Annotation of rpl/lapack/lapack/dgeevx.f, revision 1.13

1.9       bertrand    1: *> \brief <b> DGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DGEEVX + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeevx.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeevx.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeevx.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI,
                     22: *                          VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM,
                     23: *                          RCONDE, RCONDV, WORK, LWORK, IWORK, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
                     27: *       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
                     28: *       DOUBLE PRECISION   ABNRM
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IWORK( * )
                     32: *       DOUBLE PRECISION   A( LDA, * ), RCONDE( * ), RCONDV( * ),
                     33: *      $                   SCALE( * ), VL( LDVL, * ), VR( LDVR, * ),
                     34: *      $                   WI( * ), WORK( * ), WR( * )
                     35: *       ..
                     36: *  
                     37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> DGEEVX computes for an N-by-N real nonsymmetric matrix A, the
                     44: *> eigenvalues and, optionally, the left and/or right eigenvectors.
                     45: *>
                     46: *> Optionally also, it computes a balancing transformation to improve
                     47: *> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
                     48: *> SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
                     49: *> (RCONDE), and reciprocal condition numbers for the right
                     50: *> eigenvectors (RCONDV).
                     51: *>
                     52: *> The right eigenvector v(j) of A satisfies
                     53: *>                  A * v(j) = lambda(j) * v(j)
                     54: *> where lambda(j) is its eigenvalue.
                     55: *> The left eigenvector u(j) of A satisfies
1.12      bertrand   56: *>               u(j)**H * A = lambda(j) * u(j)**H
                     57: *> where u(j)**H denotes the conjugate-transpose of u(j).
1.9       bertrand   58: *>
                     59: *> The computed eigenvectors are normalized to have Euclidean norm
                     60: *> equal to 1 and largest component real.
                     61: *>
                     62: *> Balancing a matrix means permuting the rows and columns to make it
                     63: *> more nearly upper triangular, and applying a diagonal similarity
                     64: *> transformation D * A * D**(-1), where D is a diagonal matrix, to
                     65: *> make its rows and columns closer in norm and the condition numbers
                     66: *> of its eigenvalues and eigenvectors smaller.  The computed
                     67: *> reciprocal condition numbers correspond to the balanced matrix.
                     68: *> Permuting rows and columns will not change the condition numbers
                     69: *> (in exact arithmetic) but diagonal scaling will.  For further
                     70: *> explanation of balancing, see section 4.10.2 of the LAPACK
                     71: *> Users' Guide.
                     72: *> \endverbatim
                     73: *
                     74: *  Arguments:
                     75: *  ==========
                     76: *
                     77: *> \param[in] BALANC
                     78: *> \verbatim
                     79: *>          BALANC is CHARACTER*1
                     80: *>          Indicates how the input matrix should be diagonally scaled
                     81: *>          and/or permuted to improve the conditioning of its
                     82: *>          eigenvalues.
                     83: *>          = 'N': Do not diagonally scale or permute;
                     84: *>          = 'P': Perform permutations to make the matrix more nearly
                     85: *>                 upper triangular. Do not diagonally scale;
                     86: *>          = 'S': Diagonally scale the matrix, i.e. replace A by
                     87: *>                 D*A*D**(-1), where D is a diagonal matrix chosen
                     88: *>                 to make the rows and columns of A more equal in
                     89: *>                 norm. Do not permute;
                     90: *>          = 'B': Both diagonally scale and permute A.
                     91: *>
                     92: *>          Computed reciprocal condition numbers will be for the matrix
                     93: *>          after balancing and/or permuting. Permuting does not change
                     94: *>          condition numbers (in exact arithmetic), but balancing does.
                     95: *> \endverbatim
                     96: *>
                     97: *> \param[in] JOBVL
                     98: *> \verbatim
                     99: *>          JOBVL is CHARACTER*1
                    100: *>          = 'N': left eigenvectors of A are not computed;
                    101: *>          = 'V': left eigenvectors of A are computed.
                    102: *>          If SENSE = 'E' or 'B', JOBVL must = 'V'.
                    103: *> \endverbatim
                    104: *>
                    105: *> \param[in] JOBVR
                    106: *> \verbatim
                    107: *>          JOBVR is CHARACTER*1
                    108: *>          = 'N': right eigenvectors of A are not computed;
                    109: *>          = 'V': right eigenvectors of A are computed.
