Annotation of rpl/lapack/lapack/dgeesx.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
                      2:      $                   WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
                      3:      $                   IWORK, LIWORK, BWORK, INFO )
                      4: *
1.5       bertrand    5: *  -- LAPACK driver routine (version 3.2.2) --
1.1       bertrand    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.5       bertrand    8: *     June 2010
1.1       bertrand    9: *
                     10: *     .. Scalar Arguments ..
                     11:       CHARACTER          JOBVS, SENSE, SORT
                     12:       INTEGER            INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
                     13:       DOUBLE PRECISION   RCONDE, RCONDV
                     14: *     ..
                     15: *     .. Array Arguments ..
                     16:       LOGICAL            BWORK( * )
                     17:       INTEGER            IWORK( * )
                     18:       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
                     19:      $                   WR( * )
                     20: *     ..
                     21: *     .. Function Arguments ..
                     22:       LOGICAL            SELECT
                     23:       EXTERNAL           SELECT
                     24: *     ..
                     25: *
                     26: *  Purpose
                     27: *  =======
                     28: *
                     29: *  DGEESX computes for an N-by-N real nonsymmetric matrix A, the
                     30: *  eigenvalues, the real Schur form T, and, optionally, the matrix of
                     31: *  Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T).
                     32: *
                     33: *  Optionally, it also orders the eigenvalues on the diagonal of the
                     34: *  real Schur form so that selected eigenvalues are at the top left;
                     35: *  computes a reciprocal condition number for the average of the
                     36: *  selected eigenvalues (RCONDE); and computes a reciprocal condition
                     37: *  number for the right invariant subspace corresponding to the
                     38: *  selected eigenvalues (RCONDV).  The leading columns of Z form an
                     39: *  orthonormal basis for this invariant subspace.
                     40: *
                     41: *  For further explanation of the reciprocal condition numbers RCONDE
                     42: *  and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
                     43: *  these quantities are called s and sep respectively).
                     44: *
                     45: *  A real matrix is in real Schur form if it is upper quasi-triangular
                     46: *  with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in
                     47: *  the form
                     48: *            [  a  b  ]
                     49: *            [  c  a  ]
                     50: *
                     51: *  where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
                     52: *
                     53: *  Arguments
                     54: *  =========
                     55: *
                     56: *  JOBVS   (input) CHARACTER*1
                     57: *          = 'N': Schur vectors are not computed;
                     58: *          = 'V': Schur vectors are computed.
                     59: *
                     60: *  SORT    (input) CHARACTER*1
                     61: *          Specifies whether or not to order the eigenvalues on the
                     62: *          diagonal of the Schur form.
                     63: *          = 'N': Eigenvalues are not ordered;
                     64: *          = 'S': Eigenvalues are ordered (see SELECT).
                     65: *
                     66: *  SELECT  (external procedure) LOGICAL FUNCTION of two DOUBLE PRECISION arguments
                     67: *          SELECT must be declared EXTERNAL in the calling subroutine.
                     68: *          If SORT = 'S', SELECT is used to select eigenvalues to sort
                     69: *          to the top left of the Schur form.
                     70: *          If SORT = 'N', SELECT is not referenced.
                     71: *          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
                     72: *          SELECT(WR(j),WI(j)) is true; i.e., if either one of a
                     73: *          complex conjugate pair of eigenvalues is selected, then both
                     74: *          are.  Note that a selected complex eigenvalue may no longer
                     75: *          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
                     76: *          ordering may change the value of complex eigenvalues
                     77: *          (especially if the eigenvalue is ill-conditioned); in this
                     78: *          case INFO may be set to N+3 (see INFO below).
                     79: *
                     80: *  SENSE   (input) CHARACTER*1
                     81: *          Determines which reciprocal condition numbers are computed.
                     82: *          = 'N': None are computed;
                     83: *          = 'E': Computed for average of selected eigenvalues only;
                     84: *          = 'V': Computed for selected right invariant subspace only;
                     85: *          = 'B': Computed for both.
                     86: *          If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
                     87: *
                     88: *  N       (input) INTEGER
                     89: *          The order of the matrix A. N >= 0.
                     90: *
                     91: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
                     92: *          On entry, the N-by-N matrix A.
                     93: *          On exit, A is overwritten by its real Schur form T.
