File:  [local] / rpl / lapack / lapack / dgeev.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:48 2023 UTC (9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> DGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGEEV + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeev.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeev.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeev.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
   22: *                         LDVR, WORK, LWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          JOBVL, JOBVR
   26: *       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
   30: *      $                   WI( * ), WORK( * ), WR( * )
   31: *       ..
   32: *
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DGEEV computes for an N-by-N real nonsymmetric matrix A, the
   40: *> eigenvalues and, optionally, the left and/or right eigenvectors.
   41: *>
   42: *> The right eigenvector v(j) of A satisfies
   43: *>                  A * v(j) = lambda(j) * v(j)
   44: *> where lambda(j) is its eigenvalue.
   45: *> The left eigenvector u(j) of A satisfies
   46: *>               u(j)**H * A = lambda(j) * u(j)**H
   47: *> where u(j)**H denotes the conjugate-transpose of u(j).
   48: *>
   49: *> The computed eigenvectors are normalized to have Euclidean norm
   50: *> equal to 1 and largest component real.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] JOBVL
   57: *> \verbatim
   58: *>          JOBVL is CHARACTER*1
   59: *>          = 'N': left eigenvectors of A are not computed;
   60: *>          = 'V': left eigenvectors of A are computed.
   61: *> \endverbatim
   62: *>
   63: *> \param[in] JOBVR
   64: *> \verbatim
   65: *>          JOBVR is CHARACTER*1
   66: *>          = 'N': right eigenvectors of A are not computed;
   67: *>          = 'V': right eigenvectors of A are computed.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] N
   71: *> \verbatim
   72: *>          N is INTEGER
   73: *>          The order of the matrix A. N >= 0.
   74: *> \endverbatim
   75: *>
   76: *> \param[in,out] A
   77: *> \verbatim
   78: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   79: *>          On entry, the N-by-N matrix A.
   80: *>          On exit, A has been overwritten.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] LDA
   84: *> \verbatim
   85: *>          LDA is INTEGER
   86: *>          The leading dimension of the array A.  LDA >= max(1,N).
   87: *> \endverbatim
   88: *>
   89: *> \param[out] WR
   90: *> \verbatim
   91: *>          WR is DOUBLE PRECISION array, dimension (N)
   92: *> \endverbatim
   93: *>
   94: *> \param[out] WI
   95: *> \verbatim
   96: *>          WI is DOUBLE PRECISION array, dimension (N)
   97: *>          WR and WI contain the real and imaginary parts,
   98: *>          respectively, of the computed eigenvalues.  Complex
   99: *>          conjugate pairs of eigenvalues appear consecutively
  100: *>          with the eigenvalue having the positive imaginary part
  101: *>          first.
  102: *> \endverbatim
  103: *>
  104: *> \param[out] VL
  105: *> \verbatim
  106: *>          VL is DOUBLE PRECISION array, dimension (LDVL,N)
  107: *>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
  108: *>          after another in the columns of VL, in the same order
  109: *>          as their eigenvalues.
  110: *>          If JOBVL = 'N', VL is not referenced.
  111: *>          If the j-th eigenvalue is real, then u(j) = VL(:,j),
  112: *>          the j-th column of VL.
  113: *>          If the j-th and (j+1)-st eigenvalues form a complex
  114: *>          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
  115: *>          u(j+1) = VL(:,j) - i*VL(:,j+1).
  116: *> \endverbatim
  117: *>
  118: *> \param[in] LDVL
  119: *> \verbatim
  120: *>          LDVL is INTEGER
  121: *>          The leading dimension of the array VL.  LDVL >= 1; if
  122: *>          JOBVL = 'V', LDVL >= N.
  123: *> \endverbatim
  124: *>
  125: *> \param[out] VR
  126: *> \verbatim
  127: *>          VR is DOUBLE PRECISION array, dimension (LDVR,N)
  128: *>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
  129: *>          after another in the columns of VR, in the same order
  130: *>          as their eigenvalues.
  131: *>          If JOBVR = 'N', VR is not referenced.
  132: *>          If the j-th eigenvalue is real, then v(j) = VR(:,j),
  133: *>          the j-th column of VR.
  134: *>          If the j-th and (j+1)-st eigenvalues form a complex
  135: *>          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
  136: *>          v(j+1) = VR(:,j) - i*VR(:,j+1).
  137: *> \endverbatim
  138: *>
  139: *> \param[in] LDVR
  140: *> \verbatim
  141: *>          LDVR is INTEGER
  142: *>          The leading dimension of the array VR.  LDVR >= 1; if
  143: *>          JOBVR = 'V', LDVR >= N.
