File:  [local] / rpl / lapack / lapack / dgeevx.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:48 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> DGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGEEVX + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeevx.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeevx.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeevx.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI,
   22: *                          VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM,
   23: *                          RCONDE, RCONDV, WORK, LWORK, IWORK, INFO )
   24: *
   25: *       .. Scalar Arguments ..
   26: *       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
   27: *       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
   28: *       DOUBLE PRECISION   ABNRM
   29: *       ..
   30: *       .. Array Arguments ..
   31: *       INTEGER            IWORK( * )
   32: *       DOUBLE PRECISION   A( LDA, * ), RCONDE( * ), RCONDV( * ),
   33: *      $                   SCALE( * ), VL( LDVL, * ), VR( LDVR, * ),
   34: *      $                   WI( * ), WORK( * ), WR( * )
   35: *       ..
   36: *
   37: *
   38: *> \par Purpose:
   39: *  =============
   40: *>
   41: *> \verbatim
   42: *>
   43: *> DGEEVX computes for an N-by-N real nonsymmetric matrix A, the
   44: *> eigenvalues and, optionally, the left and/or right eigenvectors.
   45: *>
   46: *> Optionally also, it computes a balancing transformation to improve
   47: *> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
   48: *> SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
   49: *> (RCONDE), and reciprocal condition numbers for the right
   50: *> eigenvectors (RCONDV).
   51: *>
   52: *> The right eigenvector v(j) of A satisfies
   53: *>                  A * v(j) = lambda(j) * v(j)
   54: *> where lambda(j) is its eigenvalue.
   55: *> The left eigenvector u(j) of A satisfies
   56: *>               u(j)**H * A = lambda(j) * u(j)**H
   57: *> where u(j)**H denotes the conjugate-transpose of u(j).
   58: *>
   59: *> The computed eigenvectors are normalized to have Euclidean norm
   60: *> equal to 1 and largest component real.
   61: *>
   62: *> Balancing a matrix means permuting the rows and columns to make it
   63: *> more nearly upper triangular, and applying a diagonal similarity
   64: *> transformation D * A * D**(-1), where D is a diagonal matrix, to
   65: *> make its rows and columns closer in norm and the condition numbers
   66: *> of its eigenvalues and eigenvectors smaller.  The computed
   67: *> reciprocal condition numbers correspond to the balanced matrix.
   68: *> Permuting rows and columns will not change the condition numbers
   69: *> (in exact arithmetic) but diagonal scaling will.  For further
   70: *> explanation of balancing, see section 4.10.2 of the LAPACK
   71: *> Users' Guide.
   72: *> \endverbatim
   73: *
   74: *  Arguments:
   75: *  ==========
   76: *
   77: *> \param[in] BALANC
   78: *> \verbatim
   79: *>          BALANC is CHARACTER*1
   80: *>          Indicates how the input matrix should be diagonally scaled
   81: *>          and/or permuted to improve the conditioning of its
   82: *>          eigenvalues.
   83: *>          = 'N': Do not diagonally scale or permute;
   84: *>          = 'P': Perform permutations to make the matrix more nearly
   85: *>                 upper triangular. Do not diagonally scale;
   86: *>          = 'S': Diagonally scale the matrix, i.e. replace A by
   87: *>                 D*A*D**(-1), where D is a diagonal matrix chosen
   88: *>                 to make the rows and columns of A more equal in
   89: *>                 norm. Do not permute;
   90: *>          = 'B': Both diagonally scale and permute A.
   91: *>
   92: *>          Computed reciprocal condition numbers will be for the matrix
   93: *>          after balancing and/or permuting. Permuting does not change
   94: *>          condition numbers (in exact arithmetic), but balancing does.
   95: *> \endverbatim
   96: *>
   97: *> \param[in] JOBVL
   98: *> \verbatim
   99: *>          JOBVL is CHARACTER*1
  100: *>          = 'N': left eigenvectors of A are not computed;
  101: *>          = 'V': left eigenvectors of A are computed.
  102: *>          If SENSE = 'E' or 'B', JOBVL must = 'V'.