                     94: *
                     95: *  LDA     (input) INTEGER
                     96: *          The leading dimension of the array A.  LDA >= max(1,N).
                     97: *
                     98: *  SDIM    (output) INTEGER
                     99: *          If SORT = 'N', SDIM = 0.
                    100: *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                    101: *                         for which SELECT is true. (Complex conjugate
                    102: *                         pairs for which SELECT is true for either
                    103: *                         eigenvalue count as 2.)
                    104: *
                    105: *  WR      (output) DOUBLE PRECISION array, dimension (N)
                    106: *  WI      (output) DOUBLE PRECISION array, dimension (N)
                    107: *          WR and WI contain the real and imaginary parts, respectively,
                    108: *          of the computed eigenvalues, in the same order that they
                    109: *          appear on the diagonal of the output Schur form T.  Complex
                    110: *          conjugate pairs of eigenvalues appear consecutively with the
                    111: *          eigenvalue having the positive imaginary part first.
                    112: *
                    113: *  VS      (output) DOUBLE PRECISION array, dimension (LDVS,N)
                    114: *          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
                    115: *          vectors.
                    116: *          If JOBVS = 'N', VS is not referenced.
                    117: *
                    118: *  LDVS    (input) INTEGER
                    119: *          The leading dimension of the array VS.  LDVS >= 1, and if
                    120: *          JOBVS = 'V', LDVS >= N.
                    121: *
                    122: *  RCONDE  (output) DOUBLE PRECISION
                    123: *          If SENSE = 'E' or 'B', RCONDE contains the reciprocal
                    124: *          condition number for the average of the selected eigenvalues.
                    125: *          Not referenced if SENSE = 'N' or 'V'.
                    126: *
                    127: *  RCONDV  (output) DOUBLE PRECISION
                    128: *          If SENSE = 'V' or 'B', RCONDV contains the reciprocal
                    129: *          condition number for the selected right invariant subspace.
                    130: *          Not referenced if SENSE = 'N' or 'E'.
                    131: *
                    132: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    133: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    134: *
                    135: *  LWORK   (input) INTEGER
                    136: *          The dimension of the array WORK.  LWORK >= max(1,3*N).
                    137: *          Also, if SENSE = 'E' or 'V' or 'B',
                    138: *          LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of
                    139: *          selected eigenvalues computed by this routine.  Note that
                    140: *          N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only
                    141: *          returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or
                    142: *          'B' this may not be large enough.
                    143: *          For good performance, LWORK must generally be larger.
                    144: *
                    145: *          If LWORK = -1, then a workspace query is assumed; the routine
                    146: *          only calculates upper bounds on the optimal sizes of the
                    147: *          arrays WORK and IWORK, returns these values as the first
                    148: *          entries of the WORK and IWORK arrays, and no error messages
                    149: *          related to LWORK or LIWORK are issued by XERBLA.
                    150: *
                    151: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
                    152: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    153: *
                    154: *  LIWORK  (input) INTEGER
                    155: *          The dimension of the array IWORK.
                    156: *          LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM).
                    157: *          Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is
                    158: *          only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this
                    159: *          may not be large enough.
                    160: *
                    161: *          If LIWORK = -1, then a workspace query is assumed; the
                    162: *          routine only calculates upper bounds on the optimal sizes of
                    163: *          the arrays WORK and IWORK, returns these values as the first
                    164: *          entries of the WORK and IWORK arrays, and no error messages
                    165: *          related to LWORK or LIWORK are issued by XERBLA.
                    166: *
                    167: *  BWORK   (workspace) LOGICAL array, dimension (N)
                    168: *          Not referenced if SORT = 'N'.
                    169: *
                    170: *  INFO    (output) INTEGER
                    171: *          = 0: successful exit
                    172: *          < 0: if INFO = -i, the i-th argument had an illegal value.
                    173: *          > 0: if INFO = i, and i is
                    174: *             <= N: the QR algorithm failed to compute all the
                    175: *                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
                    176: *                   contain those eigenvalues which have converged; if
                    177: *                   JOBVS = 'V', VS contains the transformation which
                    178: *                   reduces A to its partially converged Schur form.
