Annotation of rpl/lapack/lapack/dgeevx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI,
        !             2:      $                   VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM,
        !             3:      $                   RCONDE, RCONDV, WORK, LWORK, IWORK, INFO )
        !             4: *
        !             5: *  -- LAPACK driver routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
        !            12:       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
        !            13:       DOUBLE PRECISION   ABNRM
        !            14: *     ..
        !            15: *     .. Array Arguments ..
        !            16:       INTEGER            IWORK( * )
        !            17:       DOUBLE PRECISION   A( LDA, * ), RCONDE( * ), RCONDV( * ),
        !            18:      $                   SCALE( * ), VL( LDVL, * ), VR( LDVR, * ),
        !            19:      $                   WI( * ), WORK( * ), WR( * )
        !            20: *     ..
        !            21: *
        !            22: *  Purpose
        !            23: *  =======
        !            24: *
        !            25: *  DGEEVX computes for an N-by-N real nonsymmetric matrix A, the
        !            26: *  eigenvalues and, optionally, the left and/or right eigenvectors.
        !            27: *
        !            28: *  Optionally also, it computes a balancing transformation to improve
        !            29: *  the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
        !            30: *  SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
        !            31: *  (RCONDE), and reciprocal condition numbers for the right
        !            32: *  eigenvectors (RCONDV).
        !            33: *
        !            34: *  The right eigenvector v(j) of A satisfies
        !            35: *                   A * v(j) = lambda(j) * v(j)
        !            36: *  where lambda(j) is its eigenvalue.
        !            37: *  The left eigenvector u(j) of A satisfies
        !            38: *                u(j)**H * A = lambda(j) * u(j)**H
        !            39: *  where u(j)**H denotes the conjugate transpose of u(j).
        !            40: *
        !            41: *  The computed eigenvectors are normalized to have Euclidean norm
        !            42: *  equal to 1 and largest component real.
        !            43: *
        !            44: *  Balancing a matrix means permuting the rows and columns to make it
        !            45: *  more nearly upper triangular, and applying a diagonal similarity
        !            46: *  transformation D * A * D**(-1), where D is a diagonal matrix, to
        !            47: *  make its rows and columns closer in norm and the condition numbers
        !            48: *  of its eigenvalues and eigenvectors smaller.  The computed
        !            49: *  reciprocal condition numbers correspond to the balanced matrix.
        !            50: *  Permuting rows and columns will not change the condition numbers
        !            51: *  (in exact arithmetic) but diagonal scaling will.  For further
        !            52: *  explanation of balancing, see section 4.10.2 of the LAPACK
        !            53: *  Users' Guide.
        !            54: *
        !            55: *  Arguments
        !            56: *  =========
        !            57: *
        !            58: *  BALANC  (input) CHARACTER*1
        !            59: *          Indicates how the input matrix should be diagonally scaled
        !            60: *          and/or permuted to improve the conditioning of its
        !            61: *          eigenvalues.
        !            62: *          = 'N': Do not diagonally scale or permute;
        !            63: *          = 'P': Perform permutations to make the matrix more nearly
        !            64: *                 upper triangular. Do not diagonally scale;
        !            65: *          = 'S': Diagonally scale the matrix, i.e. replace A by
        !            66: *                 D*A*D**(-1), where D is a diagonal matrix chosen
        !            67: *                 to make the rows and columns of A more equal in
        !            68: *                 norm. Do not permute;
        !            69: *          = 'B': Both diagonally scale and permute A.
        !            70: *
        !            71: *          Computed reciprocal condition numbers will be for the matrix
        !            72: *          after balancing and/or permuting. Permuting does not change
        !            73: *          condition numbers (in exact arithmetic), but balancing does.
        !            74: *
        !            75: *  JOBVL   (input) CHARACTER*1
        !            76: *          = 'N': left eigenvectors of A are not computed;
        !            77: *          = 'V': left eigenvectors of A are computed.
        !            78: *          If SENSE = 'E' or 'B', JOBVL must = 'V'.
        !            79: *
        !            80: *  JOBVR   (input) CHARACTER*1
        !            81: *          = 'N': right eigenvectors of A are not computed;
        !            82: *          = 'V': right eigenvectors of A are computed.
        !            83: *          If SENSE = 'E' or 'B', JOBVR must = 'V'.
        !            84: *
        !            85: *  SENSE   (input) CHARACTER*1
        !            86: *          Determines which reciprocal condition numbers are computed.