  144: *> \endverbatim
  145: *>
  146: *> \param[out] WORK
  147: *> \verbatim
  148: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  149: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  150: *> \endverbatim
  151: *>
  152: *> \param[in] LWORK
  153: *> \verbatim
  154: *>          LWORK is INTEGER
  155: *>          The dimension of the array WORK.  LWORK >= max(1,3*N), and
  156: *>          if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N.  For good
  157: *>          performance, LWORK must generally be larger.
  158: *>
  159: *>          If LWORK = -1, then a workspace query is assumed; the routine
  160: *>          only calculates the optimal size of the WORK array, returns
  161: *>          this value as the first entry of the WORK array, and no error
  162: *>          message related to LWORK is issued by XERBLA.
  163: *> \endverbatim
  164: *>
  165: *> \param[out] INFO
  166: *> \verbatim
  167: *>          INFO is INTEGER
  168: *>          = 0:  successful exit
  169: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  170: *>          > 0:  if INFO = i, the QR algorithm failed to compute all the
  171: *>                eigenvalues, and no eigenvectors have been computed;
  172: *>                elements i+1:N of WR and WI contain eigenvalues which
  173: *>                have converged.
  174: *> \endverbatim
  175: *
  176: *  Authors:
  177: *  ========
  178: *
  179: *> \author Univ. of Tennessee
  180: *> \author Univ. of California Berkeley
  181: *> \author Univ. of Colorado Denver
  182: *> \author NAG Ltd.
  183: *
  184: *
  185: *  @precisions fortran d -> s
  186: *
  187: *> \ingroup doubleGEeigen
  188: *
  189: *  =====================================================================
  190:       SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
  191:      $                  LDVR, WORK, LWORK, INFO )
  192:       implicit none
  193: *
  194: *  -- LAPACK driver routine --
  195: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  196: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  197: *
  198: *     .. Scalar Arguments ..
  199:       CHARACTER          JOBVL, JOBVR
  200:       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
  201: *     ..
  202: *     .. Array Arguments ..
  203:       DOUBLE PRECISION   A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
  204:      $                   WI( * ), WORK( * ), WR( * )
  205: *     ..
  206: *
  207: *  =====================================================================
  208: *
  209: *     .. Parameters ..
  210:       DOUBLE PRECISION   ZERO, ONE
  211:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  212: *     ..
  213: *     .. Local Scalars ..
  214:       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR
  215:       CHARACTER          SIDE
  216:       INTEGER            HSWORK, I, IBAL, IERR, IHI, ILO, ITAU, IWRK, K,
  217:      $                   LWORK_TREVC, MAXWRK, MINWRK, NOUT
  218:       DOUBLE PRECISION   ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
  219:      $                   SN
  220: *     ..
  221: *     .. Local Arrays ..
  222:       LOGICAL            SELECT( 1 )
  223:       DOUBLE PRECISION   DUM( 1 )
  224: *     ..
  225: *     .. External Subroutines ..
  226:       EXTERNAL           DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLABAD, DLACPY,
  227:      $                   DLARTG, DLASCL, DORGHR, DROT, DSCAL, DTREVC3,
  228:      $                   XERBLA
  229: *     ..
  230: *     .. External Functions ..
  231:       LOGICAL            LSAME
  232:       INTEGER            IDAMAX, ILAENV
  233:       DOUBLE PRECISION   DLAMCH, DLANGE, DLAPY2, DNRM2
  234:       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DLANGE, DLAPY2,
  235:      $                   DNRM2
  236: *     ..
  237: *     .. Intrinsic Functions ..
  238:       INTRINSIC          MAX, SQRT
  239: *     ..
  240: *     .. Executable Statements ..
  241: *
  242: *     Test the input arguments
  243: *
  244:       INFO = 0
  245:       LQUERY = ( LWORK.EQ.-1 )
  246:       WANTVL = LSAME( JOBVL, 'V' )
  247:       WANTVR = LSAME( JOBVR, 'V' )
  248:       IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
  249:          INFO = -1
  250:       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
  251:          INFO = -2
  252:       ELSE IF( N.LT.0 ) THEN
  253:          INFO = -3
  254:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  255:          INFO = -5
  256:       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
  257:          INFO = -9
  258:       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
  259:          INFO = -11
  260:       END IF
  261: *
  262: *     Compute workspace
  263: *      (Note: Comments in the code beginning "Workspace:" describe the
  264: *       minimal amount of workspace needed at that point in the code,
  265: *       as well as the preferred amount for good performance.
  266: *       NB refers to the optimal block size for the immediately
  267: *       following subroutine, as returned by ILAENV.
  268: *       HSWORK refers to the workspace preferred by DHSEQR, as
  269: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  270: *       the worst case.)