                    110: *>          If SENSE = 'E' or 'B', JOBVR must = 'V'.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in] SENSE
                    114: *> \verbatim
                    115: *>          SENSE is CHARACTER*1
                    116: *>          Determines which reciprocal condition numbers are computed.
                    117: *>          = 'N': None are computed;
                    118: *>          = 'E': Computed for eigenvalues only;
                    119: *>          = 'V': Computed for right eigenvectors only;
                    120: *>          = 'B': Computed for eigenvalues and right eigenvectors.
                    121: *>
                    122: *>          If SENSE = 'E' or 'B', both left and right eigenvectors
                    123: *>          must also be computed (JOBVL = 'V' and JOBVR = 'V').
                    124: *> \endverbatim
                    125: *>
                    126: *> \param[in] N
                    127: *> \verbatim
                    128: *>          N is INTEGER
                    129: *>          The order of the matrix A. N >= 0.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in,out] A
                    133: *> \verbatim
                    134: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                    135: *>          On entry, the N-by-N matrix A.
                    136: *>          On exit, A has been overwritten.  If JOBVL = 'V' or
                    137: *>          JOBVR = 'V', A contains the real Schur form of the balanced
                    138: *>          version of the input matrix A.
                    139: *> \endverbatim
                    140: *>
                    141: *> \param[in] LDA
                    142: *> \verbatim
                    143: *>          LDA is INTEGER
                    144: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    145: *> \endverbatim
                    146: *>
                    147: *> \param[out] WR
                    148: *> \verbatim
                    149: *>          WR is DOUBLE PRECISION array, dimension (N)
                    150: *> \endverbatim
                    151: *>
                    152: *> \param[out] WI
                    153: *> \verbatim
                    154: *>          WI is DOUBLE PRECISION array, dimension (N)
                    155: *>          WR and WI contain the real and imaginary parts,
                    156: *>          respectively, of the computed eigenvalues.  Complex
                    157: *>          conjugate pairs of eigenvalues will appear consecutively
                    158: *>          with the eigenvalue having the positive imaginary part
                    159: *>          first.
                    160: *> \endverbatim
                    161: *>
                    162: *> \param[out] VL
                    163: *> \verbatim
                    164: *>          VL is DOUBLE PRECISION array, dimension (LDVL,N)
                    165: *>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
                    166: *>          after another in the columns of VL, in the same order
                    167: *>          as their eigenvalues.
                    168: *>          If JOBVL = 'N', VL is not referenced.
                    169: *>          If the j-th eigenvalue is real, then u(j) = VL(:,j),
                    170: *>          the j-th column of VL.
                    171: *>          If the j-th and (j+1)-st eigenvalues form a complex
                    172: *>          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
                    173: *>          u(j+1) = VL(:,j) - i*VL(:,j+1).
                    174: *> \endverbatim
                    175: *>
                    176: *> \param[in] LDVL
                    177: *> \verbatim
                    178: *>          LDVL is INTEGER
                    179: *>          The leading dimension of the array VL.  LDVL >= 1; if
                    180: *>          JOBVL = 'V', LDVL >= N.
                    181: *> \endverbatim
                    182: *>
                    183: *> \param[out] VR
                    184: *> \verbatim
                    185: *>          VR is DOUBLE PRECISION array, dimension (LDVR,N)
                    186: *>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
                    187: *>          after another in the columns of VR, in the same order
                    188: *>          as their eigenvalues.
                    189: *>          If JOBVR = 'N', VR is not referenced.
                    190: *>          If the j-th eigenvalue is real, then v(j) = VR(:,j),
                    191: *>          the j-th column of VR.
                    192: *>          If the j-th and (j+1)-st eigenvalues form a complex
                    193: *>          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
                    194: *>          v(j+1) = VR(:,j) - i*VR(:,j+1).
                    195: *> \endverbatim
                    196: *>
                    197: *> \param[in] LDVR
                    198: *> \verbatim
                    199: *>          LDVR is INTEGER
                    200: *>          The leading dimension of the array VR.  LDVR >= 1, and if
                    201: *>          JOBVR = 'V', LDVR >= N.