        !            87: *          = 'N': None are computed;
        !            88: *          = 'E': Computed for eigenvalues only;
        !            89: *          = 'V': Computed for right eigenvectors only;
        !            90: *          = 'B': Computed for eigenvalues and right eigenvectors.
        !            91: *
        !            92: *          If SENSE = 'E' or 'B', both left and right eigenvectors
        !            93: *          must also be computed (JOBVL = 'V' and JOBVR = 'V').
        !            94: *
        !            95: *  N       (input) INTEGER
        !            96: *          The order of the matrix A. N >= 0.
        !            97: *
        !            98: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
        !            99: *          On entry, the N-by-N matrix A.
        !           100: *          On exit, A has been overwritten.  If JOBVL = 'V' or
        !           101: *          JOBVR = 'V', A contains the real Schur form of the balanced
        !           102: *          version of the input matrix A.
        !           103: *
        !           104: *  LDA     (input) INTEGER
        !           105: *          The leading dimension of the array A.  LDA >= max(1,N).
        !           106: *
        !           107: *  WR      (output) DOUBLE PRECISION array, dimension (N)
        !           108: *  WI      (output) DOUBLE PRECISION array, dimension (N)
        !           109: *          WR and WI contain the real and imaginary parts,
        !           110: *          respectively, of the computed eigenvalues.  Complex
        !           111: *          conjugate pairs of eigenvalues will appear consecutively
        !           112: *          with the eigenvalue having the positive imaginary part
        !           113: *          first.
        !           114: *
        !           115: *  VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)
        !           116: *          If JOBVL = 'V', the left eigenvectors u(j) are stored one
        !           117: *          after another in the columns of VL, in the same order
        !           118: *          as their eigenvalues.
        !           119: *          If JOBVL = 'N', VL is not referenced.
        !           120: *          If the j-th eigenvalue is real, then u(j) = VL(:,j),
        !           121: *          the j-th column of VL.
        !           122: *          If the j-th and (j+1)-st eigenvalues form a complex
        !           123: *          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
        !           124: *          u(j+1) = VL(:,j) - i*VL(:,j+1).
        !           125: *
        !           126: *  LDVL    (input) INTEGER
        !           127: *          The leading dimension of the array VL.  LDVL >= 1; if
        !           128: *          JOBVL = 'V', LDVL >= N.
        !           129: *
        !           130: *  VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)
        !           131: *          If JOBVR = 'V', the right eigenvectors v(j) are stored one
        !           132: *          after another in the columns of VR, in the same order
        !           133: *          as their eigenvalues.
        !           134: *          If JOBVR = 'N', VR is not referenced.
        !           135: *          If the j-th eigenvalue is real, then v(j) = VR(:,j),
        !           136: *          the j-th column of VR.
        !           137: *          If the j-th and (j+1)-st eigenvalues form a complex
        !           138: *          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
        !           139: *          v(j+1) = VR(:,j) - i*VR(:,j+1).
        !           140: *
        !           141: *  LDVR    (input) INTEGER
        !           142: *          The leading dimension of the array VR.  LDVR >= 1, and if
        !           143: *          JOBVR = 'V', LDVR >= N.
        !           144: *
        !           145: *  ILO     (output) INTEGER
        !           146: *  IHI     (output) INTEGER
        !           147: *          ILO and IHI are integer values determined when A was
        !           148: *          balanced.  The balanced A(i,j) = 0 if I > J and
        !           149: *          J = 1,...,ILO-1 or I = IHI+1,...,N.
        !           150: *
        !           151: *  SCALE   (output) DOUBLE PRECISION array, dimension (N)
        !           152: *          Details of the permutations and scaling factors applied
        !           153: *          when balancing A.  If P(j) is the index of the row and column
        !           154: *          interchanged with row and column j, and D(j) is the scaling
        !           155: *          factor applied to row and column j, then
        !           156: *          SCALE(J) = P(J),    for J = 1,...,ILO-1
        !           157: *                   = D(J),    for J = ILO,...,IHI
        !           158: *                   = P(J)     for J = IHI+1,...,N.
        !           159: *          The order in which the interchanges are made is N to IHI+1,
        !           160: *          then 1 to ILO-1.
        !           161: *
        !           162: *  ABNRM   (output) DOUBLE PRECISION
        !           163: *          The one-norm of the balanced matrix (the maximum
        !           164: *          of the sum of absolute values of elements of any column).