  103: *> \endverbatim
  104: *>
  105: *> \param[in] JOBVR
  106: *> \verbatim
  107: *>          JOBVR is CHARACTER*1
  108: *>          = 'N': right eigenvectors of A are not computed;
  109: *>          = 'V': right eigenvectors of A are computed.
  110: *>          If SENSE = 'E' or 'B', JOBVR must = 'V'.
  111: *> \endverbatim
  112: *>
  113: *> \param[in] SENSE
  114: *> \verbatim
  115: *>          SENSE is CHARACTER*1
  116: *>          Determines which reciprocal condition numbers are computed.
  117: *>          = 'N': None are computed;
  118: *>          = 'E': Computed for eigenvalues only;
  119: *>          = 'V': Computed for right eigenvectors only;
  120: *>          = 'B': Computed for eigenvalues and right eigenvectors.
  121: *>
  122: *>          If SENSE = 'E' or 'B', both left and right eigenvectors
  123: *>          must also be computed (JOBVL = 'V' and JOBVR = 'V').
  124: *> \endverbatim
  125: *>
  126: *> \param[in] N
  127: *> \verbatim
  128: *>          N is INTEGER
  129: *>          The order of the matrix A. N >= 0.
  130: *> \endverbatim
  131: *>
  132: *> \param[in,out] A
  133: *> \verbatim
  134: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  135: *>          On entry, the N-by-N matrix A.
  136: *>          On exit, A has been overwritten.  If JOBVL = 'V' or
  137: *>          JOBVR = 'V', A contains the real Schur form of the balanced
  138: *>          version of the input matrix A.
  139: *> \endverbatim
  140: *>
  141: *> \param[in] LDA
  142: *> \verbatim
  143: *>          LDA is INTEGER
  144: *>          The leading dimension of the array A.  LDA >= max(1,N).
  145: *> \endverbatim
  146: *>
  147: *> \param[out] WR
  148: *> \verbatim
  149: *>          WR is DOUBLE PRECISION array, dimension (N)
  150: *> \endverbatim
  151: *>
  152: *> \param[out] WI
  153: *> \verbatim
  154: *>          WI is DOUBLE PRECISION array, dimension (N)
  155: *>          WR and WI contain the real and imaginary parts,
  156: *>          respectively, of the computed eigenvalues.  Complex
  157: *>          conjugate pairs of eigenvalues will appear consecutively
  158: *>          with the eigenvalue having the positive imaginary part
  159: *>          first.
  160: *> \endverbatim
  161: *>
  162: *> \param[out] VL
  163: *> \verbatim
  164: *>          VL is DOUBLE PRECISION array, dimension (LDVL,N)
  165: *>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
  166: *>          after another in the columns of VL, in the same order
  167: *>          as their eigenvalues.
  168: *>          If JOBVL = 'N', VL is not referenced.
  169: *>          If the j-th eigenvalue is real, then u(j) = VL(:,j),
  170: *>          the j-th column of VL.
  171: *>          If the j-th and (j+1)-st eigenvalues form a complex
  172: *>          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
  173: *>          u(j+1) = VL(:,j) - i*VL(:,j+1).
  174: *> \endverbatim
  175: *>
  176: *> \param[in] LDVL
  177: *> \verbatim
  178: *>          LDVL is INTEGER
  179: *>          The leading dimension of the array VL.  LDVL >= 1; if
  180: *>          JOBVL = 'V', LDVL >= N.
  181: *> \endverbatim
  182: *>
  183: *> \param[out] VR
  184: *> \verbatim
  185: *>          VR is DOUBLE PRECISION array, dimension (LDVR,N)
  186: *>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
  187: *>          after another in the columns of VR, in the same order
  188: *>          as their eigenvalues.
  189: *>          If JOBVR = 'N', VR is not referenced.
  190: *>          If the j-th eigenvalue is real, then v(j) = VR(:,j),
  191: *>          the j-th column of VR.
  192: *>          If the j-th and (j+1)-st eigenvalues form a complex
  193: *>          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
  194: *>          v(j+1) = VR(:,j) - i*VR(:,j+1).
