File:  [local] / rpl / lapack / lapack / dgeev.f
Revision 1.16: download - view: text, annotated - select for diffs - revision graph
Sat Aug 27 15:34:21 2016 UTC (7 years, 8 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_25, HEAD
Cohérence Lapack.

    1: *> \brief <b> DGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DGEEV + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeev.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeev.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeev.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
   22: *                         LDVR, WORK, LWORK, INFO )
   23:    24: *       .. Scalar Arguments ..
   25: *       CHARACTER          JOBVL, JOBVR
   26: *       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       DOUBLE PRECISION   A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
   30: *      $                   WI( * ), WORK( * ), WR( * )
   31: *       ..
   32: *  
   33: *
   34: *> \par Purpose:
   35: *  =============
   36: *>
   37: *> \verbatim
   38: *>
   39: *> DGEEV computes for an N-by-N real nonsymmetric matrix A, the
   40: *> eigenvalues and, optionally, the left and/or right eigenvectors.
   41: *>
   42: *> The right eigenvector v(j) of A satisfies
   43: *>                  A * v(j) = lambda(j) * v(j)
   44: *> where lambda(j) is its eigenvalue.
   45: *> The left eigenvector u(j) of A satisfies
   46: *>               u(j)**H * A = lambda(j) * u(j)**H
   47: *> where u(j)**H denotes the conjugate-transpose of u(j).
   48: *>
   49: *> The computed eigenvectors are normalized to have Euclidean norm
   50: *> equal to 1 and largest component real.
   51: *> \endverbatim
   52: *
   53: *  Arguments:
   54: *  ==========
   55: *
   56: *> \param[in] JOBVL
   57: *> \verbatim
   58: *>          JOBVL is CHARACTER*1
   59: *>          = 'N': left eigenvectors of A are not computed;
   60: *>          = 'V': left eigenvectors of A are computed.
   61: *> \endverbatim
   62: *>
   63: *> \param[in] JOBVR
   64: *> \verbatim
   65: *>          JOBVR is CHARACTER*1
   66: *>          = 'N': right eigenvectors of A are not computed;
   67: *>          = 'V': right eigenvectors of A are computed.
   68: *> \endverbatim
   69: *>
   70: *> \param[in] N
   71: *> \verbatim
   72: *>          N is INTEGER
   73: *>          The order of the matrix A. N >= 0.
   74: *> \endverbatim
   75: *>
   76: *> \param[in,out] A
   77: *> \verbatim
   78: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   79: *>          On entry, the N-by-N matrix A.
   80: *>          On exit, A has been overwritten.
   81: *> \endverbatim
   82: *>
   83: *> \param[in] LDA
   84: *> \verbatim
   85: *>          LDA is INTEGER
   86: *>          The leading dimension of the array A.  LDA >= max(1,N).
   87: *> \endverbatim
   88: *>
   89: *> \param[out] WR
   90: *> \verbatim
   91: *>          WR is DOUBLE PRECISION array, dimension (N)
   92: *> \endverbatim
   93: *>
   94: *> \param[out] WI
   95: *> \verbatim
   96: *>          WI is DOUBLE PRECISION array, dimension (N)
   97: *>          WR and WI contain the real and imaginary parts,
   98: *>          respectively, of the computed eigenvalues.  Complex
   99: *>          conjugate pairs of eigenvalues appear consecutively
  100: *>          with the eigenvalue having the positive imaginary part
  101: *>          first.
  102: *> \endverbatim
  103: *>
  104: *> \param[out] VL
  105: *> \verbatim
  106: *>          VL is DOUBLE PRECISION array, dimension (LDVL,N)
  107: *>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
  108: *>          after another in the columns of VL, in the same order
  109: *>          as their eigenvalues.
  110: *>          If JOBVL = 'N', VL is not referenced.
  111: *>          If the j-th eigenvalue is real, then u(j) = VL(:,j),
  112: *>          the j-th column of VL.