        !           165: *
        !           166: *  RCONDE  (output) DOUBLE PRECISION array, dimension (N)
        !           167: *          RCONDE(j) is the reciprocal condition number of the j-th
        !           168: *          eigenvalue.
        !           169: *
        !           170: *  RCONDV  (output) DOUBLE PRECISION array, dimension (N)
        !           171: *          RCONDV(j) is the reciprocal condition number of the j-th
        !           172: *          right eigenvector.
        !           173: *
        !           174: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           175: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           176: *
        !           177: *  LWORK   (input) INTEGER
        !           178: *          The dimension of the array WORK.   If SENSE = 'N' or 'E',
        !           179: *          LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
        !           180: *          LWORK >= 3*N.  If SENSE = 'V' or 'B', LWORK >= N*(N+6).
        !           181: *          For good performance, LWORK must generally be larger.
        !           182: *
        !           183: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           184: *          only calculates the optimal size of the WORK array, returns
        !           185: *          this value as the first entry of the WORK array, and no error
        !           186: *          message related to LWORK is issued by XERBLA.
        !           187: *
        !           188: *  IWORK   (workspace) INTEGER array, dimension (2*N-2)
        !           189: *          If SENSE = 'N' or 'E', not referenced.
        !           190: *
        !           191: *  INFO    (output) INTEGER
        !           192: *          = 0:  successful exit
        !           193: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           194: *          > 0:  if INFO = i, the QR algorithm failed to compute all the
        !           195: *                eigenvalues, and no eigenvectors or condition numbers
        !           196: *                have been computed; elements 1:ILO-1 and i+1:N of WR
        !           197: *                and WI contain eigenvalues which have converged.
        !           198: *
        !           199: *  =====================================================================
        !           200: *
        !           201: *     .. Parameters ..
        !           202:       DOUBLE PRECISION   ZERO, ONE
        !           203:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           204: *     ..
        !           205: *     .. Local Scalars ..
        !           206:       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
        !           207:      $                   WNTSNN, WNTSNV
        !           208:       CHARACTER          JOB, SIDE
        !           209:       INTEGER            HSWORK, I, ICOND, IERR, ITAU, IWRK, K, MAXWRK,
        !           210:      $                   MINWRK, NOUT
        !           211:       DOUBLE PRECISION   ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
        !           212:      $                   SN
        !           213: *     ..
        !           214: *     .. Local Arrays ..
        !           215:       LOGICAL            SELECT( 1 )
        !           216:       DOUBLE PRECISION   DUM( 1 )
        !           217: *     ..
        !           218: *     .. External Subroutines ..
        !           219:       EXTERNAL           DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLABAD, DLACPY,
        !           220:      $                   DLARTG, DLASCL, DORGHR, DROT, DSCAL, DTREVC,
        !           221:      $                   DTRSNA, XERBLA
        !           222: *     ..
        !           223: *     .. External Functions ..
        !           224:       LOGICAL            LSAME
        !           225:       INTEGER            IDAMAX, ILAENV
        !           226:       DOUBLE PRECISION   DLAMCH, DLANGE, DLAPY2, DNRM2
        !           227:       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DLANGE, DLAPY2,
        !           228:      $                   DNRM2
        !           229: *     ..
        !           230: *     .. Intrinsic Functions ..
        !           231:       INTRINSIC          MAX, SQRT
        !           232: *     ..
        !           233: *     .. Executable Statements ..
        !           234: *
        !           235: *     Test the input arguments
        !           236: *
        !           237:       INFO = 0
        !           238:       LQUERY = ( LWORK.EQ.-1 )
        !           239:       WANTVL = LSAME( JOBVL, 'V' )
        !           240:       WANTVR = LSAME( JOBVR, 'V' )
        !           241:       WNTSNN = LSAME( SENSE, 'N' )
        !           242:       WNTSNE = LSAME( SENSE, 'E' )
        !           243:       WNTSNV = LSAME( SENSE, 'V' )
        !           244:       WNTSNB = LSAME( SENSE, 'B' )
        !           245:       IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC,
        !           246:      $    'S' ) .OR. LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) )
        !           247:      $     THEN
        !           248:          INFO = -1
        !           249:       ELSE IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
        !           250:          INFO = -2
        !           251:       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
        !           252:          INFO = -3
        !           253:       ELSE IF( .NOT.( WNTSNN .OR. WNTSNE .OR. WNTSNB .OR. WNTSNV ) .OR.