  195: *> \endverbatim
  196: *>
  197: *> \param[in] LDVR
  198: *> \verbatim
  199: *>          LDVR is INTEGER
  200: *>          The leading dimension of the array VR.  LDVR >= 1, and if
  201: *>          JOBVR = 'V', LDVR >= N.
  202: *> \endverbatim
  203: *>
  204: *> \param[out] ILO
  205: *> \verbatim
  206: *>          ILO is INTEGER
  207: *> \endverbatim
  208: *>
  209: *> \param[out] IHI
  210: *> \verbatim
  211: *>          IHI is INTEGER
  212: *>          ILO and IHI are integer values determined when A was
  213: *>          balanced.  The balanced A(i,j) = 0 if I > J and
  214: *>          J = 1,...,ILO-1 or I = IHI+1,...,N.
  215: *> \endverbatim
  216: *>
  217: *> \param[out] SCALE
  218: *> \verbatim
  219: *>          SCALE is DOUBLE PRECISION array, dimension (N)
  220: *>          Details of the permutations and scaling factors applied
  221: *>          when balancing A.  If P(j) is the index of the row and column
  222: *>          interchanged with row and column j, and D(j) is the scaling
  223: *>          factor applied to row and column j, then
  224: *>          SCALE(J) = P(J),    for J = 1,...,ILO-1
  225: *>                   = D(J),    for J = ILO,...,IHI
  226: *>                   = P(J)     for J = IHI+1,...,N.
  227: *>          The order in which the interchanges are made is N to IHI+1,
  228: *>          then 1 to ILO-1.
  229: *> \endverbatim
  230: *>
  231: *> \param[out] ABNRM
  232: *> \verbatim
  233: *>          ABNRM is DOUBLE PRECISION
  234: *>          The one-norm of the balanced matrix (the maximum
  235: *>          of the sum of absolute values of elements of any column).
  236: *> \endverbatim
  237: *>
  238: *> \param[out] RCONDE
  239: *> \verbatim
  240: *>          RCONDE is DOUBLE PRECISION array, dimension (N)
  241: *>          RCONDE(j) is the reciprocal condition number of the j-th
  242: *>          eigenvalue.
  243: *> \endverbatim
  244: *>
  245: *> \param[out] RCONDV
  246: *> \verbatim
  247: *>          RCONDV is DOUBLE PRECISION array, dimension (N)
  248: *>          RCONDV(j) is the reciprocal condition number of the j-th
  249: *>          right eigenvector.
  250: *> \endverbatim
  251: *>
  252: *> \param[out] WORK
  253: *> \verbatim
  254: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  255: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  256: *> \endverbatim
  257: *>
  258: *> \param[in] LWORK
  259: *> \verbatim
  260: *>          LWORK is INTEGER
  261: *>          The dimension of the array WORK.   If SENSE = 'N' or 'E',
  262: *>          LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
  263: *>          LWORK >= 3*N.  If SENSE = 'V' or 'B', LWORK >= N*(N+6).
  264: *>          For good performance, LWORK must generally be larger.
  265: *>
  266: *>          If LWORK = -1, then a workspace query is assumed; the routine
  267: *>          only calculates the optimal size of the WORK array, returns
  268: *>          this value as the first entry of the WORK array, and no error
  269: *>          message related to LWORK is issued by XERBLA.
  270: *> \endverbatim
  271: *>
  272: *> \param[out] IWORK
  273: *> \verbatim
  274: *>          IWORK is INTEGER array, dimension (2*N-2)
  275: *>          If SENSE = 'N' or 'E', not referenced.
  276: *> \endverbatim
  277: *>
  278: *> \param[out] INFO
  279: *> \verbatim
  280: *>          INFO is INTEGER
  281: *>          = 0:  successful exit
  282: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  283: *>          > 0:  if INFO = i, the QR algorithm failed to compute all the
  284: *>                eigenvalues, and no eigenvectors or condition numbers
  285: *>                have been computed; elements 1:ILO-1 and i+1:N of WR
  286: *>                and WI contain eigenvalues which have converged.