  113: *>          If the j-th and (j+1)-st eigenvalues form a complex
  114: *>          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
  115: *>          u(j+1) = VL(:,j) - i*VL(:,j+1).
  116: *> \endverbatim
  117: *>
  118: *> \param[in] LDVL
  119: *> \verbatim
  120: *>          LDVL is INTEGER
  121: *>          The leading dimension of the array VL.  LDVL >= 1; if
  122: *>          JOBVL = 'V', LDVL >= N.
  123: *> \endverbatim
  124: *>
  125: *> \param[out] VR
  126: *> \verbatim
  127: *>          VR is DOUBLE PRECISION array, dimension (LDVR,N)
  128: *>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
  129: *>          after another in the columns of VR, in the same order
  130: *>          as their eigenvalues.
  131: *>          If JOBVR = 'N', VR is not referenced.
  132: *>          If the j-th eigenvalue is real, then v(j) = VR(:,j),
  133: *>          the j-th column of VR.
  134: *>          If the j-th and (j+1)-st eigenvalues form a complex
  135: *>          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
  136: *>          v(j+1) = VR(:,j) - i*VR(:,j+1).
  137: *> \endverbatim
  138: *>
  139: *> \param[in] LDVR
  140: *> \verbatim
  141: *>          LDVR is INTEGER
  142: *>          The leading dimension of the array VR.  LDVR >= 1; if
  143: *>          JOBVR = 'V', LDVR >= N.
  144: *> \endverbatim
  145: *>
  146: *> \param[out] WORK
  147: *> \verbatim
  148: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  149: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  150: *> \endverbatim
  151: *>
  152: *> \param[in] LWORK
  153: *> \verbatim
  154: *>          LWORK is INTEGER
  155: *>          The dimension of the array WORK.  LWORK >= max(1,3*N), and
  156: *>          if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N.  For good
  157: *>          performance, LWORK must generally be larger.
  158: *>
  159: *>          If LWORK = -1, then a workspace query is assumed; the routine
  160: *>          only calculates the optimal size of the WORK array, returns
  161: *>          this value as the first entry of the WORK array, and no error
  162: *>          message related to LWORK is issued by XERBLA.
  163: *> \endverbatim
  164: *>
  165: *> \param[out] INFO
  166: *> \verbatim
  167: *>          INFO is INTEGER
  168: *>          = 0:  successful exit
  169: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
  170: *>          > 0:  if INFO = i, the QR algorithm failed to compute all the
  171: *>                eigenvalues, and no eigenvectors have been computed;
  172: *>                elements i+1:N of WR and WI contain eigenvalues which
  173: *>                have converged.
  174: *> \endverbatim
  175: *
  176: *  Authors:
  177: *  ========
  178: *
  179: *> \author Univ. of Tennessee 
  180: *> \author Univ. of California Berkeley 
  181: *> \author Univ. of Colorado Denver 
  182: *> \author NAG Ltd. 
  183: *
  184: *> \date June 2016
  185: *
  186: *  @precisions fortran d -> s
  187: *
  188: *> \ingroup doubleGEeigen
  189: *
  190: *  =====================================================================
  191:       SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
  192:      $                  LDVR, WORK, LWORK, INFO )
  193:       implicit none
  194: *
  195: *  -- LAPACK driver routine (version 3.6.1) --
  196: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  197: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  198: *     June 2016
  199: *
  200: *     .. Scalar Arguments ..
  201:       CHARACTER          JOBVL, JOBVR
  202:       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
  203: *     ..
  204: *     .. Array Arguments ..
  205:       DOUBLE PRECISION   A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
  206:      $                   WI( * ), WORK( * ), WR( * )
  207: *     ..
  208: *
  209: *  =====================================================================
  210: *
  211: *     .. Parameters ..
  212:       DOUBLE PRECISION   ZERO, ONE
  213:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  214: *     ..
  215: *     .. Local Scalars ..