        !           254:      $         ( ( WNTSNE .OR. WNTSNB ) .AND. .NOT.( WANTVL .AND.
        !           255:      $         WANTVR ) ) ) THEN
        !           256:          INFO = -4
        !           257:       ELSE IF( N.LT.0 ) THEN
        !           258:          INFO = -5
        !           259:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           260:          INFO = -7
        !           261:       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
        !           262:          INFO = -11
        !           263:       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
        !           264:          INFO = -13
        !           265:       END IF
        !           266: *
        !           267: *     Compute workspace
        !           268: *      (Note: Comments in the code beginning "Workspace:" describe the
        !           269: *       minimal amount of workspace needed at that point in the code,
        !           270: *       as well as the preferred amount for good performance.
        !           271: *       NB refers to the optimal block size for the immediately
        !           272: *       following subroutine, as returned by ILAENV.
        !           273: *       HSWORK refers to the workspace preferred by DHSEQR, as
        !           274: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
        !           275: *       the worst case.)
        !           276: *
        !           277:       IF( INFO.EQ.0 ) THEN
        !           278:          IF( N.EQ.0 ) THEN
        !           279:             MINWRK = 1
        !           280:             MAXWRK = 1
        !           281:          ELSE
        !           282:             MAXWRK = N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
        !           283: *
        !           284:             IF( WANTVL ) THEN
        !           285:                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
        !           286:      $                WORK, -1, INFO )
        !           287:             ELSE IF( WANTVR ) THEN
        !           288:                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
        !           289:      $                WORK, -1, INFO )
        !           290:             ELSE
        !           291:                IF( WNTSNN ) THEN
        !           292:                   CALL DHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR,
        !           293:      $                LDVR, WORK, -1, INFO )
        !           294:                ELSE
        !           295:                   CALL DHSEQR( 'S', 'N', N, 1, N, A, LDA, WR, WI, VR,
        !           296:      $                LDVR, WORK, -1, INFO )
        !           297:                END IF
        !           298:             END IF
        !           299:             HSWORK = WORK( 1 )
        !           300: *
        !           301:             IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
        !           302:                MINWRK = 2*N
        !           303:                IF( .NOT.WNTSNN )
        !           304:      $            MINWRK = MAX( MINWRK, N*N+6*N )
        !           305:                MAXWRK = MAX( MAXWRK, HSWORK )
        !           306:                IF( .NOT.WNTSNN )
        !           307:      $            MAXWRK = MAX( MAXWRK, N*N + 6*N )
        !           308:             ELSE
        !           309:                MINWRK = 3*N
        !           310:                IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
        !           311:      $            MINWRK = MAX( MINWRK, N*N + 6*N )
        !           312:                MAXWRK = MAX( MAXWRK, HSWORK )
        !           313:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'DORGHR',
        !           314:      $                       ' ', N, 1, N, -1 ) )
        !           315:                IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
        !           316:      $            MAXWRK = MAX( MAXWRK, N*N + 6*N )
        !           317:                MAXWRK = MAX( MAXWRK, 3*N )
        !           318:             END IF
        !           319:             MAXWRK = MAX( MAXWRK, MINWRK )
        !           320:          END IF
        !           321:          WORK( 1 ) = MAXWRK
        !           322: *
        !           323:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
        !           324:             INFO = -21
        !           325:          END IF
        !           326:       END IF
        !           327: *
        !           328:       IF( INFO.NE.0 ) THEN
        !           329:          CALL XERBLA( 'DGEEVX', -INFO )
        !           330:          RETURN
        !           331:       ELSE IF( LQUERY ) THEN
        !           332:          RETURN
        !           333:       END IF
        !           334: *
        !           335: *     Quick return if possible
        !           336: *
        !           337:       IF( N.EQ.0 )
        !           338:      $   RETURN
        !           339: *
        !           340: *     Get machine constants
        !           341: *
        !           342:       EPS = DLAMCH( 'P' )
        !           343:       SMLNUM = DLAMCH( 'S' )
        !           344:       BIGNUM = ONE / SMLNUM
        !           345:       CALL DLABAD( SMLNUM, BIGNUM )
        !           346:       SMLNUM = SQRT( SMLNUM ) / EPS
        !           347:       BIGNUM = ONE / SMLNUM
        !           348: *
        !           349: *     Scale A if max element outside range [SMLNUM,BIGNUM]
        !           350: *
        !           351:       ICOND = 0
        !           352:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
        !           353:       SCALEA = .FALSE.
