Annotation of rpl/lapack/lapack/dgeevx.f, revision 1.4

1.1       bertrand    1:       SUBROUTINE DGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI,
                      2:      $                   VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM,
                      3:      $                   RCONDE, RCONDV, WORK, LWORK, IWORK, INFO )
                      4: *
                      5: *  -- LAPACK driver routine (version 3.2) --
                      6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      8: *     November 2006
                      9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
                     12:       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
                     13:       DOUBLE PRECISION   ABNRM
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       INTEGER            IWORK( * )
                     17:       DOUBLE PRECISION   A( LDA, * ), RCONDE( * ), RCONDV( * ),
                     18:      $                   SCALE( * ), VL( LDVL, * ), VR( LDVR, * ),
                     19:      $                   WI( * ), WORK( * ), WR( * )
                     20: *     ..
                     21: *
                     22: *  Purpose
                     23: *  =======
                     24: *
                     25: *  DGEEVX computes for an N-by-N real nonsymmetric matrix A, the
                     26: *  eigenvalues and, optionally, the left and/or right eigenvectors.
                     27: *
                     28: *  Optionally also, it computes a balancing transformation to improve
                     29: *  the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
                     30: *  SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
                     31: *  (RCONDE), and reciprocal condition numbers for the right
                     32: *  eigenvectors (RCONDV).
                     33: *
                     34: *  The right eigenvector v(j) of A satisfies
                     35: *                   A * v(j) = lambda(j) * v(j)
                     36: *  where lambda(j) is its eigenvalue.
                     37: *  The left eigenvector u(j) of A satisfies
                     38: *                u(j)**H * A = lambda(j) * u(j)**H
                     39: *  where u(j)**H denotes the conjugate transpose of u(j).
                     40: *
                     41: *  The computed eigenvectors are normalized to have Euclidean norm
                     42: *  equal to 1 and largest component real.
                     43: *
                     44: *  Balancing a matrix means permuting the rows and columns to make it
                     45: *  more nearly upper triangular, and applying a diagonal similarity
                     46: *  transformation D * A * D**(-1), where D is a diagonal matrix, to
                     47: *  make its rows and columns closer in norm and the condition numbers
                     48: *  of its eigenvalues and eigenvectors smaller.  The computed
                     49: *  reciprocal condition numbers correspond to the balanced matrix.
                     50: *  Permuting rows and columns will not change the condition numbers
                     51: *  (in exact arithmetic) but diagonal scaling will.  For further
                     52: *  explanation of balancing, see section 4.10.2 of the LAPACK
                     53: *  Users' Guide.
                     54: *
                     55: *  Arguments
                     56: *  =========
                     57: *
                     58: *  BALANC  (input) CHARACTER*1
                     59: *          Indicates how the input matrix should be diagonally scaled
                     60: *          and/or permuted to improve the conditioning of its
                     61: *          eigenvalues.
                     62: *          = 'N': Do not diagonally scale or permute;
                     63: *          = 'P': Perform permutations to make the matrix more nearly
                     64: *                 upper triangular. Do not diagonally scale;
                     65: *          = 'S': Diagonally scale the matrix, i.e. replace A by
                     66: *                 D*A*D**(-1), where D is a diagonal matrix chosen
                     67: *                 to make the rows and columns of A more equal in
                     68: *                 norm. Do not permute;
                     69: *          = 'B': Both diagonally scale and permute A.
                     70: *
                     71: *          Computed reciprocal condition numbers will be for the matrix
                     72: *          after balancing and/or permuting. Permuting does not change
                     73: *          condition numbers (in exact arithmetic), but balancing does.
                     74: *
                     75: *  JOBVL   (input) CHARACTER*1
                     76: *          = 'N': left eigenvectors of A are not computed;
                     77: *          = 'V': left eigenvectors of A are computed.
                     78: *          If SENSE = 'E' or 'B', JOBVL must = 'V'.
                     79: *
                     80: *  JOBVR   (input) CHARACTER*1
                     81: *          = 'N': right eigenvectors of A are not computed;
                     82: *          = 'V': right eigenvectors of A are computed.
                     83: *          If SENSE = 'E' or 'B', JOBVR must = 'V'.
