File:  [local] / rpl / lapack / lapack / dgeesx.f
Revision 1.5: download - view: text, annotated - select for diffs - revision graph
Sat Aug 7 13:18:06 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de lapack vers la version 3.2.2.

    1:       SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
    2:      $                   WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
    3:      $                   IWORK, LIWORK, BWORK, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     June 2010
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          JOBVS, SENSE, SORT
   12:       INTEGER            INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
   13:       DOUBLE PRECISION   RCONDE, RCONDV
   14: *     ..
   15: *     .. Array Arguments ..
   16:       LOGICAL            BWORK( * )
   17:       INTEGER            IWORK( * )
   18:       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
   19:      $                   WR( * )
   20: *     ..
   21: *     .. Function Arguments ..
   22:       LOGICAL            SELECT
   23:       EXTERNAL           SELECT
   24: *     ..
   25: *
   26: *  Purpose
   27: *  =======
   28: *
   29: *  DGEESX computes for an N-by-N real nonsymmetric matrix A, the
   30: *  eigenvalues, the real Schur form T, and, optionally, the matrix of
   31: *  Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T).
   32: *
   33: *  Optionally, it also orders the eigenvalues on the diagonal of the
   34: *  real Schur form so that selected eigenvalues are at the top left;
   35: *  computes a reciprocal condition number for the average of the
   36: *  selected eigenvalues (RCONDE); and computes a reciprocal condition
   37: *  number for the right invariant subspace corresponding to the
   38: *  selected eigenvalues (RCONDV).  The leading columns of Z form an
   39: *  orthonormal basis for this invariant subspace.
   40: *
   41: *  For further explanation of the reciprocal condition numbers RCONDE
   42: *  and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
   43: *  these quantities are called s and sep respectively).
   44: *
   45: *  A real matrix is in real Schur form if it is upper quasi-triangular
   46: *  with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in
   47: *  the form
   48: *            [  a  b  ]
   49: *            [  c  a  ]
   50: *
   51: *  where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
   52: *
   53: *  Arguments
   54: *  =========
   55: *
   56: *  JOBVS   (input) CHARACTER*1
   57: *          = 'N': Schur vectors are not computed;
   58: *          = 'V': Schur vectors are computed.
   59: *
   60: *  SORT    (input) CHARACTER*1
   61: *          Specifies whether or not to order the eigenvalues on the
   62: *          diagonal of the Schur form.
   63: *          = 'N': Eigenvalues are not ordered;
   64: *          = 'S': Eigenvalues are ordered (see SELECT).
   65: *
   66: *  SELECT  (external procedure) LOGICAL FUNCTION of two DOUBLE PRECISION arguments
   67: *          SELECT must be declared EXTERNAL in the calling subroutine.
   68: *          If SORT = 'S', SELECT is used to select eigenvalues to sort
   69: *          to the top left of the Schur form.
   70: *          If SORT = 'N', SELECT is not referenced.
   71: *          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
   72: *          SELECT(WR(j),WI(j)) is true; i.e., if either one of a
   73: *          complex conjugate pair of eigenvalues is selected, then both
   74: *          are.  Note that a selected complex eigenvalue may no longer
   75: *          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
   76: *          ordering may change the value of complex eigenvalues
   77: *          (especially if the eigenvalue is ill-conditioned); in this
   78: *          case INFO may be set to N+3 (see INFO below).
   79: *
   80: *  SENSE   (input) CHARACTER*1
   81: *          Determines which reciprocal condition numbers are computed.
   82: *          = 'N': None are computed;
   83: *          = 'E': Computed for average of selected eigenvalues only;
   84: *          = 'V': Computed for selected right invariant subspace only;
   85: *          = 'B': Computed for both.
   86: *          If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
   87: *
   88: *  N       (input) INTEGER
   89: *          The order of the matrix A. N >= 0.
   90: *
   91: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
   92: *          On entry, the N-by-N matrix A.
   93: *          On exit, A is overwritten by its real Schur form T.
   94: *
   95: *  LDA     (input) INTEGER
   96: *          The leading dimension of the array A.  LDA >= max(1,N).
   97: *
   98: *  SDIM    (output) INTEGER
   99: *          If SORT = 'N', SDIM = 0.