  287: *> \endverbatim
  288: *
  289: *  Authors:
  290: *  ========
  291: *
  292: *> \author Univ. of Tennessee
  293: *> \author Univ. of California Berkeley
  294: *> \author Univ. of Colorado Denver
  295: *> \author NAG Ltd.
  296: *
  297: *
  298: *  @precisions fortran d -> s
  299: *
  300: *> \ingroup doubleGEeigen
  301: *
  302: *  =====================================================================
  303:       SUBROUTINE DGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI,
  304:      $                   VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM,
  305:      $                   RCONDE, RCONDV, WORK, LWORK, IWORK, INFO )
  306:       implicit none
  307: *
  308: *  -- LAPACK driver routine --
  309: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  310: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  311: *
  312: *     .. Scalar Arguments ..
  313:       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
  314:       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
  315:       DOUBLE PRECISION   ABNRM
  316: *     ..
  317: *     .. Array Arguments ..
  318:       INTEGER            IWORK( * )
  319:       DOUBLE PRECISION   A( LDA, * ), RCONDE( * ), RCONDV( * ),
  320:      $                   SCALE( * ), VL( LDVL, * ), VR( LDVR, * ),
  321:      $                   WI( * ), WORK( * ), WR( * )
  322: *     ..
  323: *
  324: *  =====================================================================
  325: *
  326: *     .. Parameters ..
  327:       DOUBLE PRECISION   ZERO, ONE
  328:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  329: *     ..
  330: *     .. Local Scalars ..
  331:       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
  332:      $                   WNTSNN, WNTSNV
  333:       CHARACTER          JOB, SIDE
  334:       INTEGER            HSWORK, I, ICOND, IERR, ITAU, IWRK, K,
  335:      $                   LWORK_TREVC, MAXWRK, MINWRK, NOUT
  336:       DOUBLE PRECISION   ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
  337:      $                   SN
  338: *     ..
  339: *     .. Local Arrays ..
  340:       LOGICAL            SELECT( 1 )
  341:       DOUBLE PRECISION   DUM( 1 )
  342: *     ..
  343: *     .. External Subroutines ..
  344:       EXTERNAL           DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLABAD, DLACPY,
  345:      $                   DLARTG, DLASCL, DORGHR, DROT, DSCAL, DTREVC3,
  346:      $                   DTRSNA, XERBLA
  347: *     ..
  348: *     .. External Functions ..
  349:       LOGICAL            LSAME
  350:       INTEGER            IDAMAX, ILAENV
  351:       DOUBLE PRECISION   DLAMCH, DLANGE, DLAPY2, DNRM2
  352:       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DLANGE, DLAPY2,
  353:      $                   DNRM2
  354: *     ..
  355: *     .. Intrinsic Functions ..
  356:       INTRINSIC          MAX, SQRT
  357: *     ..
  358: *     .. Executable Statements ..
  359: *
  360: *     Test the input arguments
  361: *
  362:       INFO = 0
  363:       LQUERY = ( LWORK.EQ.-1 )
  364:       WANTVL = LSAME( JOBVL, 'V' )
  365:       WANTVR = LSAME( JOBVR, 'V' )
  366:       WNTSNN = LSAME( SENSE, 'N' )
  367:       WNTSNE = LSAME( SENSE, 'E' )
  368:       WNTSNV = LSAME( SENSE, 'V' )
  369:       WNTSNB = LSAME( SENSE, 'B' )
  370:       IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC, 'S' )
  371:      $      .OR. LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) )
  372:      $     THEN
  373:          INFO = -1
  374:       ELSE IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
  375:          INFO = -2
  376:       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
  377:          INFO = -3
  378:       ELSE IF( .NOT.( WNTSNN .OR. WNTSNE .OR. WNTSNB .OR. WNTSNV ) .OR.
  379:      $         ( ( WNTSNE .OR. WNTSNB ) .AND. .NOT.( WANTVL .AND.