                     84: *
                     85: *  SENSE   (input) CHARACTER*1
                     86: *          Determines which reciprocal condition numbers are computed.
                     87: *          = 'N': None are computed;
                     88: *          = 'E': Computed for eigenvalues only;
                     89: *          = 'V': Computed for right eigenvectors only;
                     90: *          = 'B': Computed for eigenvalues and right eigenvectors.
                     91: *
                     92: *          If SENSE = 'E' or 'B', both left and right eigenvectors
                     93: *          must also be computed (JOBVL = 'V' and JOBVR = 'V').
                     94: *
                     95: *  N       (input) INTEGER
                     96: *          The order of the matrix A. N >= 0.
                     97: *
                     98: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
                     99: *          On entry, the N-by-N matrix A.
                    100: *          On exit, A has been overwritten.  If JOBVL = 'V' or
                    101: *          JOBVR = 'V', A contains the real Schur form of the balanced
                    102: *          version of the input matrix A.
                    103: *
                    104: *  LDA     (input) INTEGER
                    105: *          The leading dimension of the array A.  LDA >= max(1,N).
                    106: *
                    107: *  WR      (output) DOUBLE PRECISION array, dimension (N)
                    108: *  WI      (output) DOUBLE PRECISION array, dimension (N)
                    109: *          WR and WI contain the real and imaginary parts,
                    110: *          respectively, of the computed eigenvalues.  Complex
                    111: *          conjugate pairs of eigenvalues will appear consecutively
                    112: *          with the eigenvalue having the positive imaginary part
                    113: *          first.
                    114: *
                    115: *  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)
                    116: *          If JOBVL = 'V', the left eigenvectors u(j) are stored one
                    117: *          after another in the columns of VL, in the same order
                    118: *          as their eigenvalues.
                    119: *          If JOBVL = 'N', VL is not referenced.
                    120: *          If the j-th eigenvalue is real, then u(j) = VL(:,j),
                    121: *          the j-th column of VL.
                    122: *          If the j-th and (j+1)-st eigenvalues form a complex
                    123: *          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
                    124: *          u(j+1) = VL(:,j) - i*VL(:,j+1).
                    125: *
                    126: *  LDVL    (input) INTEGER
                    127: *          The leading dimension of the array VL.  LDVL >= 1; if
                    128: *          JOBVL = 'V', LDVL >= N.
                    129: *
                    130: *  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)
                    131: *          If JOBVR = 'V', the right eigenvectors v(j) are stored one
                    132: *          after another in the columns of VR, in the same order
                    133: *          as their eigenvalues.
                    134: *          If JOBVR = 'N', VR is not referenced.
                    135: *          If the j-th eigenvalue is real, then v(j) = VR(:,j),
                    136: *          the j-th column of VR.
                    137: *          If the j-th and (j+1)-st eigenvalues form a complex
                    138: *          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
                    139: *          v(j+1) = VR(:,j) - i*VR(:,j+1).
                    140: *
                    141: *  LDVR    (input) INTEGER
                    142: *          The leading dimension of the array VR.  LDVR >= 1, and if
                    143: *          JOBVR = 'V', LDVR >= N.
                    144: *
                    145: *  ILO     (output) INTEGER
                    146: *  IHI     (output) INTEGER
                    147: *          ILO and IHI are integer values determined when A was
                    148: *          balanced.  The balanced A(i,j) = 0 if I > J and
                    149: *          J = 1,...,ILO-1 or I = IHI+1,...,N.
                    150: *
                    151: *  SCALE   (output) DOUBLE PRECISION array, dimension (N)
                    152: *          Details of the permutations and scaling factors applied
                    153: *          when balancing A.  If P(j) is the index of the row and column
                    154: *          interchanged with row and column j, and D(j) is the scaling
                    155: *          factor applied to row and column j, then
                    156: *          SCALE(J) = P(J),    for J = 1,...,ILO-1
                    157: *                   = D(J),    for J = ILO,...,IHI
                    158: *                   = P(J)     for J = IHI+1,...,N.
                    159: *          The order in which the interchanges are made is N to IHI+1,
                    160: *          then 1 to ILO-1.