  100: *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
  101: *                         for which SELECT is true. (Complex conjugate
  102: *                         pairs for which SELECT is true for either
  103: *                         eigenvalue count as 2.)
  104: *
  105: *  WR      (output) DOUBLE PRECISION array, dimension (N)
  106: *  WI      (output) DOUBLE PRECISION array, dimension (N)
  107: *          WR and WI contain the real and imaginary parts, respectively,
  108: *          of the computed eigenvalues, in the same order that they
  109: *          appear on the diagonal of the output Schur form T.  Complex
  110: *          conjugate pairs of eigenvalues appear consecutively with the
  111: *          eigenvalue having the positive imaginary part first.
  112: *
  113: *  VS      (output) DOUBLE PRECISION array, dimension (LDVS,N)
  114: *          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
  115: *          vectors.
  116: *          If JOBVS = 'N', VS is not referenced.
  117: *
  118: *  LDVS    (input) INTEGER
  119: *          The leading dimension of the array VS.  LDVS >= 1, and if
  120: *          JOBVS = 'V', LDVS >= N.
  121: *
  122: *  RCONDE  (output) DOUBLE PRECISION
  123: *          If SENSE = 'E' or 'B', RCONDE contains the reciprocal
  124: *          condition number for the average of the selected eigenvalues.
  125: *          Not referenced if SENSE = 'N' or 'V'.
  126: *
  127: *  RCONDV  (output) DOUBLE PRECISION
  128: *          If SENSE = 'V' or 'B', RCONDV contains the reciprocal
  129: *          condition number for the selected right invariant subspace.
  130: *          Not referenced if SENSE = 'N' or 'E'.
  131: *
  132: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  133: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  134: *
  135: *  LWORK   (input) INTEGER
  136: *          The dimension of the array WORK.  LWORK >= max(1,3*N).
  137: *          Also, if SENSE = 'E' or 'V' or 'B',
  138: *          LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of
  139: *          selected eigenvalues computed by this routine.  Note that
  140: *          N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only
  141: *          returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or
  142: *          'B' this may not be large enough.
  143: *          For good performance, LWORK must generally be larger.
  144: *
  145: *          If LWORK = -1, then a workspace query is assumed; the routine
  146: *          only calculates upper bounds on the optimal sizes of the
  147: *          arrays WORK and IWORK, returns these values as the first
  148: *          entries of the WORK and IWORK arrays, and no error messages
  149: *          related to LWORK or LIWORK are issued by XERBLA.
  150: *
  151: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
  152: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
  153: *
  154: *  LIWORK  (input) INTEGER
  155: *          The dimension of the array IWORK.
  156: *          LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM).
  157: *          Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is
  158: *          only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this
  159: *          may not be large enough.
  160: *
  161: *          If LIWORK = -1, then a workspace query is assumed; the
  162: *          routine only calculates upper bounds on the optimal sizes of
  163: *          the arrays WORK and IWORK, returns these values as the first
  164: *          entries of the WORK and IWORK arrays, and no error messages
  165: *          related to LWORK or LIWORK are issued by XERBLA.
  166: *
  167: *  BWORK   (workspace) LOGICAL array, dimension (N)
  168: *          Not referenced if SORT = 'N'.
  169: *
  170: *  INFO    (output) INTEGER
  171: *          = 0: successful exit
  172: *          < 0: if INFO = -i, the i-th argument had an illegal value.
  173: *          > 0: if INFO = i, and i is
  174: *             <= N: the QR algorithm failed to compute all the
  175: *                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
  176: *                   contain those eigenvalues which have converged; if
  177: *                   JOBVS = 'V', VS contains the transformation which
  178: *                   reduces A to its partially converged Schur form.
  179: *             = N+1: the eigenvalues could not be reordered because some
  180: *                   eigenvalues were too close to separate (the problem
  181: *                   is very ill-conditioned);
  182: *             = N+2: after reordering, roundoff changed values of some
  183: *                   complex eigenvalues so that leading eigenvalues in
  184: *                   the Schur form no longer satisfy SELECT=.TRUE.  This
  185: *                   could also be caused by underflow due to scaling.
  186: *
  187: *  =====================================================================
  188: *
  189: *     .. Parameters ..