        !           354:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           355:          SCALEA = .TRUE.
        !           356:          CSCALE = SMLNUM
        !           357:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           358:          SCALEA = .TRUE.
        !           359:          CSCALE = BIGNUM
        !           360:       END IF
        !           361:       IF( SCALEA )
        !           362:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
        !           363: *
        !           364: *     Balance the matrix and compute ABNRM
        !           365: *
        !           366:       CALL DGEBAL( BALANC, N, A, LDA, ILO, IHI, SCALE, IERR )
        !           367:       ABNRM = DLANGE( '1', N, N, A, LDA, DUM )
        !           368:       IF( SCALEA ) THEN
        !           369:          DUM( 1 ) = ABNRM
        !           370:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
        !           371:          ABNRM = DUM( 1 )
        !           372:       END IF
        !           373: *
        !           374: *     Reduce to upper Hessenberg form
        !           375: *     (Workspace: need 2*N, prefer N+N*NB)
        !           376: *
        !           377:       ITAU = 1
        !           378:       IWRK = ITAU + N
        !           379:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
        !           380:      $             LWORK-IWRK+1, IERR )
        !           381: *
        !           382:       IF( WANTVL ) THEN
        !           383: *
        !           384: *        Want left eigenvectors
        !           385: *        Copy Householder vectors to VL
        !           386: *
        !           387:          SIDE = 'L'
        !           388:          CALL DLACPY( 'L', N, N, A, LDA, VL, LDVL )
        !           389: *
        !           390: *        Generate orthogonal matrix in VL
        !           391: *        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
        !           392: *
        !           393:          CALL DORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
        !           394:      $                LWORK-IWRK+1, IERR )
        !           395: *
        !           396: *        Perform QR iteration, accumulating Schur vectors in VL
        !           397: *        (Workspace: need 1, prefer HSWORK (see comments) )
        !           398: *
        !           399:          IWRK = ITAU
        !           400:          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
        !           401:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
        !           402: *
        !           403:          IF( WANTVR ) THEN
        !           404: *
        !           405: *           Want left and right eigenvectors
        !           406: *           Copy Schur vectors to VR
        !           407: *
        !           408:             SIDE = 'B'
        !           409:             CALL DLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
        !           410:          END IF
        !           411: *
        !           412:       ELSE IF( WANTVR ) THEN
        !           413: *
        !           414: *        Want right eigenvectors
        !           415: *        Copy Householder vectors to VR
        !           416: *
        !           417:          SIDE = 'R'
        !           418:          CALL DLACPY( 'L', N, N, A, LDA, VR, LDVR )
        !           419: *
        !           420: *        Generate orthogonal matrix in VR
        !           421: *        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
        !           422: *
        !           423:          CALL DORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
        !           424:      $                LWORK-IWRK+1, IERR )
        !           425: *
        !           426: *        Perform QR iteration, accumulating Schur vectors in VR
        !           427: *        (Workspace: need 1, prefer HSWORK (see comments) )
        !           428: *
        !           429:          IWRK = ITAU
        !           430:          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
        !           431:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
        !           432: *
        !           433:       ELSE
        !           434: *
        !           435: *        Compute eigenvalues only
        !           436: *        If condition numbers desired, compute Schur form
        !           437: *
        !           438:          IF( WNTSNN ) THEN
        !           439:             JOB = 'E'
        !           440:          ELSE
        !           441:             JOB = 'S'
        !           442:          END IF
        !           443: *
        !           444: *        (Workspace: need 1, prefer HSWORK (see comments) )
        !           445: *
        !           446:          IWRK = ITAU
        !           447:          CALL DHSEQR( JOB, 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
        !           448:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
        !           449:       END IF
        !           450: *
        !           451: *     If INFO > 0 from DHSEQR, then quit
        !           452: *
        !           453:       IF( INFO.GT.0 )
        !           454:      $   GO TO 50
        !           455: *
        !           456:       IF( WANTVL .OR. WANTVR ) THEN
        !           457: *
        !           458: *        Compute left and/or right eigenvectors
        !           459: *        (Workspace: need 3*N)
        !           460: *
        !           461:          CALL DTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