                    202: *> \endverbatim
                    203: *>
                    204: *> \param[out] ILO
                    205: *> \verbatim
                    206: *>          ILO is INTEGER
                    207: *> \endverbatim
                    208: *>
                    209: *> \param[out] IHI
                    210: *> \verbatim
                    211: *>          IHI is INTEGER
                    212: *>          ILO and IHI are integer values determined when A was
                    213: *>          balanced.  The balanced A(i,j) = 0 if I > J and
                    214: *>          J = 1,...,ILO-1 or I = IHI+1,...,N.
                    215: *> \endverbatim
                    216: *>
                    217: *> \param[out] SCALE
                    218: *> \verbatim
                    219: *>          SCALE is DOUBLE PRECISION array, dimension (N)
                    220: *>          Details of the permutations and scaling factors applied
                    221: *>          when balancing A.  If P(j) is the index of the row and column
                    222: *>          interchanged with row and column j, and D(j) is the scaling
                    223: *>          factor applied to row and column j, then
                    224: *>          SCALE(J) = P(J),    for J = 1,...,ILO-1
                    225: *>                   = D(J),    for J = ILO,...,IHI
                    226: *>                   = P(J)     for J = IHI+1,...,N.
                    227: *>          The order in which the interchanges are made is N to IHI+1,
                    228: *>          then 1 to ILO-1.
                    229: *> \endverbatim
                    230: *>
                    231: *> \param[out] ABNRM
                    232: *> \verbatim
                    233: *>          ABNRM is DOUBLE PRECISION
                    234: *>          The one-norm of the balanced matrix (the maximum
                    235: *>          of the sum of absolute values of elements of any column).
                    236: *> \endverbatim
                    237: *>
                    238: *> \param[out] RCONDE
                    239: *> \verbatim
                    240: *>          RCONDE is DOUBLE PRECISION array, dimension (N)
                    241: *>          RCONDE(j) is the reciprocal condition number of the j-th
                    242: *>          eigenvalue.
                    243: *> \endverbatim
                    244: *>
                    245: *> \param[out] RCONDV
                    246: *> \verbatim
                    247: *>          RCONDV is DOUBLE PRECISION array, dimension (N)
                    248: *>          RCONDV(j) is the reciprocal condition number of the j-th
                    249: *>          right eigenvector.
                    250: *> \endverbatim
                    251: *>
                    252: *> \param[out] WORK
                    253: *> \verbatim
                    254: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    255: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    256: *> \endverbatim
                    257: *>
                    258: *> \param[in] LWORK
                    259: *> \verbatim
                    260: *>          LWORK is INTEGER
                    261: *>          The dimension of the array WORK.   If SENSE = 'N' or 'E',
                    262: *>          LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
                    263: *>          LWORK >= 3*N.  If SENSE = 'V' or 'B', LWORK >= N*(N+6).
                    264: *>          For good performance, LWORK must generally be larger.
                    265: *>
                    266: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    267: *>          only calculates the optimal size of the WORK array, returns
                    268: *>          this value as the first entry of the WORK array, and no error
                    269: *>          message related to LWORK is issued by XERBLA.
                    270: *> \endverbatim
                    271: *>
                    272: *> \param[out] IWORK
                    273: *> \verbatim
                    274: *>          IWORK is INTEGER array, dimension (2*N-2)
                    275: *>          If SENSE = 'N' or 'E', not referenced.
                    276: *> \endverbatim
                    277: *>
                    278: *> \param[out] INFO
                    279: *> \verbatim
                    280: *>          INFO is INTEGER
                    281: *>          = 0:  successful exit
                    282: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    283: *>          > 0:  if INFO = i, the QR algorithm failed to compute all the
                    284: *>                eigenvalues, and no eigenvectors or condition numbers
                    285: *>                have been computed; elements 1:ILO-1 and i+1:N of WR
                    286: *>                and WI contain eigenvalues which have converged.
                    287: *> \endverbatim
                    288: *
                    289: *  Authors:
                    290: *  ========
                    291: *
                    292: *> \author Univ. of Tennessee 
                    293: *> \author Univ. of California Berkeley 
                    294: *> \author Univ. of Colorado Denver 
                    295: *> \author NAG Ltd. 
