= max(1,N).
   72: *
   73: *  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
   74: *          The real parts of each scalar alpha defining an eigenvalue
   75: *          of GNEP.
   76: *
   77: *  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
   78: *          The imaginary parts of each scalar alpha defining an
   79: *          eigenvalue of GNEP.  If ALPHAI(j) is zero, then the j-th
   80: *          eigenvalue is real; if positive, then the j-th and (j+1)-st
   81: *          eigenvalues are a complex conjugate pair, with
   82: *          ALPHAI(j+1) = -ALPHAI(j).
   83: *
   84: *  BETA    (output) DOUBLE PRECISION array, dimension (N)
   85: *          The scalars beta that define the eigenvalues of GNEP.
   86: *          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
   87: *          beta = BETA(j) represent the j-th eigenvalue of the matrix
   88: *          pair (A,B), in one of the forms lambda = alpha/beta or
   89: *          mu = beta/alpha.  Since either lambda or mu may overflow,
   90: *          they should not, in general, be computed.
   91: *
   92: *  VSL     (output) DOUBLE PRECISION array, dimension (LDVSL,N)
   93: *          If JOBVSL = 'V', the matrix of left Schur vectors Q.
   94: *          Not referenced if JOBVSL = 'N'.
   95: *
   96: *  LDVSL   (input) INTEGER
   97: *          The leading dimension of the matrix VSL. LDVSL >=1, and
   98: *          if JOBVSL = 'V', LDVSL >= N.
   99: *
  100: *  VSR     (output) DOUBLE PRECISION array, dimension (LDVSR,N)
  101: *          If JOBVSR = 'V', the matrix of right Schur vectors Z.
  102: *          Not referenced if JOBVSR = 'N'.
  103: *
  104: *  LDVSR   (input) INTEGER
  105: *          The leading dimension of the matrix VSR. LDVSR >= 1, and
  106: *          if JOBVSR = 'V', LDVSR >= N.
  107: *
  108: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  109: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  110: *
  111: *  LWORK   (input) INTEGER
  112: *          The dimension of the array WORK.  LWORK >= max(1,4*N).
  113: *          For good performance, LWORK must generally be larger.
  114: *          To compute the optimal value of LWORK, call ILAENV to get
  115: *          blocksizes (for DGEQRF, DORMQR, and DORGQR.)  Then compute:
  116: *          NB  -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR
  117: *          The optimal LWORK is  2*N + N*(NB+1).
  118: *
  119: *          If LWORK = -1, then a workspace query is assumed; the routine
  120: *          only calculates the optimal size of the WORK array, returns
  121: *          this value as the first entry of the WORK array, and no error
  122: *          message related to LWORK is issued by XERBLA.
  123: *
  124: *  INFO    (output) INTEGER
  125: *          = 0:  successful exit
  126: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
  127: *          = 1,...,N:
  128: *                The QZ iteration failed.  (A,B) are not in Schur
  129: *                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should
  130: *                be correct for j=INFO+1,...,N.
  131: *          > N:  errors that usually indicate LAPACK problems:
  132: *                =N+1: error return from DGGBAL
  133: *                =N+2: error return from DGEQRF
  134: *                =N+3: error return from DORMQR
  135: *                =N+4: error return from DORGQR
  136: *                =N+5: error return from DGGHRD
  137: *                =N+6: error return from DHGEQZ (other than failed
  138: *                                                iteration)
  139: *                =N+7: error return from DGGBAK (computing VSL)
  140: *                =N+8: error return from DGGBAK (computing VSR)
  141: *                =N+9: error return from DLASCL (various places)
  142: *
  143: *  =====================================================================
  144: *
  145: *     .. Parameters ..
  146:       DOUBLE PRECISION   ZERO, ONE
  147:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  148: *     ..
  149: *     .. Local Scalars ..
  150:       LOGICAL            ILASCL, ILBSCL, ILVSL, ILVSR, LQUERY
  151:       INTEGER            ICOLS, IHI, IINFO, IJOBVL, IJOBVR, ILEFT, ILO,
  152:      $                   IRIGHT, IROWS, ITAU, IWORK, LOPT, LWKMIN,
  153:      $                   LWKOPT, NB, NB1, NB2, NB3
  154:       DOUBLE PRECISION   ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS,
  155:      $                   SAFMIN, SMLNUM
  156: *     ..