        !           462:      $                N, NOUT, WORK( IWRK ), IERR )
        !           463:       END IF
        !           464: *
        !           465: *     Compute condition numbers if desired
        !           466: *     (Workspace: need N*N+6*N unless SENSE = 'E')
        !           467: *
        !           468:       IF( .NOT.WNTSNN ) THEN
        !           469:          CALL DTRSNA( SENSE, 'A', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
        !           470:      $                RCONDE, RCONDV, N, NOUT, WORK( IWRK ), N, IWORK,
        !           471:      $                ICOND )
        !           472:       END IF
        !           473: *
        !           474:       IF( WANTVL ) THEN
        !           475: *
        !           476: *        Undo balancing of left eigenvectors
        !           477: *
        !           478:          CALL DGEBAK( BALANC, 'L', N, ILO, IHI, SCALE, N, VL, LDVL,
        !           479:      $                IERR )
        !           480: *
        !           481: *        Normalize left eigenvectors and make largest component real
        !           482: *
        !           483:          DO 20 I = 1, N
        !           484:             IF( WI( I ).EQ.ZERO ) THEN
        !           485:                SCL = ONE / DNRM2( N, VL( 1, I ), 1 )
        !           486:                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
        !           487:             ELSE IF( WI( I ).GT.ZERO ) THEN
        !           488:                SCL = ONE / DLAPY2( DNRM2( N, VL( 1, I ), 1 ),
        !           489:      $               DNRM2( N, VL( 1, I+1 ), 1 ) )
        !           490:                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
        !           491:                CALL DSCAL( N, SCL, VL( 1, I+1 ), 1 )
        !           492:                DO 10 K = 1, N
        !           493:                   WORK( K ) = VL( K, I )**2 + VL( K, I+1 )**2
        !           494:    10          CONTINUE
        !           495:                K = IDAMAX( N, WORK, 1 )
        !           496:                CALL DLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
        !           497:                CALL DROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
        !           498:                VL( K, I+1 ) = ZERO
        !           499:             END IF
        !           500:    20    CONTINUE
        !           501:       END IF
        !           502: *
        !           503:       IF( WANTVR ) THEN
        !           504: *
        !           505: *        Undo balancing of right eigenvectors
        !           506: *
        !           507:          CALL DGEBAK( BALANC, 'R', N, ILO, IHI, SCALE, N, VR, LDVR,
        !           508:      $                IERR )
        !           509: *
        !           510: *        Normalize right eigenvectors and make largest component real
        !           511: *
        !           512:          DO 40 I = 1, N
        !           513:             IF( WI( I ).EQ.ZERO ) THEN
        !           514:                SCL = ONE / DNRM2( N, VR( 1, I ), 1 )
        !           515:                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
        !           516:             ELSE IF( WI( I ).GT.ZERO ) THEN
        !           517:                SCL = ONE / DLAPY2( DNRM2( N, VR( 1, I ), 1 ),
        !           518:      $               DNRM2( N, VR( 1, I+1 ), 1 ) )
        !           519:                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
        !           520:                CALL DSCAL( N, SCL, VR( 1, I+1 ), 1 )
        !           521:                DO 30 K = 1, N
        !           522:                   WORK( K ) = VR( K, I )**2 + VR( K, I+1 )**2
        !           523:    30          CONTINUE
        !           524:                K = IDAMAX( N, WORK, 1 )
        !           525:                CALL DLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
        !           526:                CALL DROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
        !           527:                VR( K, I+1 ) = ZERO
        !           528:             END IF
        !           529:    40    CONTINUE
        !           530:       END IF
        !           531: *
        !           532: *     Undo scaling if necessary
        !           533: *
        !           534:    50 CONTINUE
        !           535:       IF( SCALEA ) THEN
        !           536:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
        !           537:      $                MAX( N-INFO, 1 ), IERR )
        !           538:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
        !           539:      $                MAX( N-INFO, 1 ), IERR )
        !           540:          IF( INFO.EQ.0 ) THEN
        !           541:             IF( ( WNTSNV .OR. WNTSNB ) .AND. ICOND.EQ.0 )
        !           542:      $         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, RCONDV, N,
        !           543:      $                      IERR )
        !           544:          ELSE
        !           545:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
        !           546:      $                   IERR )
        !           547:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
        !           548:      $                   IERR )
        !           549:          END IF
        !           550:       END IF
        !           551: *
        !           552:       WORK( 1 ) = MAXWRK
        !           553:       RETURN
        !           554: *
        !           555: *     End of DGEEVX
        !           556: *
        !           557:       END

CVSweb interface <joel.bertrand@systella.fr>