  380:      $         WANTVR ) ) ) THEN
  381:          INFO = -4
  382:       ELSE IF( N.LT.0 ) THEN
  383:          INFO = -5
  384:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  385:          INFO = -7
  386:       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
  387:          INFO = -11
  388:       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
  389:          INFO = -13
  390:       END IF
  391: *
  392: *     Compute workspace
  393: *      (Note: Comments in the code beginning "Workspace:" describe the
  394: *       minimal amount of workspace needed at that point in the code,
  395: *       as well as the preferred amount for good performance.
  396: *       NB refers to the optimal block size for the immediately
  397: *       following subroutine, as returned by ILAENV.
  398: *       HSWORK refers to the workspace preferred by DHSEQR, as
  399: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  400: *       the worst case.)
  401: *
  402:       IF( INFO.EQ.0 ) THEN
  403:          IF( N.EQ.0 ) THEN
  404:             MINWRK = 1
  405:             MAXWRK = 1
  406:          ELSE
  407:             MAXWRK = N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
  408: *
  409:             IF( WANTVL ) THEN
  410:                CALL DTREVC3( 'L', 'B', SELECT, N, A, LDA,
  411:      $                       VL, LDVL, VR, LDVR,
  412:      $                       N, NOUT, WORK, -1, IERR )
  413:                LWORK_TREVC = INT( WORK(1) )
  414:                MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
  415:                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
  416:      $                WORK, -1, INFO )
  417:             ELSE IF( WANTVR ) THEN
  418:                CALL DTREVC3( 'R', 'B', SELECT, N, A, LDA,
  419:      $                       VL, LDVL, VR, LDVR,
  420:      $                       N, NOUT, WORK, -1, IERR )
  421:                LWORK_TREVC = INT( WORK(1) )
  422:                MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
  423:                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
  424:      $                WORK, -1, INFO )
  425:             ELSE
  426:                IF( WNTSNN ) THEN
  427:                   CALL DHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR,
  428:      $                LDVR, WORK, -1, INFO )
  429:                ELSE
  430:                   CALL DHSEQR( 'S', 'N', N, 1, N, A, LDA, WR, WI, VR,
  431:      $                LDVR, WORK, -1, INFO )
  432:                END IF
  433:             END IF
  434:             HSWORK = INT( WORK(1) )
  435: *
  436:             IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
  437:                MINWRK = 2*N
  438:                IF( .NOT.WNTSNN )
  439:      $            MINWRK = MAX( MINWRK, N*N+6*N )
  440:                MAXWRK = MAX( MAXWRK, HSWORK )
  441:                IF( .NOT.WNTSNN )
  442:      $            MAXWRK = MAX( MAXWRK, N*N + 6*N )
  443:             ELSE
  444:                MINWRK = 3*N
  445:                IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
  446:      $            MINWRK = MAX( MINWRK, N*N + 6*N )
  447:                MAXWRK = MAX( MAXWRK, HSWORK )
  448:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'DORGHR',
  449:      $                       ' ', N, 1, N, -1 ) )
  450:                IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
  451:      $            MAXWRK = MAX( MAXWRK, N*N + 6*N )
  452:                MAXWRK = MAX( MAXWRK, 3*N )
  453:             END IF
  454:             MAXWRK = MAX( MAXWRK, MINWRK )
  455:          END IF
  456:          WORK( 1 ) = MAXWRK
  457: *
  458:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  459:             INFO = -21
  460:          END IF
  461:       END IF
  462: *
  463:       IF( INFO.NE.0 ) THEN
  464:          CALL XERBLA( 'DGEEVX', -INFO )
  465:          RETURN
  466:       ELSE IF( LQUERY ) THEN
  467:          RETURN
  468:       END IF
  469: *
  470: *     Quick return if possible
  471: *
  472:       IF( N.EQ.0 )
  473:      $   RETURN
  474: *
  475: *     Get machine constants
  476: *
  477:       EPS = DLAMCH( 'P' )
  478:       SMLNUM = DLAMCH( 'S' )
  479:       BIGNUM = ONE / SMLNUM
  480:       CALL DLABAD( SMLNUM, BIGNUM )
  481:       SMLNUM = SQRT( SMLNUM ) / EPS
  482:       BIGNUM = ONE / SMLNUM
  483: *
  484: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  485: *
  486:       ICOND = 0
  487:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
  488:       SCALEA = .FALSE.