                    296: *
1.12      bertrand  297: *> \date September 2012
1.9       bertrand  298: *
                    299: *> \ingroup doubleGEeigen
                    300: *
                    301: *  =====================================================================
1.1       bertrand  302:       SUBROUTINE DGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, WR, WI,
                    303:      $                   VL, LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM,
                    304:      $                   RCONDE, RCONDV, WORK, LWORK, IWORK, INFO )
                    305: *
1.12      bertrand  306: *  -- LAPACK driver routine (version 3.4.2) --
1.1       bertrand  307: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    308: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.12      bertrand  309: *     September 2012
1.1       bertrand  310: *
                    311: *     .. Scalar Arguments ..
                    312:       CHARACTER          BALANC, JOBVL, JOBVR, SENSE
                    313:       INTEGER            IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
                    314:       DOUBLE PRECISION   ABNRM
                    315: *     ..
                    316: *     .. Array Arguments ..
                    317:       INTEGER            IWORK( * )
                    318:       DOUBLE PRECISION   A( LDA, * ), RCONDE( * ), RCONDV( * ),
                    319:      $                   SCALE( * ), VL( LDVL, * ), VR( LDVR, * ),
                    320:      $                   WI( * ), WORK( * ), WR( * )
                    321: *     ..
                    322: *
                    323: *  =====================================================================
                    324: *
                    325: *     .. Parameters ..
                    326:       DOUBLE PRECISION   ZERO, ONE
                    327:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    328: *     ..
                    329: *     .. Local Scalars ..
                    330:       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
                    331:      $                   WNTSNN, WNTSNV
                    332:       CHARACTER          JOB, SIDE
                    333:       INTEGER            HSWORK, I, ICOND, IERR, ITAU, IWRK, K, MAXWRK,
                    334:      $                   MINWRK, NOUT
                    335:       DOUBLE PRECISION   ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
                    336:      $                   SN
                    337: *     ..
                    338: *     .. Local Arrays ..
                    339:       LOGICAL            SELECT( 1 )
                    340:       DOUBLE PRECISION   DUM( 1 )
                    341: *     ..
                    342: *     .. External Subroutines ..
                    343:       EXTERNAL           DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLABAD, DLACPY,
                    344:      $                   DLARTG, DLASCL, DORGHR, DROT, DSCAL, DTREVC,
                    345:      $                   DTRSNA, XERBLA
                    346: *     ..
                    347: *     .. External Functions ..
                    348:       LOGICAL            LSAME
                    349:       INTEGER            IDAMAX, ILAENV
                    350:       DOUBLE PRECISION   DLAMCH, DLANGE, DLAPY2, DNRM2
                    351:       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DLANGE, DLAPY2,
                    352:      $                   DNRM2
                    353: *     ..
                    354: *     .. Intrinsic Functions ..
                    355:       INTRINSIC          MAX, SQRT
                    356: *     ..
                    357: *     .. Executable Statements ..
                    358: *
                    359: *     Test the input arguments
                    360: *
                    361:       INFO = 0
                    362:       LQUERY = ( LWORK.EQ.-1 )
                    363:       WANTVL = LSAME( JOBVL, 'V' )
                    364:       WANTVR = LSAME( JOBVR, 'V' )
                    365:       WNTSNN = LSAME( SENSE, 'N' )
                    366:       WNTSNE = LSAME( SENSE, 'E' )
                    367:       WNTSNV = LSAME( SENSE, 'V' )
                    368:       WNTSNB = LSAME( SENSE, 'B' )
                    369:       IF( .NOT.( LSAME( BALANC, 'N' ) .OR. LSAME( BALANC,
                    370:      $    'S' ) .OR. LSAME( BALANC, 'P' ) .OR. LSAME( BALANC, 'B' ) ) )
                    371:      $     THEN
                    372:          INFO = -1
                    373:       ELSE IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
                    374:          INFO = -2
                    375:       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
                    376:          INFO = -3
                    377:       ELSE IF( .NOT.( WNTSNN .OR. WNTSNE .OR. WNTSNB .OR. WNTSNV ) .OR.
                    378:      $         ( ( WNTSNE .OR. WNTSNB ) .AND. .NOT.( WANTVL .AND.