                    179: *             = N+1: the eigenvalues could not be reordered because some
                    180: *                   eigenvalues were too close to separate (the problem
                    181: *                   is very ill-conditioned);
                    182: *             = N+2: after reordering, roundoff changed values of some
                    183: *                   complex eigenvalues so that leading eigenvalues in
                    184: *                   the Schur form no longer satisfy SELECT=.TRUE.  This
                    185: *                   could also be caused by underflow due to scaling.
                    186: *
                    187: *  =====================================================================
                    188: *
                    189: *     .. Parameters ..
                    190:       DOUBLE PRECISION   ZERO, ONE
                    191:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    192: *     ..
                    193: *     .. Local Scalars ..
                    194:       LOGICAL            CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTSB,
                    195:      $                   WANTSE, WANTSN, WANTST, WANTSV, WANTVS
                    196:       INTEGER            HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
                    197:      $                   IHI, ILO, INXT, IP, ITAU, IWRK, LIWRK, LWRK,
                    198:      $                   MAXWRK, MINWRK
                    199:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SMLNUM
                    200: *     ..
                    201: *     .. Local Arrays ..
                    202:       DOUBLE PRECISION   DUM( 1 )
                    203: *     ..
                    204: *     .. External Subroutines ..
                    205:       EXTERNAL           DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
                    206:      $                   DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
                    207: *     ..
                    208: *     .. External Functions ..
                    209:       LOGICAL            LSAME
                    210:       INTEGER            ILAENV
                    211:       DOUBLE PRECISION   DLAMCH, DLANGE
                    212:       EXTERNAL           LSAME, ILAENV, DLABAD, DLAMCH, DLANGE
                    213: *     ..
                    214: *     .. Intrinsic Functions ..
                    215:       INTRINSIC          MAX, SQRT
                    216: *     ..
                    217: *     .. Executable Statements ..
                    218: *
                    219: *     Test the input arguments
                    220: *
                    221:       INFO = 0
                    222:       WANTVS = LSAME( JOBVS, 'V' )
                    223:       WANTST = LSAME( SORT, 'S' )
                    224:       WANTSN = LSAME( SENSE, 'N' )
                    225:       WANTSE = LSAME( SENSE, 'E' )
                    226:       WANTSV = LSAME( SENSE, 'V' )
                    227:       WANTSB = LSAME( SENSE, 'B' )
                    228:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
1.5       bertrand  229: *
1.1       bertrand  230:       IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
                    231:          INFO = -1
                    232:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    233:          INFO = -2
                    234:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
                    235:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
                    236:          INFO = -4
                    237:       ELSE IF( N.LT.0 ) THEN
                    238:          INFO = -5
                    239:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    240:          INFO = -7
                    241:       ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
                    242:          INFO = -12
                    243:       END IF
                    244: *
                    245: *     Compute workspace
                    246: *      (Note: Comments in the code beginning "RWorkspace:" describe the
                    247: *       minimal amount of real workspace needed at that point in the
                    248: *       code, as well as the preferred amount for good performance.
                    249: *       IWorkspace refers to integer workspace.
                    250: *       NB refers to the optimal block size for the immediately
                    251: *       following subroutine, as returned by ILAENV.
                    252: *       HSWORK refers to the workspace preferred by DHSEQR, as
                    253: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
                    254: *       the worst case.
                    255: *       If SENSE = 'E', 'V' or 'B', then the amount of workspace needed
                    256: *       depends on SDIM, which is computed by the routine DTRSEN later
                    257: *       in the code.)