  157: *     .. External Subroutines ..
  158:       EXTERNAL           DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY,
  159:      $                   DLASCL, DLASET, DORGQR, DORMQR, XERBLA
  160: *     ..
  161: *     .. External Functions ..
  162:       LOGICAL            LSAME
  163:       INTEGER            ILAENV
  164:       DOUBLE PRECISION   DLAMCH, DLANGE
  165:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
  166: *     ..
  167: *     .. Intrinsic Functions ..
  168:       INTRINSIC          INT, MAX
  169: *     ..
  170: *     .. Executable Statements ..
  171: *
  172: *     Decode the input arguments
  173: *
  174:       IF( LSAME( JOBVSL, 'N' ) ) THEN
  175:          IJOBVL = 1
  176:          ILVSL = .FALSE.
  177:       ELSE IF( LSAME( JOBVSL, 'V' ) ) THEN
  178:          IJOBVL = 2
  179:          ILVSL = .TRUE.
  180:       ELSE
  181:          IJOBVL = -1
  182:          ILVSL = .FALSE.
  183:       END IF
  184: *
  185:       IF( LSAME( JOBVSR, 'N' ) ) THEN
  186:          IJOBVR = 1
  187:          ILVSR = .FALSE.
  188:       ELSE IF( LSAME( JOBVSR, 'V' ) ) THEN
  189:          IJOBVR = 2
  190:          ILVSR = .TRUE.
  191:       ELSE
  192:          IJOBVR = -1
  193:          ILVSR = .FALSE.
  194:       END IF
  195: *
  196: *     Test the input arguments
  197: *
  198:       LWKMIN = MAX( 4*N, 1 )
  199:       LWKOPT = LWKMIN
  200:       WORK( 1 ) = LWKOPT
  201:       LQUERY = ( LWORK.EQ.-1 )
  202:       INFO = 0
  203:       IF( IJOBVL.LE.0 ) THEN
  204:          INFO = -1
  205:       ELSE IF( IJOBVR.LE.0 ) THEN
  206:          INFO = -2
  207:       ELSE IF( N.LT.0 ) THEN
  208:          INFO = -3
  209:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  210:          INFO = -5
  211:       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  212:          INFO = -7
  213:       ELSE IF( LDVSL.LT.1 .OR. ( ILVSL .AND. LDVSL.LT.N ) ) THEN
  214:          INFO = -12
  215:       ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN
  216:          INFO = -14
  217:       ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  218:          INFO = -16
  219:       END IF
  220: *
  221:       IF( INFO.EQ.0 ) THEN
  222:          NB1 = ILAENV( 1, 'DGEQRF', ' ', N, N, -1, -1 )
  223:          NB2 = ILAENV( 1, 'DORMQR', ' ', N, N, N, -1 )
  224:          NB3 = ILAENV( 1, 'DORGQR', ' ', N, N, N, -1 )
  225:          NB = MAX( NB1, NB2, NB3 )
  226:          LOPT = 2*N + N*( NB+1 )
  227:          WORK( 1 ) = LOPT
  228:       END IF
  229: *
  230:       IF( INFO.NE.0 ) THEN
  231:          CALL XERBLA( 'DGEGS ', -INFO )
  232:          RETURN
  233:       ELSE IF( LQUERY ) THEN
  234:          RETURN
  235:       END IF
  236: *
  237: *     Quick return if possible
  238: *
  239:       IF( N.EQ.0 )
  240:      $   RETURN
  241: *
  242: *     Get machine constants
  243: *
  244:       EPS = DLAMCH( 'E' )*DLAMCH( 'B' )
  245:       SAFMIN = DLAMCH( 'S' )
  246:       SMLNUM = N*SAFMIN / EPS
  247:       BIGNUM = ONE / SMLNUM
  248: *
  249: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  250: *
  251:       ANRM = DLANGE( 'M', N, N, A, LDA, WORK )
  252:       ILASCL = .FALSE.