                    379:      $         WANTVR ) ) ) THEN
                    380:          INFO = -4
                    381:       ELSE IF( N.LT.0 ) THEN
                    382:          INFO = -5
                    383:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    384:          INFO = -7
                    385:       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
                    386:          INFO = -11
                    387:       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
                    388:          INFO = -13
                    389:       END IF
                    390: *
                    391: *     Compute workspace
                    392: *      (Note: Comments in the code beginning "Workspace:" describe the
                    393: *       minimal amount of workspace needed at that point in the code,
                    394: *       as well as the preferred amount for good performance.
                    395: *       NB refers to the optimal block size for the immediately
                    396: *       following subroutine, as returned by ILAENV.
                    397: *       HSWORK refers to the workspace preferred by DHSEQR, as
                    398: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
                    399: *       the worst case.)
                    400: *
                    401:       IF( INFO.EQ.0 ) THEN
                    402:          IF( N.EQ.0 ) THEN
                    403:             MINWRK = 1
                    404:             MAXWRK = 1
                    405:          ELSE
                    406:             MAXWRK = N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
                    407: *
                    408:             IF( WANTVL ) THEN
                    409:                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
                    410:      $                WORK, -1, INFO )
                    411:             ELSE IF( WANTVR ) THEN
                    412:                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
                    413:      $                WORK, -1, INFO )
                    414:             ELSE
                    415:                IF( WNTSNN ) THEN
                    416:                   CALL DHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR,
                    417:      $                LDVR, WORK, -1, INFO )
                    418:                ELSE
                    419:                   CALL DHSEQR( 'S', 'N', N, 1, N, A, LDA, WR, WI, VR,
                    420:      $                LDVR, WORK, -1, INFO )
                    421:                END IF
                    422:             END IF
                    423:             HSWORK = WORK( 1 )
                    424: *
                    425:             IF( ( .NOT.WANTVL ) .AND. ( .NOT.WANTVR ) ) THEN
                    426:                MINWRK = 2*N
                    427:                IF( .NOT.WNTSNN )
                    428:      $            MINWRK = MAX( MINWRK, N*N+6*N )
                    429:                MAXWRK = MAX( MAXWRK, HSWORK )
                    430:                IF( .NOT.WNTSNN )
                    431:      $            MAXWRK = MAX( MAXWRK, N*N + 6*N )
                    432:             ELSE
                    433:                MINWRK = 3*N
                    434:                IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
                    435:      $            MINWRK = MAX( MINWRK, N*N + 6*N )
                    436:                MAXWRK = MAX( MAXWRK, HSWORK )
                    437:                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'DORGHR',
                    438:      $                       ' ', N, 1, N, -1 ) )
                    439:                IF( ( .NOT.WNTSNN ) .AND. ( .NOT.WNTSNE ) )
                    440:      $            MAXWRK = MAX( MAXWRK, N*N + 6*N )
                    441:                MAXWRK = MAX( MAXWRK, 3*N )
                    442:             END IF
                    443:             MAXWRK = MAX( MAXWRK, MINWRK )
                    444:          END IF
                    445:          WORK( 1 ) = MAXWRK
                    446: *
                    447:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    448:             INFO = -21
                    449:          END IF
                    450:       END IF
                    451: *
                    452:       IF( INFO.NE.0 ) THEN
                    453:          CALL XERBLA( 'DGEEVX', -INFO )
                    454:          RETURN
                    455:       ELSE IF( LQUERY ) THEN
                    456:          RETURN
                    457:       END IF
                    458: *
                    459: *     Quick return if possible
                    460: *
                    461:       IF( N.EQ.0 )
                    462:      $   RETURN
                    463: *
                    464: *     Get machine constants
                    465: *
                    466:       EPS = DLAMCH( 'P' )
                    467:       SMLNUM = DLAMCH( 'S' )
                    468:       BIGNUM = ONE / SMLNUM
                    469:       CALL DLABAD( SMLNUM, BIGNUM )
                    470:       SMLNUM = SQRT( SMLNUM ) / EPS
                    471:       BIGNUM = ONE / SMLNUM
                    472: *
                    473: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    474: *
                    475:       ICOND = 0
                    476:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
                    477:       SCALEA = .FALSE.