  216:       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR
  217:       CHARACTER          SIDE
  218:       INTEGER            HSWORK, I, IBAL, IERR, IHI, ILO, ITAU, IWRK, K,
  219:      $                   LWORK_TREVC, MAXWRK, MINWRK, NOUT
  220:       DOUBLE PRECISION   ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
  221:      $                   SN
  222: *     ..
  223: *     .. Local Arrays ..
  224:       LOGICAL            SELECT( 1 )
  225:       DOUBLE PRECISION   DUM( 1 )
  226: *     ..
  227: *     .. External Subroutines ..
  228:       EXTERNAL           DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLABAD, DLACPY,
  229:      $                   DLARTG, DLASCL, DORGHR, DROT, DSCAL, DTREVC3,
  230:      $                   XERBLA
  231: *     ..
  232: *     .. External Functions ..
  233:       LOGICAL            LSAME
  234:       INTEGER            IDAMAX, ILAENV
  235:       DOUBLE PRECISION   DLAMCH, DLANGE, DLAPY2, DNRM2
  236:       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DLANGE, DLAPY2,
  237:      $                   DNRM2
  238: *     ..
  239: *     .. Intrinsic Functions ..
  240:       INTRINSIC          MAX, SQRT
  241: *     ..
  242: *     .. Executable Statements ..
  243: *
  244: *     Test the input arguments
  245: *
  246:       INFO = 0
  247:       LQUERY = ( LWORK.EQ.-1 )
  248:       WANTVL = LSAME( JOBVL, 'V' )
  249:       WANTVR = LSAME( JOBVR, 'V' )
  250:       IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
  251:          INFO = -1
  252:       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
  253:          INFO = -2
  254:       ELSE IF( N.LT.0 ) THEN
  255:          INFO = -3
  256:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  257:          INFO = -5
  258:       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
  259:          INFO = -9
  260:       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
  261:          INFO = -11
  262:       END IF
  263: *
  264: *     Compute workspace
  265: *      (Note: Comments in the code beginning "Workspace:" describe the
  266: *       minimal amount of workspace needed at that point in the code,
  267: *       as well as the preferred amount for good performance.
  268: *       NB refers to the optimal block size for the immediately
  269: *       following subroutine, as returned by ILAENV.
  270: *       HSWORK refers to the workspace preferred by DHSEQR, as
  271: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  272: *       the worst case.)
  273: *
  274:       IF( INFO.EQ.0 ) THEN
  275:          IF( N.EQ.0 ) THEN
  276:             MINWRK = 1
  277:             MAXWRK = 1
  278:          ELSE
  279:             MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
  280:             IF( WANTVL ) THEN
  281:                MINWRK = 4*N
  282:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  283:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
  284:                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
  285:      $                      WORK, -1, INFO )
  286:                HSWORK = INT( WORK(1) )
  287:                MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
  288:                CALL DTREVC3( 'L', 'B', SELECT, N, A, LDA,
  289:      $                       VL, LDVL, VR, LDVR, N, NOUT,
  290:      $                       WORK, -1, IERR )
  291:                LWORK_TREVC = INT( WORK(1) )
  292:                MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
  293:                MAXWRK = MAX( MAXWRK, 4*N )
  294:             ELSE IF( WANTVR ) THEN
  295:                MINWRK = 4*N
  296:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  297:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
  298:                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
  299:      $                      WORK, -1, INFO )
  300:                HSWORK = INT( WORK(1) )
  301:                MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
  302:                CALL DTREVC3( 'R', 'B', SELECT, N, A, LDA,
  303:      $                       VL, LDVL, VR, LDVR, N, NOUT,
  304:      $                       WORK, -1, IERR )
  305:                LWORK_TREVC = INT( WORK(1) )
  306:                MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
  307:                MAXWRK = MAX( MAXWRK, 4*N )
  308:             ELSE 
  309:                MINWRK = 3*N
  310:                CALL DHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR, LDVR,
  311:      $                      WORK, -1, INFO )
  312:                HSWORK = INT( WORK(1) )
  313:                MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
  314:             END IF
  315:             MAXWRK = MAX( MAXWRK, MINWRK )
  316:          END IF
  317:          WORK( 1 ) = MAXWRK
  318: *
  319:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  320:             INFO = -13
  321:          END IF
  322:       END IF
  323: *
  324:       IF( INFO.NE.0 ) THEN
  325:          CALL XERBLA( 'DGEEV ', -INFO )
  326:          RETURN
  327:       ELSE IF( LQUERY ) THEN
  328:          RETURN
  329:       END IF
  330: *
  331: *     Quick return if possible
  332: *
  333:       IF( N.EQ.0 )
  334:      $   RETURN
  335: *
  336: *     Get machine constants
  337: *
  338:       EPS = DLAMCH( 'P' )
  339:       SMLNUM = DLAMCH( 'S' )
  340:       BIGNUM = ONE / SMLNUM
  341:       CALL DLABAD( SMLNUM, BIGNUM )
  342:       SMLNUM = SQRT( SMLNUM ) / EPS
  343:       BIGNUM = ONE / SMLNUM
  344: *
  345: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  346: *
  347:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
  348:       SCALEA = .FALSE.