  253:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  254:          ANRMTO = SMLNUM
  255:          ILASCL = .TRUE.
  256:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  257:          ANRMTO = BIGNUM
  258:          ILASCL = .TRUE.
  259:       END IF
  260: *
  261:       IF( ILASCL ) THEN
  262:          CALL DLASCL( 'G', -1, -1, ANRM, ANRMTO, N, N, A, LDA, IINFO )
  263:          IF( IINFO.NE.0 ) THEN
  264:             INFO = N + 9
  265:             RETURN
  266:          END IF
  267:       END IF
  268: *
  269: *     Scale B if max element outside range [SMLNUM,BIGNUM]
  270: *
  271:       BNRM = DLANGE( 'M', N, N, B, LDB, WORK )
  272:       ILBSCL = .FALSE.
  273:       IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN
  274:          BNRMTO = SMLNUM
  275:          ILBSCL = .TRUE.
  276:       ELSE IF( BNRM.GT.BIGNUM ) THEN
  277:          BNRMTO = BIGNUM
  278:          ILBSCL = .TRUE.
  279:       END IF
  280: *
  281:       IF( ILBSCL ) THEN
  282:          CALL DLASCL( 'G', -1, -1, BNRM, BNRMTO, N, N, B, LDB, IINFO )
  283:          IF( IINFO.NE.0 ) THEN
  284:             INFO = N + 9
  285:             RETURN
  286:          END IF
  287:       END IF
  288: *
  289: *     Permute the matrix to make it more nearly triangular
  290: *     Workspace layout:  (2*N words -- "work..." not actually used)
  291: *        left_permutation, right_permutation, work...
  292: *
  293:       ILEFT = 1
  294:       IRIGHT = N + 1
  295:       IWORK = IRIGHT + N
  296:       CALL DGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, WORK( ILEFT ),
  297:      $             WORK( IRIGHT ), WORK( IWORK ), IINFO )
  298:       IF( IINFO.NE.0 ) THEN
  299:          INFO = N + 1
  300:          GO TO 10
  301:       END IF
  302: *
  303: *     Reduce B to triangular form, and initialize VSL and/or VSR
  304: *     Workspace layout:  ("work..." must have at least N words)
  305: *        left_permutation, right_permutation, tau, work...
  306: *
  307:       IROWS = IHI + 1 - ILO
  308:       ICOLS = N + 1 - ILO
  309:       ITAU = IWORK
  310:       IWORK = ITAU + IROWS
  311:       CALL DGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ),
  312:      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
  313:       IF( IINFO.GE.0 )
  314:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  315:       IF( IINFO.NE.0 ) THEN
  316:          INFO = N + 2
  317:          GO TO 10
  318:       END IF
  319: *
  320:       CALL DORMQR( 'L', 'T', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB,
  321:      $             WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWORK ),
  322:      $             LWORK+1-IWORK, IINFO )
  323:       IF( IINFO.GE.0 )
  324:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  325:       IF( IINFO.NE.0 ) THEN
  326:          INFO = N + 3
  327:          GO TO 10
  328:       END IF
  329: *
  330:       IF( ILVSL ) THEN
  331:          CALL DLASET( 'Full', N, N, ZERO, ONE, VSL, LDVSL )
  332:          CALL DLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB,
  333:      $                VSL( ILO+1, ILO ), LDVSL )
  334:          CALL DORGQR( IROWS, IROWS, IROWS, VSL( ILO, ILO ), LDVSL,
  335:      $                WORK( ITAU ), WORK( IWORK ), LWORK+1-IWORK,
  336:      $                IINFO )
  337:          IF( IINFO.GE.0 )
  338:      $      LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  339:          IF( IINFO.NE.0 ) THEN
  340:             INFO = N + 4
  341:             GO TO 10
  342:          END IF
  343:       END IF
  344: *
  345:       IF( ILVSR )
  346:      $   CALL DLASET( 'Full', N, N, ZERO, ONE, VSR, LDVSR )
  347: *
  348: *     Reduce to generalized Hessenberg form
  349: *
  350:       CALL DGGHRD( JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB, VSL,
  351:      $             LDVSL, VSR, LDVSR, IINFO )
  352:       IF( IINFO.NE.0 ) THEN
  353:          INFO = N + 5
  354:          GO TO 10
  355:       END IF
  356: *
  357: *     Perform QZ algorithm, computing Schur vectors if desired
  358: *     Workspace layout:  ("work..." must have at least 1 word)
  359: *        left_permutation, right_permutation, work...