                    161: *
                    162: *  ABNRM   (output) DOUBLE PRECISION
                    163: *          The one-norm of the balanced matrix (the maximum
                    164: *          of the sum of absolute values of elements of any column).
                    165: *
                    166: *  RCONDE  (output) DOUBLE PRECISION array, dimension (N)
                    167: *          RCONDE(j) is the reciprocal condition number of the j-th
                    168: *          eigenvalue.
                    169: *
                    170: *  RCONDV  (output) DOUBLE PRECISION array, dimension (N)
                    171: *          RCONDV(j) is the reciprocal condition number of the j-th
                    172: *          right eigenvector.
                    173: *
                    174: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    175: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    176: *
                    177: *  LWORK   (input) INTEGER
                    178: *          The dimension of the array WORK.   If SENSE = 'N' or 'E',
                    179: *          LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
                    180: *          LWORK >= 3*N.  If SENSE = 'V' or 'B', LWORK >= N*(N+6).
                    181: *          For good performance, LWORK must generally be larger.
                    182: *
                    183: *          If LWORK = -1, then a workspace query is assumed; the routine
                    184: *          only calculates the optimal size of the WORK array, returns
                    185: *          this value as the first entry of the WORK array, and no error
                    186: *          message related to LWORK is issued by XERBLA.
                    187: *
                    188: *  IWORK   (workspace) INTEGER array, dimension (2*N-2)
                    189: *          If SENSE = 'N' or 'E', not referenced.
                    190: *
                    191: *  INFO    (output) INTEGER
                    192: *          = 0:  successful exit
                    193: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    194: *          > 0:  if INFO = i, the QR algorithm failed to compute all the
                    195: *                eigenvalues, and no eigenvectors or condition numbers
                    196: *                have been computed; elements 1:ILO-1 and i+1:N of WR
                    197: *                and WI contain eigenvalues which have converged.
                    198: *
                    199: *  =====================================================================
                    200: *
                    201: *     .. Parameters ..
                    202:       DOUBLE PRECISION   ZERO, ONE
                    203:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    204: *     ..
                    205: *     .. Local Scalars ..
                    206:       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
                    207:      $                   WNTSNN, WNTSNV
                    208:       CHARACTER          JOB, SIDE
                    209:       INTEGER            HSWORK, I, ICOND, IERR, ITAU, IWRK, K, MAXWRK,
                    210:      $                   MINWRK, NOUT
                    211:       DOUBLE PRECISION   ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
                    212:      $                   SN
                    213: *     ..
                    214: *     .. Local Arrays ..
                    215:       LOGICAL            SELECT( 1 )
                    216:       DOUBLE PRECISION   DUM( 1 )
                    217: *     ..
                    218: *     .. External Subroutines ..
                    219:       EXTERNAL           DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLABAD, DLACPY,
                    220:      $                   DLARTG, DLASCL, DORGHR, DROT, DSCAL, DTREVC,
                    221:      $                   DTRSNA, XERBLA
                    222: *     ..
                    223: *     .. External Functions ..
                    224:       LOGICAL            LSAME
                    225:       INTEGER            IDAMAX, ILAENV
                    226:       DOUBLE PRECISION   DLAMCH, DLANGE, DLAPY2, DNRM2
                    227:       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DLANGE, DLAPY2,
                    228:      $                   DNRM2
                    229: *     ..
                    230: *     .. Intrinsic Functions ..
                    231:       INTRINSIC          MAX, SQRT
                    232: *     ..
                    233: *     .. Executable Statements ..
                    234: *
                    235: *     Test the input arguments
                    236: *
                    237:       INFO = 0
                    238:       LQUERY = ( LWORK.EQ.-1 )
                    239:       WANTVL = LSAME( JOBVL, 'V' )
                    240:       WANTVR = LSAME( JOBVR, 'V' )
                    241:       WNTSNN = LSAME( SENSE, 'N' )
                    242:       WNTSNE = LSAME( SENSE, 'E' )
                    243:       WNTSNV = LSAME( SENSE, 'V' )
                    244:       WNTSNB = LSAME( SENSE, 'B' )
                    245:       IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC,
                    246:      $    'S' ) .OR. LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) )
                    247:      $     THEN
                    248:          INFO = -1
                    249:       ELSE IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
                    250:          INFO = -2
                    251:       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
                    252:          INFO = -3
                    253:       ELSE IF( .NOT.( WNTSNN .OR. WNTSNE .OR. WNTSNB .OR. WNTSNV ) .OR.