                    478:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    479:          SCALEA = .TRUE.
                    480:          CSCALE = SMLNUM
                    481:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    482:          SCALEA = .TRUE.
                    483:          CSCALE = BIGNUM
                    484:       END IF
                    485:       IF( SCALEA )
                    486:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
                    487: *
                    488: *     Balance the matrix and compute ABNRM
                    489: *
                    490:       CALL DGEBAL( BALANC, N, A, LDA, ILO, IHI, SCALE, IERR )
                    491:       ABNRM = DLANGE( '1', N, N, A, LDA, DUM )
                    492:       IF( SCALEA ) THEN
                    493:          DUM( 1 ) = ABNRM
                    494:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
                    495:          ABNRM = DUM( 1 )
                    496:       END IF
                    497: *
                    498: *     Reduce to upper Hessenberg form
                    499: *     (Workspace: need 2*N, prefer N+N*NB)
                    500: *
                    501:       ITAU = 1
                    502:       IWRK = ITAU + N
                    503:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
                    504:      $             LWORK-IWRK+1, IERR )
                    505: *
                    506:       IF( WANTVL ) THEN
                    507: *
                    508: *        Want left eigenvectors
                    509: *        Copy Householder vectors to VL
                    510: *
                    511:          SIDE = 'L'
                    512:          CALL DLACPY( 'L', N, N, A, LDA, VL, LDVL )
                    513: *
                    514: *        Generate orthogonal matrix in VL
                    515: *        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
                    516: *
                    517:          CALL DORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
                    518:      $                LWORK-IWRK+1, IERR )
                    519: *
                    520: *        Perform QR iteration, accumulating Schur vectors in VL
                    521: *        (Workspace: need 1, prefer HSWORK (see comments) )
                    522: *
                    523:          IWRK = ITAU
                    524:          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
                    525:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
                    526: *
                    527:          IF( WANTVR ) THEN
                    528: *
                    529: *           Want left and right eigenvectors
                    530: *           Copy Schur vectors to VR
                    531: *
                    532:             SIDE = 'B'
                    533:             CALL DLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
                    534:          END IF
                    535: *
                    536:       ELSE IF( WANTVR ) THEN
                    537: *
                    538: *        Want right eigenvectors
                    539: *        Copy Householder vectors to VR
                    540: *
                    541:          SIDE = 'R'
                    542:          CALL DLACPY( 'L', N, N, A, LDA, VR, LDVR )
                    543: *
                    544: *        Generate orthogonal matrix in VR
                    545: *        (Workspace: need 2*N-1, prefer N+(N-1)*NB)
                    546: *
                    547:          CALL DORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
                    548:      $                LWORK-IWRK+1, IERR )
                    549: *
                    550: *        Perform QR iteration, accumulating Schur vectors in VR
                    551: *        (Workspace: need 1, prefer HSWORK (see comments) )
                    552: *
                    553:          IWRK = ITAU
                    554:          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
                    555:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
                    556: *
                    557:       ELSE
                    558: *
                    559: *        Compute eigenvalues only
                    560: *        If condition numbers desired, compute Schur form
                    561: *
                    562:          IF( WNTSNN ) THEN
                    563:             JOB = 'E'
                    564:          ELSE
                    565:             JOB = 'S'
                    566:          END IF
                    567: *
                    568: *        (Workspace: need 1, prefer HSWORK (see comments) )
                    569: *
                    570:          IWRK = ITAU
                    571:          CALL DHSEQR( JOB, 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
                    572:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
                    573:       END IF
                    574: *
                    575: *     If INFO > 0 from DHSEQR, then quit
                    576: *
                    577:       IF( INFO.GT.0 )
                    578:      $   GO TO 50
                    579: *
                    580:       IF( WANTVL .OR. WANTVR ) THEN
                    581: *
                    582: *        Compute left and/or right eigenvectors
                    583: *        (Workspace: need 3*N)
                    584: *
                    585:          CALL DTREVC( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