  271: *
  272:       IF( INFO.EQ.0 ) THEN
  273:          IF( N.EQ.0 ) THEN
  274:             MINWRK = 1
  275:             MAXWRK = 1
  276:          ELSE
  277:             MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
  278:             IF( WANTVL ) THEN
  279:                MINWRK = 4*N
  280:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  281:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
  282:                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
  283:      $                      WORK, -1, INFO )
  284:                HSWORK = INT( WORK(1) )
  285:                MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
  286:                CALL DTREVC3( 'L', 'B', SELECT, N, A, LDA,
  287:      $                       VL, LDVL, VR, LDVR, N, NOUT,
  288:      $                       WORK, -1, IERR )
  289:                LWORK_TREVC = INT( WORK(1) )
  290:                MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
  291:                MAXWRK = MAX( MAXWRK, 4*N )
  292:             ELSE IF( WANTVR ) THEN
  293:                MINWRK = 4*N
  294:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  295:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
  296:                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
  297:      $                      WORK, -1, INFO )
  298:                HSWORK = INT( WORK(1) )
  299:                MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
  300:                CALL DTREVC3( 'R', 'B', SELECT, N, A, LDA,
  301:      $                       VL, LDVL, VR, LDVR, N, NOUT,
  302:      $                       WORK, -1, IERR )
  303:                LWORK_TREVC = INT( WORK(1) )
  304:                MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
  305:                MAXWRK = MAX( MAXWRK, 4*N )
  306:             ELSE
  307:                MINWRK = 3*N
  308:                CALL DHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR, LDVR,
  309:      $                      WORK, -1, INFO )
  310:                HSWORK = INT( WORK(1) )
  311:                MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
  312:             END IF
  313:             MAXWRK = MAX( MAXWRK, MINWRK )
  314:          END IF
  315:          WORK( 1 ) = MAXWRK
  316: *
  317:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  318:             INFO = -13
  319:          END IF
  320:       END IF
  321: *
  322:       IF( INFO.NE.0 ) THEN
  323:          CALL XERBLA( 'DGEEV ', -INFO )
  324:          RETURN
  325:       ELSE IF( LQUERY ) THEN
  326:          RETURN
  327:       END IF
  328: *
  329: *     Quick return if possible
  330: *
  331:       IF( N.EQ.0 )
  332:      $   RETURN
  333: *
  334: *     Get machine constants
  335: *
  336:       EPS = DLAMCH( 'P' )
  337:       SMLNUM = DLAMCH( 'S' )
  338:       BIGNUM = ONE / SMLNUM
  339:       CALL DLABAD( SMLNUM, BIGNUM )
  340:       SMLNUM = SQRT( SMLNUM ) / EPS
  341:       BIGNUM = ONE / SMLNUM
  342: *
  343: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  344: *
  345:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
  346:       SCALEA = .FALSE.
  347:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  348:          SCALEA = .TRUE.
  349:          CSCALE = SMLNUM
  350:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  351:          SCALEA = .TRUE.
  352:          CSCALE = BIGNUM
  353:       END IF
  354:       IF( SCALEA )
  355:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  356: *
  357: *     Balance the matrix
  358: *     (Workspace: need N)
  359: *
  360:       IBAL = 1
  361:       CALL DGEBAL( 'B', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
  362: *
  363: *     Reduce to upper Hessenberg form
  364: *     (Workspace: need 3*N, prefer 2*N+N*NB)
  365: *
  366:       ITAU = IBAL + N
  367:       IWRK = ITAU + N
  368:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  369:      $             LWORK-IWRK+1, IERR )
  370: *
  371:       IF( WANTVL ) THEN
  372: *
  373: *        Want left eigenvectors
  374: *        Copy Householder vectors to VL
  375: *
  376:          SIDE = 'L'
  377:          CALL DLACPY( 'L', N, N, A, LDA, VL, LDVL )
  378: *
  379: *        Generate orthogonal matrix in VL
  380: *        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  381: *
  382:          CALL DORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
  383:      $                LWORK-IWRK+1, IERR )
  384: *
  385: *        Perform QR iteration, accumulating Schur vectors in VL
  386: *        (Workspace: need N+1, prefer N+HSWORK (see comments) )
  387: *
  388:          IWRK = ITAU
  389:          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
  390:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  391: *
  392:          IF( WANTVR ) THEN
  393: *
  394: *           Want left and right eigenvectors
  395: *           Copy Schur vectors to VR
  396: *
  397:             SIDE = 'B'
  398:             CALL DLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
  399:          END IF
  400: *