                    254:      $         ( ( WNTSNE .OR. WNTSNB ) .AND. .NOT.( WANTVL .AND.
                    255:      $         WANTVR ) ) ) THEN
                    256:          INFO = -4
                    257:       ELSE IF( N.LT.0 ) THEN
                    258:          INFO = -5
                    259:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    260:          INFO = -7
                    261:       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
                    262:          INFO = -11
                    263:       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
                    264:          INFO = -13
                    265:       END IF
                    266: *
                    267: *     Compute workspace
                    268: *      (Note: Comments in the code beginning "Workspace:" describe the
                    269: *       minimal amount of workspace needed at that point in the code,
                    270: *       as well as the preferred amount for good performance.
                    271: *       NB refers to the optimal block size for the immediately
                    272: *       following subroutine, as returned by ILAENV.
                    273: *       HSWORK refers to the workspace preferred by DHSEQR, as
                    274: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
                    275: *       the worst case.)
                    276: *
                    277:       IF( INFO.EQ.0 ) THEN
                    278:          IF( N.EQ.0 ) THEN
                    279:             MINWRK = 1
                    280:             MAXWRK = 1
                    281:          ELSE
                    282:             MAXWRK = N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
                    283: *
                    284:             IF( WANTVL ) THEN
                    285:                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
                    286:      $                WORK, -1, INFO )
                    287:             ELSE IF( WANTVR ) THEN
                    288:                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
                    289:      $                WORK, -1, INFO )
                    290:             ELSE
                    291:                IF( WNTSNN ) THEN
                    292:                   CALL DHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR,
                    293:      $                LDVR, WORK, -1, INFO )
                    294:                ELSE
                    295:                   CALL DHSEQR( 'S', 'N', N, 1, N, A, LDA, WR, WI, VR,
                    296:      $                LDVR, WORK, -1, INFO )
                    297:                END IF
                    298:             END IF
                    299:             HSWORK = WORK( 1 )
                    300: *
                    301:             IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
                    302:                MINWRK = 2*N
                    303:                IF( .NOT.WNTSNN )
                    304:      $            MINWRK = MAX( MINWRK, N*N+6*N )
                    305:                MAXWRK = MAX( MAXWRK, HSWORK )
                    306:                IF( .NOT.WNTSNN )
                    307:      $            MAXWRK = MAX( MAXWRK, N*N + 6*N )
                    308:             ELSE
                    309:                MINWRK = 3*N
                    310:                IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
                    311:      $            MINWRK = MAX( MINWRK, N*N + 6*N )
                    312:                MAXWRK = MAX( MAXWRK, HSWORK )
                    313:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'DORGHR',
                    314:      $                       ' ', N, 1, N, -1 ) )
                    315:                IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
                    316:      $            MAXWRK = MAX( MAXWRK, N*N + 6*N )
                    317:                MAXWRK = MAX( MAXWRK, 3*N )
                    318:             END IF
                    319:             MAXWRK = MAX( MAXWRK, MINWRK )
                    320:          END IF
                    321:          WORK( 1 ) = MAXWRK
                    322: *
                    323:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    324:             INFO = -21
                    325:          END IF
                    326:       END IF
                    327: *
                    328:       IF( INFO.NE.0 ) THEN
                    329:          CALL XERBLA( 'DGEEVX', -INFO )
                    330:          RETURN
                    331:       ELSE IF( LQUERY ) THEN
                    332:          RETURN
                    333:       END IF
                    334: *
                    335: *     Quick return if possible
                    336: *
                    337:       IF( N.EQ.0 )
                    338:      $   RETURN
                    339: *
                    340: *     Get machine constants
                    341: *
                    342:       EPS = DLAMCH( 'P' )
                    343:       SMLNUM = DLAMCH( 'S' )
                    344:       BIGNUM = ONE / SMLNUM
                    345:       CALL DLABAD( SMLNUM, BIGNUM )
                    346:       SMLNUM = SQRT( SMLNUM ) / EPS
                    347:       BIGNUM = ONE / SMLNUM
                    348: *
                    349: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    350: *
                    351:       ICOND = 0
                    352:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
                    353:       SCALEA = .FALSE.