                    586:      $                N, NOUT, WORK( IWRK ), IERR )
                    587:       END IF
                    588: *
                    589: *     Compute condition numbers if desired
                    590: *     (Workspace: need N*N+6*N unless SENSE = 'E')
                    591: *
                    592:       IF( .NOT.WNTSNN ) THEN
                    593:          CALL DTRSNA( SENSE, 'A', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
                    594:      $                RCONDE, RCONDV, N, NOUT, WORK( IWRK ), N, IWORK,
                    595:      $                ICOND )
                    596:       END IF
                    597: *
                    598:       IF( WANTVL ) THEN
                    599: *
                    600: *        Undo balancing of left eigenvectors
                    601: *
                    602:          CALL DGEBAK( BALANC, 'L', N, ILO, IHI, SCALE, N, VL, LDVL,
                    603:      $                IERR )
                    604: *
                    605: *        Normalize left eigenvectors and make largest component real
                    606: *
                    607:          DO 20 I = 1, N
                    608:             IF( WI( I ).EQ.ZERO ) THEN
                    609:                SCL = ONE / DNRM2( N, VL( 1, I ), 1 )
                    610:                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
                    611:             ELSE IF( WI( I ).GT.ZERO ) THEN
                    612:                SCL = ONE / DLAPY2( DNRM2( N, VL( 1, I ), 1 ),
                    613:      $               DNRM2( N, VL( 1, I+1 ), 1 ) )
                    614:                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
                    615:                CALL DSCAL( N, SCL, VL( 1, I+1 ), 1 )
                    616:                DO 10 K = 1, N
                    617:                   WORK( K ) = VL( K, I )**2 + VL( K, I+1 )**2
                    618:    10          CONTINUE
                    619:                K = IDAMAX( N, WORK, 1 )
                    620:                CALL DLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
                    621:                CALL DROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
                    622:                VL( K, I+1 ) = ZERO
                    623:             END IF
                    624:    20    CONTINUE
                    625:       END IF
                    626: *
                    627:       IF( WANTVR ) THEN
                    628: *
                    629: *        Undo balancing of right eigenvectors
                    630: *
                    631:          CALL DGEBAK( BALANC, 'R', N, ILO, IHI, SCALE, N, VR, LDVR,
                    632:      $                IERR )
                    633: *
                    634: *        Normalize right eigenvectors and make largest component real
                    635: *
                    636:          DO 40 I = 1, N
                    637:             IF( WI( I ).EQ.ZERO ) THEN
                    638:                SCL = ONE / DNRM2( N, VR( 1, I ), 1 )
                    639:                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
                    640:             ELSE IF( WI( I ).GT.ZERO ) THEN
                    641:                SCL = ONE / DLAPY2( DNRM2( N, VR( 1, I ), 1 ),
                    642:      $               DNRM2( N, VR( 1, I+1 ), 1 ) )
                    643:                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
                    644:                CALL DSCAL( N, SCL, VR( 1, I+1 ), 1 )
                    645:                DO 30 K = 1, N
                    646:                   WORK( K ) = VR( K, I )**2 + VR( K, I+1 )**2
                    647:    30          CONTINUE
                    648:                K = IDAMAX( N, WORK, 1 )
                    649:                CALL DLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
                    650:                CALL DROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
                    651:                VR( K, I+1 ) = ZERO
                    652:             END IF
                    653:    40    CONTINUE
                    654:       END IF
                    655: *
                    656: *     Undo scaling if necessary
                    657: *
                    658:    50 CONTINUE
                    659:       IF( SCALEA ) THEN
                    660:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
                    661:      $                MAX( N-INFO, 1 ), IERR )
                    662:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
                    663:      $                MAX( N-INFO, 1 ), IERR )
                    664:          IF( INFO.EQ.0 ) THEN
                    665:             IF( ( WNTSNV .OR. WNTSNB ) .AND. ICOND.EQ.0 )
                    666:      $         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, RCONDV, N,
                    667:      $                      IERR )
                    668:          ELSE
                    669:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
                    670:      $                   IERR )
                    671:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
                    672:      $                   IERR )
                    673:          END IF
                    674:       END IF
                    675: *
                    676:       WORK( 1 ) = MAXWRK
                    677:       RETURN
                    678: *
                    679: *     End of DGEEVX
                    680: *
                    681:       END

CVSweb interface <joel.bertrand@systella.fr>