  360: *
  361:       IWORK = ITAU
  362:       CALL DHGEQZ( 'S', JOBVSL, JOBVSR, N, ILO, IHI, A, LDA, B, LDB,
  363:      $             ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR,
  364:      $             WORK( IWORK ), LWORK+1-IWORK, IINFO )
  365:       IF( IINFO.GE.0 )
  366:      $   LWKOPT = MAX( LWKOPT, INT( WORK( IWORK ) )+IWORK-1 )
  367:       IF( IINFO.NE.0 ) THEN
  368:          IF( IINFO.GT.0 .AND. IINFO.LE.N ) THEN
  369:             INFO = IINFO
  370:          ELSE IF( IINFO.GT.N .AND. IINFO.LE.2*N ) THEN
  371:             INFO = IINFO - N
  372:          ELSE
  373:             INFO = N + 6
  374:          END IF
  375:          GO TO 10
  376:       END IF
  377: *
  378: *     Apply permutation to VSL and VSR
  379: *
  380:       IF( ILVSL ) THEN
  381:          CALL DGGBAK( 'P', 'L', N, ILO, IHI, WORK( ILEFT ),
  382:      $                WORK( IRIGHT ), N, VSL, LDVSL, IINFO )
  383:          IF( IINFO.NE.0 ) THEN
  384:             INFO = N + 7
  385:             GO TO 10
  386:          END IF
  387:       END IF
  388:       IF( ILVSR ) THEN
  389:          CALL DGGBAK( 'P', 'R', N, ILO, IHI, WORK( ILEFT ),
  390:      $                WORK( IRIGHT ), N, VSR, LDVSR, IINFO )
  391:          IF( IINFO.NE.0 ) THEN
  392:             INFO = N + 8
  393:             GO TO 10
  394:          END IF
  395:       END IF
  396: *
  397: *     Undo scaling
  398: *
  399:       IF( ILASCL ) THEN
  400:          CALL DLASCL( 'H', -1, -1, ANRMTO, ANRM, N, N, A, LDA, IINFO )
  401:          IF( IINFO.NE.0 ) THEN
  402:             INFO = N + 9
  403:             RETURN
  404:          END IF
  405:          CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAR, N,
  406:      $                IINFO )
  407:          IF( IINFO.NE.0 ) THEN
  408:             INFO = N + 9
  409:             RETURN
  410:          END IF
  411:          CALL DLASCL( 'G', -1, -1, ANRMTO, ANRM, N, 1, ALPHAI, N,
  412:      $                IINFO )
  413:          IF( IINFO.NE.0 ) THEN
  414:             INFO = N + 9
  415:             RETURN
  416:          END IF
  417:       END IF
  418: *
  419:       IF( ILBSCL ) THEN
  420:          CALL DLASCL( 'U', -1, -1, BNRMTO, BNRM, N, N, B, LDB, IINFO )
  421:          IF( IINFO.NE.0 ) THEN
  422:             INFO = N + 9
  423:             RETURN
  424:          END IF
  425:          CALL DLASCL( 'G', -1, -1, BNRMTO, BNRM, N, 1, BETA, N, IINFO )
  426:          IF( IINFO.NE.0 ) THEN
  427:             INFO = N + 9
  428:             RETURN
  429:          END IF
  430:       END IF
  431: *
  432:    10 CONTINUE
  433:       WORK( 1 ) = LWKOPT
  434: *
  435:       RETURN
  436: *
  437: *     End of DGEGS
  438: *
  439:       END

CVSweb interface <joel.bertrand@systella.fr>