  489:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  490:          SCALEA = .TRUE.
  491:          CSCALE = SMLNUM
  492:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  493:          SCALEA = .TRUE.
  494:          CSCALE = BIGNUM
  495:       END IF
  496:       IF( SCALEA )
  497:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  498: *
  499: *     Balance the matrix and compute ABNRM
  500: *
  501:       CALL DGEBAL( BALANC, N, A, LDA, ILO, IHI, SCALE, IERR )
  502:       ABNRM = DLANGE( '1', N, N, A, LDA, DUM )
  503:       IF( SCALEA ) THEN
  504:          DUM( 1 ) = ABNRM
  505:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
  506:          ABNRM = DUM( 1 )
  507:       END IF
  508: *
  509: *     Reduce to upper Hessenberg form
  510: *     (Workspace: need 2*N, prefer N+N*NB)
  511: *
  512:       ITAU = 1
  513:       IWRK = ITAU + N
  514:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  515:      $             LWORK-IWRK+1, IERR )
  516: *
  517:       IF( WANTVL ) THEN
  518: *
  519: *        Want left eigenvectors
  520: *        Copy Householder vectors to VL
  521: *
  522:          SIDE = 'L'
  523:          CALL DLACPY( 'L', N, N, A, LDA, VL, LDVL )
  524: *
  525: *        Generate orthogonal matrix in VL
  526: *        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
  527: *
  528:          CALL DORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
  529:      $                LWORK-IWRK+1, IERR )
  530: *
  531: *        Perform QR iteration, accumulating Schur vectors in VL
  532: *        (Workspace: need 1, prefer HSWORK (see comments) )
  533: *
  534:          IWRK = ITAU
  535:          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
  536:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  537: *
  538:          IF( WANTVR ) THEN
  539: *
  540: *           Want left and right eigenvectors
  541: *           Copy Schur vectors to VR
  542: *
  543:             SIDE = 'B'
  544:             CALL DLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
  545:          END IF
  546: *
  547:       ELSE IF( WANTVR ) THEN
  548: *
  549: *        Want right eigenvectors
  550: *        Copy Householder vectors to VR
  551: *
  552:          SIDE = 'R'
  553:          CALL DLACPY( 'L', N, N, A, LDA, VR, LDVR )
  554: *
  555: *        Generate orthogonal matrix in VR
  556: *        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
  557: *
  558:          CALL DORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
  559:      $                LWORK-IWRK+1, IERR )
  560: *
  561: *        Perform QR iteration, accumulating Schur vectors in VR
  562: *        (Workspace: need 1, prefer HSWORK (see comments) )
  563: *
  564:          IWRK = ITAU
  565:          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
  566:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  567: *
  568:       ELSE
  569: *
  570: *        Compute eigenvalues only
  571: *        If condition numbers desired, compute Schur form
  572: *
  573:          IF( WNTSNN ) THEN
  574:             JOB = 'E'
  575:          ELSE
  576:             JOB = 'S'
  577:          END IF
  578: *
  579: *        (Workspace: need 1, prefer HSWORK (see comments) )
  580: *
  581:          IWRK = ITAU
  582:          CALL DHSEQR( JOB, 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
  583:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  584:       END IF
  585: *
  586: *     If INFO .NE. 0 from DHSEQR, then quit
  587: *
  588:       IF( INFO.NE.0 )
  589:      $   GO TO 50
  590: *
  591:       IF( WANTVL .OR. WANTVR ) THEN
  592: *
  593: *        Compute left and/or right eigenvectors
  594: *        (Workspace: need 3*N, prefer N + 2*N*NB)
  595: *
  596:          CALL DTREVC3( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
  597:      $                 N, NOUT, WORK( IWRK ), LWORK-IWRK+1, IERR )
  598:       END IF
  599: *