  349:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  350:          SCALEA = .TRUE.
  351:          CSCALE = SMLNUM
  352:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  353:          SCALEA = .TRUE.
  354:          CSCALE = BIGNUM
  355:       END IF
  356:       IF( SCALEA )
  357:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  358: *
  359: *     Balance the matrix
  360: *     (Workspace: need N)
  361: *
  362:       IBAL = 1
  363:       CALL DGEBAL( 'B', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
  364: *
  365: *     Reduce to upper Hessenberg form
  366: *     (Workspace: need 3*N, prefer 2*N+N*NB)
  367: *
  368:       ITAU = IBAL + N
  369:       IWRK = ITAU + N
  370:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  371:      $             LWORK-IWRK+1, IERR )
  372: *
  373:       IF( WANTVL ) THEN
  374: *
  375: *        Want left eigenvectors
  376: *        Copy Householder vectors to VL
  377: *
  378:          SIDE = 'L'
  379:          CALL DLACPY( 'L', N, N, A, LDA, VL, LDVL )
  380: *
  381: *        Generate orthogonal matrix in VL
  382: *        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  383: *
  384:          CALL DORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
  385:      $                LWORK-IWRK+1, IERR )
  386: *
  387: *        Perform QR iteration, accumulating Schur vectors in VL
  388: *        (Workspace: need N+1, prefer N+HSWORK (see comments) )
  389: *
  390:          IWRK = ITAU
  391:          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
  392:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  393: *
  394:          IF( WANTVR ) THEN
  395: *
  396: *           Want left and right eigenvectors
  397: *           Copy Schur vectors to VR
  398: *
  399:             SIDE = 'B'
  400:             CALL DLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
  401:          END IF
  402: *
  403:       ELSE IF( WANTVR ) THEN
  404: *
  405: *        Want right eigenvectors
  406: *        Copy Householder vectors to VR
  407: *
  408:          SIDE = 'R'
  409:          CALL DLACPY( 'L', N, N, A, LDA, VR, LDVR )
  410: *
  411: *        Generate orthogonal matrix in VR
  412: *        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  413: *
  414:          CALL DORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
  415:      $                LWORK-IWRK+1, IERR )
  416: *
  417: *        Perform QR iteration, accumulating Schur vectors in VR
  418: *        (Workspace: need N+1, prefer N+HSWORK (see comments) )
  419: *
  420:          IWRK = ITAU
  421:          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
  422:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  423: *
  424:       ELSE
  425: *
  426: *        Compute eigenvalues only
  427: *        (Workspace: need N+1, prefer N+HSWORK (see comments) )
  428: *
  429:          IWRK = ITAU
  430:          CALL DHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
  431:      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
  432:       END IF
  433: *
  434: *     If INFO .NE. 0 from DHSEQR, then quit
  435: *
  436:       IF( INFO.NE.0 )
  437:      $   GO TO 50
  438: *
  439:       IF( WANTVL .OR. WANTVR ) THEN
  440: *
  441: *        Compute left and/or right eigenvectors
  442: *        (Workspace: need 4*N, prefer N + N + 2*N*NB)
  443: *
  444:          CALL DTREVC3( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
  445:      $                 N, NOUT, WORK( IWRK ), LWORK-IWRK+1, IERR )