  401:       ELSE IF( WANTVR ) THEN
  402: *
  403: *        Want right eigenvectors
  404: *        Copy Householder vectors to VR
  405: *
  406:          SIDE = 'R'
  407:          CALL DLACPY( 'L', N, N, A, LDA, VR, LDVR )
  408: *
  409: *        Generate orthogonal matrix in VR
  410: *        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  411: *
  412:          CALL DORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
  413:      $                LWORK-IWRK+1, IERR )
  414: *
  415: *        Perform QR iteration, accumulating Schur vectors in VR
  416: *        (Workspace: need N+1, prefer N+HSWORK (see comments) )
  417: *
  418:          IWRK = ITAU
  419:          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
  420:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  421: *
  422:       ELSE
  423: *
  424: *        Compute eigenvalues only
  425: *        (Workspace: need N+1, prefer N+HSWORK (see comments) )
  426: *
  427:          IWRK = ITAU
  428:          CALL DHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
  429:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  430:       END IF
  431: *
  432: *     If INFO .NE. 0 from DHSEQR, then quit
  433: *
  434:       IF( INFO.NE.0 )
  435:      $   GO TO 50
  436: *
  437:       IF( WANTVL .OR. WANTVR ) THEN
  438: *
  439: *        Compute left and/or right eigenvectors
  440: *        (Workspace: need 4*N, prefer N + N + 2*N*NB)
  441: *
  442:          CALL DTREVC3( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
  443:      $                 N, NOUT, WORK( IWRK ), LWORK-IWRK+1, IERR )
  444:       END IF
  445: *
  446:       IF( WANTVL ) THEN
  447: *
  448: *        Undo balancing of left eigenvectors
  449: *        (Workspace: need N)
  450: *
  451:          CALL DGEBAK( 'B', 'L', N, ILO, IHI, WORK( IBAL ), N, VL, LDVL,
  452:      $                IERR )
  453: *
  454: *        Normalize left eigenvectors and make largest component real
  455: *
  456:          DO 20 I = 1, N
  457:             IF( WI( I ).EQ.ZERO ) THEN
  458:                SCL = ONE / DNRM2( N, VL( 1, I ), 1 )
  459:                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
  460:             ELSE IF( WI( I ).GT.ZERO ) THEN
  461:                SCL = ONE / DLAPY2( DNRM2( N, VL( 1, I ), 1 ),
  462:      $               DNRM2( N, VL( 1, I+1 ), 1 ) )
  463:                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
  464:                CALL DSCAL( N, SCL, VL( 1, I+1 ), 1 )
  465:                DO 10 K = 1, N
  466:                   WORK( IWRK+K-1 ) = VL( K, I )**2 + VL( K, I+1 )**2
  467:    10          CONTINUE
  468:                K = IDAMAX( N, WORK( IWRK ), 1 )
  469:                CALL DLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
  470:                CALL DROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
  471:                VL( K, I+1 ) = ZERO
  472:             END IF
  473:    20    CONTINUE
  474:       END IF
  475: *
  476:       IF( WANTVR ) THEN
  477: *
  478: *        Undo balancing of right eigenvectors
  479: *        (Workspace: need N)
  480: *
  481:          CALL DGEBAK( 'B', 'R', N, ILO, IHI, WORK( IBAL ), N, VR, LDVR,
  482:      $                IERR )
  483: *
  484: *        Normalize right eigenvectors and make largest component real
  485: *
  486:          DO 40 I = 1, N
  487:             IF( WI( I ).EQ.ZERO ) THEN
  488:                SCL = ONE / DNRM2( N, VR( 1, I ), 1 )
  489:                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
  490:             ELSE IF( WI( I ).GT.ZERO ) THEN
  491:                SCL = ONE / DLAPY2( DNRM2( N, VR( 1, I ), 1 ),
  492:      $               DNRM2( N, VR( 1, I+1 ), 1 ) )
  493:                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
  494:                CALL DSCAL( N, SCL, VR( 1, I+1 ), 1 )
  495:                DO 30 K = 1, N
  496:                   WORK( IWRK+K-1 ) = VR( K, I )**2 + VR( K, I+1 )**2
  497:    30          CONTINUE
  498:                K = IDAMAX( N, WORK( IWRK ), 1 )
  499:                CALL DLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
  500:                CALL DROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
  501:                VR( K, I+1 ) = ZERO
  502:             END IF
  503:    40    CONTINUE
  504:       END IF
  505: *
  506: *     Undo scaling if necessary
  507: *
  508:    50 CONTINUE
  509:       IF( SCALEA ) THEN
  510:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
  511:      $                MAX( N-INFO, 1 ), IERR )
  512:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
  513:      $                MAX( N-INFO, 1 ), IERR )
  514:          IF( INFO.GT.0 ) THEN
  515:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
  516:      $                   IERR )
  517:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
  518:      $                   IERR )
  519:          END IF
  520:       END IF
  521: *
  522:       WORK( 1 ) = MAXWRK
  523:       RETURN
  524: *
  525: *     End of DGEEV
  526: *
  527:       END

CVSweb interface <joel.bertrand@systella.fr>