  600: *     Compute condition numbers if desired
  601: *     (Workspace: need N*N+6*N unless SENSE = 'E')
  602: *
  603:       IF( .NOT.WNTSNN ) THEN
  604:          CALL DTRSNA( SENSE, 'A', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
  605:      $                RCONDE, RCONDV, N, NOUT, WORK( IWRK ), N, IWORK,
  606:      $                ICOND )
  607:       END IF
  608: *
  609:       IF( WANTVL ) THEN
  610: *
  611: *        Undo balancing of left eigenvectors
  612: *
  613:          CALL DGEBAK( BALANC, 'L', N, ILO, IHI, SCALE, N, VL, LDVL,
  614:      $                IERR )
  615: *
  616: *        Normalize left eigenvectors and make largest component real
  617: *
  618:          DO 20 I = 1, N
  619:             IF( WI( I ).EQ.ZERO ) THEN
  620:                SCL = ONE / DNRM2( N, VL( 1, I ), 1 )
  621:                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
  622:             ELSE IF( WI( I ).GT.ZERO ) THEN
  623:                SCL = ONE / DLAPY2( DNRM2( N, VL( 1, I ), 1 ),
  624:      $               DNRM2( N, VL( 1, I+1 ), 1 ) )
  625:                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
  626:                CALL DSCAL( N, SCL, VL( 1, I+1 ), 1 )
  627:                DO 10 K = 1, N
  628:                   WORK( K ) = VL( K, I )**2 + VL( K, I+1 )**2
  629:    10          CONTINUE
  630:                K = IDAMAX( N, WORK, 1 )
  631:                CALL DLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
  632:                CALL DROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
  633:                VL( K, I+1 ) = ZERO
  634:             END IF
  635:    20    CONTINUE
  636:       END IF
  637: *
  638:       IF( WANTVR ) THEN
  639: *
  640: *        Undo balancing of right eigenvectors
  641: *
  642:          CALL DGEBAK( BALANC, 'R', N, ILO, IHI, SCALE, N, VR, LDVR,
  643:      $                IERR )
  644: *
  645: *        Normalize right eigenvectors and make largest component real
  646: *
  647:          DO 40 I = 1, N
  648:             IF( WI( I ).EQ.ZERO ) THEN
  649:                SCL = ONE / DNRM2( N, VR( 1, I ), 1 )
  650:                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
  651:             ELSE IF( WI( I ).GT.ZERO ) THEN
  652:                SCL = ONE / DLAPY2( DNRM2( N, VR( 1, I ), 1 ),
  653:      $               DNRM2( N, VR( 1, I+1 ), 1 ) )
  654:                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
  655:                CALL DSCAL( N, SCL, VR( 1, I+1 ), 1 )
  656:                DO 30 K = 1, N
  657:                   WORK( K ) = VR( K, I )**2 + VR( K, I+1 )**2
  658:    30          CONTINUE
  659:                K = IDAMAX( N, WORK, 1 )
  660:                CALL DLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
  661:                CALL DROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
  662:                VR( K, I+1 ) = ZERO
  663:             END IF
  664:    40    CONTINUE
  665:       END IF
  666: *
  667: *     Undo scaling if necessary
  668: *
  669:    50 CONTINUE
  670:       IF( SCALEA ) THEN
  671:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
  672:      $                MAX( N-INFO, 1 ), IERR )
  673:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
  674:      $                MAX( N-INFO, 1 ), IERR )
  675:          IF( INFO.EQ.0 ) THEN
  676:             IF( ( WNTSNV .OR. WNTSNB ) .AND. ICOND.EQ.0 )
  677:      $         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, RCONDV, N,
  678:      $                      IERR )
  679:          ELSE
  680:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
  681:      $                   IERR )
  682:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
  683:      $                   IERR )
  684:          END IF
  685:       END IF
  686: *
  687:       WORK( 1 ) = MAXWRK
  688:       RETURN
  689: *
  690: *     End of DGEEVX
  691: *
  692:       END

CVSweb interface <joel.bertrand@systella.fr>