                    354:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    355:          SCALEA = .TRUE.
                    356:          CSCALE = SMLNUM
                    357:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    358:          SCALEA = .TRUE.
                    359:          CSCALE = BIGNUM
                    360:       END IF
                    361:       IF( SCALEA )
                    362:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
                    363: *
                    364: *     Balance the matrix and compute ABNRM
                    365: *
                    366:       CALL DGEBAL( BALANC, N, A, LDA, ILO, IHI, SCALE, IERR )
                    367:       ABNRM = DLANGE( '1', N, N, A, LDA, DUM )
                    368:       IF( SCALEA ) THEN
                    369:          DUM( 1 ) = ABNRM
                    370:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
                    371:          ABNRM = DUM( 1 )
                    372:       END IF
                    373: *
                    374: *     Reduce to upper Hessenberg form
                    375: *     (Workspace: need 2*N, prefer N+N*NB)
                    376: *
                    377:       ITAU = 1
                    378:       IWRK = ITAU + N
                    379:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
                    380:      $             LWORK-IWRK+1, IERR )
                    381: *
                    382:       IF( WANTVL ) THEN
                    383: *
                    384: *        Want left eigenvectors
                    385: *        Copy Householder vectors to VL
                    386: *
                    387:          SIDE = 'L'
                    388:          CALL DLACPY( 'L', N, N, A, LDA, VL, LDVL )
                    389: *
                    390: *        Generate orthogonal matrix in VL
                    391: *        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
                    392: *
                    393:          CALL DORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
                    394:      $                LWORK-IWRK+1, IERR )
                    395: *
                    396: *        Perform QR iteration, accumulating Schur vectors in VL
                    397: *        (Workspace: need 1, prefer HSWORK (see comments) )
                    398: *
                    399:          IWRK = ITAU
                    400:          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
                    401:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
                    402: *
                    403:          IF( WANTVR ) THEN
                    404: *
                    405: *           Want left and right eigenvectors
                    406: *           Copy Schur vectors to VR
                    407: *
                    408:             SIDE = 'B'
                    409:             CALL DLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
                    410:          END IF
                    411: *
                    412:       ELSE IF( WANTVR ) THEN
                    413: *
                    414: *        Want right eigenvectors
                    415: *        Copy Householder vectors to VR
                    416: *
                    417:          SIDE = 'R'
                    418:          CALL DLACPY( 'L', N, N, A, LDA, VR, LDVR )
                    419: *
                    420: *        Generate orthogonal matrix in VR
                    421: *        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
                    422: *
                    423:          CALL DORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
                    424:      $                LWORK-IWRK+1, IERR )
                    425: *
                    426: *        Perform QR iteration, accumulating Schur vectors in VR
                    427: *        (Workspace: need 1, prefer HSWORK (see comments) )
                    428: *
                    429:          IWRK = ITAU
                    430:          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
                    431:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
                    432: *
                    433:       ELSE
                    434: *
                    435: *        Compute eigenvalues only
                    436: *        If condition numbers desired, compute Schur form
                    437: *
                    438:          IF( WNTSNN ) THEN
                    439:             JOB = 'E'
                    440:          ELSE
                    441:             JOB = 'S'
                    442:          END IF
                    443: *
                    444: *        (Workspace: need 1, prefer HSWORK (see comments) )
                    445: *
                    446:          IWRK = ITAU
                    447:          CALL DHSEQR( JOB, 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
                    448:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
                    449:       END IF
                    450: *
                    451: *     If INFO > 0 from DHSEQR, then quit
                    452: *
                    453:       IF( INFO.GT.0 )
                    454:      $   GO TO 50
                    455: *
                    456:       IF( WANTVL .OR. WANTVR ) THEN
                    457: *
                    458: *        Compute left and/or right eigenvectors
                    459: *        (Workspace: need 3*N)
                    460: *
                    461:          CALL DTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