  190:       DOUBLE PRECISION   ZERO, ONE
  191:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  192: *     ..
  193: *     .. Local Scalars ..
  194:       LOGICAL            CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTSB,
  195:      $                   WANTSE, WANTSN, WANTST, WANTSV, WANTVS
  196:       INTEGER            HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
  197:      $                   IHI, ILO, INXT, IP, ITAU, IWRK, LIWRK, LWRK,
  198:      $                   MAXWRK, MINWRK
  199:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SMLNUM
  200: *     ..
  201: *     .. Local Arrays ..
  202:       DOUBLE PRECISION   DUM( 1 )
  203: *     ..
  204: *     .. External Subroutines ..
  205:       EXTERNAL           DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
  206:      $                   DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
  207: *     ..
  208: *     .. External Functions ..
  209:       LOGICAL            LSAME
  210:       INTEGER            ILAENV
  211:       DOUBLE PRECISION   DLAMCH, DLANGE
  212:       EXTERNAL           LSAME, ILAENV, DLABAD, DLAMCH, DLANGE
  213: *     ..
  214: *     .. Intrinsic Functions ..
  215:       INTRINSIC          MAX, SQRT
  216: *     ..
  217: *     .. Executable Statements ..
  218: *
  219: *     Test the input arguments
  220: *
  221:       INFO = 0
  222:       WANTVS = LSAME( JOBVS, 'V' )
  223:       WANTST = LSAME( SORT, 'S' )
  224:       WANTSN = LSAME( SENSE, 'N' )
  225:       WANTSE = LSAME( SENSE, 'E' )
  226:       WANTSV = LSAME( SENSE, 'V' )
  227:       WANTSB = LSAME( SENSE, 'B' )
  228:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
  229: *
  230:       IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
  231:          INFO = -1
  232:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
  233:          INFO = -2
  234:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
  235:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
  236:          INFO = -4
  237:       ELSE IF( N.LT.0 ) THEN
  238:          INFO = -5
  239:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  240:          INFO = -7
  241:       ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
  242:          INFO = -12
  243:       END IF
  244: *
  245: *     Compute workspace
  246: *      (Note: Comments in the code beginning "RWorkspace:" describe the
  247: *       minimal amount of real workspace needed at that point in the
  248: *       code, as well as the preferred amount for good performance.
  249: *       IWorkspace refers to integer workspace.
  250: *       NB refers to the optimal block size for the immediately
  251: *       following subroutine, as returned by ILAENV.
  252: *       HSWORK refers to the workspace preferred by DHSEQR, as
  253: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  254: *       the worst case.
  255: *       If SENSE = 'E', 'V' or 'B', then the amount of workspace needed
  256: *       depends on SDIM, which is computed by the routine DTRSEN later
  257: *       in the code.)
  258: *
  259:       IF( INFO.EQ.0 ) THEN
  260:          LIWRK = 1
  261:          IF( N.EQ.0 ) THEN
  262:             MINWRK = 1
  263:             LWRK = 1
  264:          ELSE
  265:             MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
  266:             MINWRK = 3*N
  267: *
  268:             CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
  269:      $             WORK, -1, IEVAL )
  270:             HSWORK = WORK( 1 )
  271: *
  272:             IF( .NOT.WANTVS ) THEN
  273:                MAXWRK = MAX( MAXWRK, N + HSWORK )
  274:             ELSE
  275:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  276:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
  277:                MAXWRK = MAX( MAXWRK, N + HSWORK )
  278:             END IF
  279:             LWRK = MAXWRK
  280:             IF( .NOT.WANTSN )
  281:      $         LWRK = MAX( LWRK, N + ( N*N )/2 )
  282:             IF( WANTSV .OR. WANTSB )
  283:      $         LIWRK = ( N*N )/4
  284:          END IF
  285:          IWORK( 1 ) = LIWRK
  286:          WORK( 1 ) = LWRK
  287: *
  288:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  289:             INFO = -16
  290:          ELSE IF( LIWORK.LT.1 .AND. .NOT.LQUERY ) THEN
  291:             INFO = -18
  292:          END IF
  293:       END IF
  294: *
  295:       IF( INFO.NE.0 ) THEN
  296:          CALL XERBLA( 'DGEESX', -INFO )
  297:          RETURN
  298:       ELSE IF( LQUERY ) THEN
  299:          RETURN
  300:       END IF
  301: *
  302: *     Quick return if possible
  303: *
  304:       IF( N.EQ.0 ) THEN
  305:          SDIM = 0
  306:          RETURN
  307:       END IF
  308: *
  309: *     Get machine constants
  310: *
  311:       EPS = DLAMCH( 'P' )
  312:       SMLNUM = DLAMCH( 'S' )
  313:       BIGNUM = ONE / SMLNUM
  314:       CALL DLABAD( SMLNUM, BIGNUM )
  315:       SMLNUM = SQRT( SMLNUM ) / EPS
  316:       BIGNUM = ONE / SMLNUM
  317: *
  318: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  319: *
  320:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
  321:       SCALEA = .FALSE.