  446:       END IF
  447: *
  448:       IF( WANTVL ) THEN
  449: *
  450: *        Undo balancing of left eigenvectors
  451: *        (Workspace: need N)
  452: *
  453:          CALL DGEBAK( 'B', 'L', N, ILO, IHI, WORK( IBAL ), N, VL, LDVL,
  454:      $                IERR )
  455: *
  456: *        Normalize left eigenvectors and make largest component real
  457: *
  458:          DO 20 I = 1, N
  459:             IF( WI( I ).EQ.ZERO ) THEN
  460:                SCL = ONE / DNRM2( N, VL( 1, I ), 1 )
  461:                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
  462:             ELSE IF( WI( I ).GT.ZERO ) THEN
  463:                SCL = ONE / DLAPY2( DNRM2( N, VL( 1, I ), 1 ),
  464:      $               DNRM2( N, VL( 1, I+1 ), 1 ) )
  465:                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
  466:                CALL DSCAL( N, SCL, VL( 1, I+1 ), 1 )
  467:                DO 10 K = 1, N
  468:                   WORK( IWRK+K-1 ) = VL( K, I )**2 + VL( K, I+1 )**2
  469:    10          CONTINUE
  470:                K = IDAMAX( N, WORK( IWRK ), 1 )
  471:                CALL DLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
  472:                CALL DROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
  473:                VL( K, I+1 ) = ZERO
  474:             END IF
  475:    20    CONTINUE
  476:       END IF
  477: *
  478:       IF( WANTVR ) THEN
  479: *
  480: *        Undo balancing of right eigenvectors
  481: *        (Workspace: need N)
  482: *
  483:          CALL DGEBAK( 'B', 'R', N, ILO, IHI, WORK( IBAL ), N, VR, LDVR,
  484:      $                IERR )
  485: *
  486: *        Normalize right eigenvectors and make largest component real
  487: *
  488:          DO 40 I = 1, N
  489:             IF( WI( I ).EQ.ZERO ) THEN
  490:                SCL = ONE / DNRM2( N, VR( 1, I ), 1 )
  491:                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
  492:             ELSE IF( WI( I ).GT.ZERO ) THEN
  493:                SCL = ONE / DLAPY2( DNRM2( N, VR( 1, I ), 1 ),
  494:      $               DNRM2( N, VR( 1, I+1 ), 1 ) )
  495:                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
  496:                CALL DSCAL( N, SCL, VR( 1, I+1 ), 1 )
  497:                DO 30 K = 1, N
  498:                   WORK( IWRK+K-1 ) = VR( K, I )**2 + VR( K, I+1 )**2
  499:    30          CONTINUE
  500:                K = IDAMAX( N, WORK( IWRK ), 1 )
  501:                CALL DLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
  502:                CALL DROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
  503:                VR( K, I+1 ) = ZERO
  504:             END IF
  505:    40    CONTINUE
  506:       END IF
  507: *
  508: *     Undo scaling if necessary
  509: *
  510:    50 CONTINUE
  511:       IF( SCALEA ) THEN
  512:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
  513:      $                MAX( N-INFO, 1 ), IERR )
  514:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
  515:      $                MAX( N-INFO, 1 ), IERR )
  516:          IF( INFO.GT.0 ) THEN
  517:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
  518:      $                   IERR )
  519:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
  520:      $                   IERR )
  521:          END IF
  522:       END IF
  523: *
  524:       WORK( 1 ) = MAXWRK
  525:       RETURN
  526: *
  527: *     End of DGEEV
  528: *
  529:       END

CVSweb interface <joel.bertrand@systella.fr>