                    462:      $                N, NOUT, WORK( IWRK ), IERR )
                    463:       END IF
                    464: *
                    465: *     Compute condition numbers if desired
                    466: *     (Workspace: need N*N+6*N unless SENSE = 'E')
                    467: *
                    468:       IF( .NOT.WNTSNN ) THEN
                    469:          CALL DTRSNA( SENSE, 'A', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
                    470:      $                RCONDE, RCONDV, N, NOUT, WORK( IWRK ), N, IWORK,
                    471:      $                ICOND )
                    472:       END IF
                    473: *
                    474:       IF( WANTVL ) THEN
                    475: *
                    476: *        Undo balancing of left eigenvectors
                    477: *
                    478:          CALL DGEBAK( BALANC, 'L', N, ILO, IHI, SCALE, N, VL, LDVL,
                    479:      $                IERR )
                    480: *
                    481: *        Normalize left eigenvectors and make largest component real
                    482: *
                    483:          DO 20 I = 1, N
                    484:             IF( WI( I ).EQ.ZERO ) THEN
                    485:                SCL = ONE / DNRM2( N, VL( 1, I ), 1 )
                    486:                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
                    487:             ELSE IF( WI( I ).GT.ZERO ) THEN
                    488:                SCL = ONE / DLAPY2( DNRM2( N, VL( 1, I ), 1 ),
                    489:      $               DNRM2( N, VL( 1, I+1 ), 1 ) )
                    490:                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
                    491:                CALL DSCAL( N, SCL, VL( 1, I+1 ), 1 )
                    492:                DO 10 K = 1, N
                    493:                   WORK( K ) = VL( K, I )**2 + VL( K, I+1 )**2
                    494:    10          CONTINUE
                    495:                K = IDAMAX( N, WORK, 1 )
                    496:                CALL DLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
                    497:                CALL DROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
                    498:                VL( K, I+1 ) = ZERO
                    499:             END IF
                    500:    20    CONTINUE
                    501:       END IF
                    502: *
                    503:       IF( WANTVR ) THEN
                    504: *
                    505: *        Undo balancing of right eigenvectors
                    506: *
                    507:          CALL DGEBAK( BALANC, 'R', N, ILO, IHI, SCALE, N, VR, LDVR,
                    508:      $                IERR )
                    509: *
                    510: *        Normalize right eigenvectors and make largest component real
                    511: *
                    512:          DO 40 I = 1, N
                    513:             IF( WI( I ).EQ.ZERO ) THEN
                    514:                SCL = ONE / DNRM2( N, VR( 1, I ), 1 )
                    515:                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
                    516:             ELSE IF( WI( I ).GT.ZERO ) THEN
                    517:                SCL = ONE / DLAPY2( DNRM2( N, VR( 1, I ), 1 ),
                    518:      $               DNRM2( N, VR( 1, I+1 ), 1 ) )
                    519:                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
                    520:                CALL DSCAL( N, SCL, VR( 1, I+1 ), 1 )
                    521:                DO 30 K = 1, N
                    522:                   WORK( K ) = VR( K, I )**2 + VR( K, I+1 )**2
                    523:    30          CONTINUE
                    524:                K = IDAMAX( N, WORK, 1 )
                    525:                CALL DLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
                    526:                CALL DROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
                    527:                VR( K, I+1 ) = ZERO
                    528:             END IF
                    529:    40    CONTINUE
                    530:       END IF
                    531: *
                    532: *     Undo scaling if necessary
                    533: *
                    534:    50 CONTINUE
                    535:       IF( SCALEA ) THEN
                    536:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
                    537:      $                MAX( N-INFO, 1 ), IERR )
                    538:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
                    539:      $                MAX( N-INFO, 1 ), IERR )
                    540:          IF( INFO.EQ.0 ) THEN
                    541:             IF( ( WNTSNV .OR. WNTSNB ) .AND. ICOND.EQ.0 )
                    542:      $         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, RCONDV, N,
                    543:      $                      IERR )
                    544:          ELSE
                    545:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
                    546:      $                   IERR )
                    547:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
                    548:      $                   IERR )
                    549:          END IF
                    550:       END IF
                    551: *
                    552:       WORK( 1 ) = MAXWRK
                    553:       RETURN
                    554: *
                    555: *     End of DGEEVX
                    556: *
                    557:       END

CVSweb interface <joel.bertrand@systella.fr>