  322:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  323:          SCALEA = .TRUE.
  324:          CSCALE = SMLNUM
  325:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  326:          SCALEA = .TRUE.
  327:          CSCALE = BIGNUM
  328:       END IF
  329:       IF( SCALEA )
  330:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  331: *
  332: *     Permute the matrix to make it more nearly triangular
  333: *     (RWorkspace: need N)
  334: *
  335:       IBAL = 1
  336:       CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
  337: *
  338: *     Reduce to upper Hessenberg form
  339: *     (RWorkspace: need 3*N, prefer 2*N+N*NB)
  340: *
  341:       ITAU = N + IBAL
  342:       IWRK = N + ITAU
  343:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  344:      $             LWORK-IWRK+1, IERR )
  345: *
  346:       IF( WANTVS ) THEN
  347: *
  348: *        Copy Householder vectors to VS
  349: *
  350:          CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
  351: *
  352: *        Generate orthogonal matrix in VS
  353: *        (RWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  354: *
  355:          CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
  356:      $                LWORK-IWRK+1, IERR )
  357:       END IF
  358: *
  359:       SDIM = 0
  360: *
  361: *     Perform QR iteration, accumulating Schur vectors in VS if desired
  362: *     (RWorkspace: need N+1, prefer N+HSWORK (see comments) )
  363: *
  364:       IWRK = ITAU
  365:       CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
  366:      $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
  367:       IF( IEVAL.GT.0 )
  368:      $   INFO = IEVAL
  369: *
  370: *     Sort eigenvalues if desired
  371: *
  372:       IF( WANTST .AND. INFO.EQ.0 ) THEN
  373:          IF( SCALEA ) THEN
  374:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
  375:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
  376:          END IF
  377:          DO 10 I = 1, N
  378:             BWORK( I ) = SELECT( WR( I ), WI( I ) )
  379:    10    CONTINUE
  380: *
  381: *        Reorder eigenvalues, transform Schur vectors, and compute
  382: *        reciprocal condition numbers
  383: *        (RWorkspace: if SENSE is not 'N', need N+2*SDIM*(N-SDIM)
  384: *                     otherwise, need N )
  385: *        (IWorkspace: if SENSE is 'V' or 'B', need SDIM*(N-SDIM)
  386: *                     otherwise, need 0 )
  387: *
  388:          CALL DTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
  389:      $                SDIM, RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1,
  390:      $                IWORK, LIWORK, ICOND )
  391:          IF( .NOT.WANTSN )
  392:      $      MAXWRK = MAX( MAXWRK, N+2*SDIM*( N-SDIM ) )
  393:          IF( ICOND.EQ.-15 ) THEN
  394: *
  395: *           Not enough real workspace
  396: *
  397:             INFO = -16
  398:          ELSE IF( ICOND.EQ.-17 ) THEN
  399: *
  400: *           Not enough integer workspace
  401: *
  402:             INFO = -18
  403:          ELSE IF( ICOND.GT.0 ) THEN
  404: *
  405: *           DTRSEN failed to reorder or to restore standard Schur form
  406: *
  407:             INFO = ICOND + N
  408:          END IF
  409:       END IF
  410: *
  411:       IF( WANTVS ) THEN
  412: *
  413: *        Undo balancing
  414: *        (RWorkspace: need N)
  415: *
  416:          CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
  417:      $                IERR )
  418:       END IF
  419: *
  420:       IF( SCALEA ) THEN
  421: *
  422: *        Undo scaling for the Schur form of A
  423: *
  424:          CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
  425:          CALL DCOPY( N, A, LDA+1, WR, 1 )
  426:          IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN
  427:             DUM( 1 ) = RCONDV
  428:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
  429:             RCONDV = DUM( 1 )
  430:          END IF
  431:          IF( CSCALE.EQ.SMLNUM ) THEN
  432: *
  433: *           If scaling back towards underflow, adjust WI if an
  434: *           offdiagonal element of a 2-by-2 block in the Schur form
  435: *           underflows.
  436: *
  437:             IF( IEVAL.GT.0 ) THEN
  438:                I1 = IEVAL + 1
  439:                I2 = IHI - 1
  440:                CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
  441:      $                      IERR )
  442:             ELSE IF( WANTST ) THEN
  443:                I1 = 1
  444:                I2 = N - 1
  445:             ELSE
  446:                I1 = ILO
  447:                I2 = IHI - 1
  448:             END IF
  449:             INXT = I1 - 1
  450:             DO 20 I = I1, I2
  451:                IF( I.LT.INXT )
  452:      $            GO TO 20
  453:                IF( WI( I ).EQ.ZERO ) THEN
  454:                   INXT = I + 1
  455:                ELSE
  456:                   IF( A( I+1, I ).EQ.ZERO ) THEN
  457:                      WI( I ) = ZERO
  458:                      WI( I+1 ) = ZERO
  459:                   ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
  460:      $                     ZERO ) THEN
  461:                      WI( I ) = ZERO
  462:                      WI( I+1 ) = ZERO
  463:                      IF( I.GT.1 )
  464:      $                  CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
  465:                      IF( N.GT.I+1 )
  466:      $                  CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
  467:      $                              A( I+1, I+2 ), LDA )
  468:                      CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
  469:                      A( I, I+1 ) = A( I+1, I )
  470:                      A( I+1, I ) = ZERO
  471:                   END IF
  472:                   INXT = I + 2
  473:                END IF
  474:    20       CONTINUE
  475:          END IF
  476:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
  477:      $                WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
  478:       END IF
  479: *
  480:       IF( WANTST .AND. INFO.EQ.0 ) THEN
  481: *
  482: *        Check if reordering successful
  483: *
  484:          LASTSL = .TRUE.
  485:          LST2SL = .TRUE.
  486:          SDIM = 0
  487:          IP = 0
  488:          DO 30 I = 1, N
  489:             CURSL = SELECT( WR( I ), WI( I ) )
  490:             IF( WI( I ).EQ.ZERO ) THEN
  491:                IF( CURSL )
  492:      $            SDIM = SDIM + 1
  493:                IP = 0
  494:                IF( CURSL .AND. .NOT.LASTSL )
  495:      $            INFO = N + 2
  496:             ELSE
  497:                IF( IP.EQ.1 ) THEN
  498: *
  499: *                 Last eigenvalue of conjugate pair
  500: *
  501:                   CURSL = CURSL .OR. LASTSL
  502:                   LASTSL = CURSL
  503:                   IF( CURSL )
  504:      $               SDIM = SDIM + 2
  505:                   IP = -1
  506:                   IF( CURSL .AND. .NOT.LST2SL )
  507:      $               INFO = N + 2
  508:                ELSE
  509: *
  510: *                 First eigenvalue of conjugate pair
  511: *
  512:                   IP = 1
  513:                END IF
  514:             END IF
  515:             LST2SL = LASTSL
  516:             LASTSL = CURSL
  517:    30    CONTINUE
  518:       END IF
  519: *
  520:       WORK( 1 ) = MAXWRK
  521:       IF( WANTSV .OR. WANTSB ) THEN
  522:          IWORK( 1 ) = MAX( 1, SDIM*( N-SDIM ) )
  523:       ELSE
  524:          IWORK( 1 ) = 1
  525:       END IF
  526: *
  527:       RETURN
  528: *
  529: *     End of DGEESX
  530: *
  531:       END

CVSweb interface <joel.bertrand@systella.fr>