                    258: *
                    259:       IF( INFO.EQ.0 ) THEN
                    260:          LIWRK = 1
                    261:          IF( N.EQ.0 ) THEN
                    262:             MINWRK = 1
                    263:             LWRK = 1
                    264:          ELSE
                    265:             MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
                    266:             MINWRK = 3*N
                    267: *
                    268:             CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
                    269:      $             WORK, -1, IEVAL )
                    270:             HSWORK = WORK( 1 )
                    271: *
                    272:             IF( .NOT.WANTVS ) THEN
                    273:                MAXWRK = MAX( MAXWRK, N + HSWORK )
                    274:             ELSE
                    275:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
                    276:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
                    277:                MAXWRK = MAX( MAXWRK, N + HSWORK )
                    278:             END IF
                    279:             LWRK = MAXWRK
                    280:             IF( .NOT.WANTSN )
                    281:      $         LWRK = MAX( LWRK, N + ( N*N )/2 )
                    282:             IF( WANTSV .OR. WANTSB )
                    283:      $         LIWRK = ( N*N )/4
                    284:          END IF
                    285:          IWORK( 1 ) = LIWRK
                    286:          WORK( 1 ) = LWRK
                    287: *
                    288:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    289:             INFO = -16
                    290:          ELSE IF( LIWORK.LT.1 .AND. .NOT.LQUERY ) THEN
                    291:             INFO = -18
                    292:          END IF
                    293:       END IF
                    294: *
                    295:       IF( INFO.NE.0 ) THEN
                    296:          CALL XERBLA( 'DGEESX', -INFO )
                    297:          RETURN
1.5       bertrand  298:       ELSE IF( LQUERY ) THEN
                    299:          RETURN
1.1       bertrand  300:       END IF
                    301: *
                    302: *     Quick return if possible
                    303: *
                    304:       IF( N.EQ.0 ) THEN
                    305:          SDIM = 0
                    306:          RETURN
                    307:       END IF
                    308: *
                    309: *     Get machine constants
                    310: *
                    311:       EPS = DLAMCH( 'P' )
                    312:       SMLNUM = DLAMCH( 'S' )
                    313:       BIGNUM = ONE / SMLNUM
                    314:       CALL DLABAD( SMLNUM, BIGNUM )
                    315:       SMLNUM = SQRT( SMLNUM ) / EPS
                    316:       BIGNUM = ONE / SMLNUM
                    317: *
                    318: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    319: *
                    320:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
                    321:       SCALEA = .FALSE.
                    322:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    323:          SCALEA = .TRUE.
                    324:          CSCALE = SMLNUM
                    325:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    326:          SCALEA = .TRUE.
                    327:          CSCALE = BIGNUM
                    328:       END IF
                    329:       IF( SCALEA )
                    330:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
                    331: *
                    332: *     Permute the matrix to make it more nearly triangular
                    333: *     (RWorkspace: need N)
                    334: *
                    335:       IBAL = 1
                    336:       CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
                    337: *
                    338: *     Reduce to upper Hessenberg form
                    339: *     (RWorkspace: need 3*N, prefer 2*N+N*NB)
                    340: *
                    341:       ITAU = N + IBAL
                    342:       IWRK = N + ITAU
                    343:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
                    344:      $             LWORK-IWRK+1, IERR )
                    345: *
                    346:       IF( WANTVS ) THEN
                    347: *
                    348: *        Copy Householder vectors to VS
                    349: *
                    350:          CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
                    351: *
                    352: *        Generate orthogonal matrix in VS
                    353: *        (RWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
                    354: *
                    355:          CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
                    356:      $                LWORK-IWRK+1, IERR )
                    357:       END IF
                    358: *
                    359:       SDIM = 0
                    360: *
                    361: *     Perform QR iteration, accumulating Schur vectors in VS if desired
                    362: *     (RWorkspace: need N+1, prefer N+HSWORK (see comments) )
                    363: *
                    364:       IWRK = ITAU
                    365:       CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
                    366:      $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
                    367:       IF( IEVAL.GT.0 )
                    368:      $   INFO = IEVAL
                    369: *
                    370: *     Sort eigenvalues if desired
                    371: *
                    372:       IF( WANTST .AND. INFO.EQ.0 ) THEN
                    373:          IF( SCALEA ) THEN
                    374:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
                    375:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
                    376:          END IF
                    377:          DO 10 I = 1, N
                    378:             BWORK( I ) = SELECT( WR( I ), WI( I ) )
                    379:    10    CONTINUE
                    380: *
                    381: *        Reorder eigenvalues, transform Schur vectors, and compute
                    382: *        reciprocal condition numbers
                    383: *        (RWorkspace: if SENSE is not 'N', need N+2*SDIM*(N-SDIM)
                    384: *                     otherwise, need N )
                    385: *        (IWorkspace: if SENSE is 'V' or 'B', need SDIM*(N-SDIM)
                    386: *                     otherwise, need 0 )
                    387: *
                    388:          CALL DTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
                    389:      $                SDIM, RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1,
                    390:      $                IWORK, LIWORK, ICOND )
                    391:          IF( .NOT.WANTSN )
                    392:      $      MAXWRK = MAX( MAXWRK, N+2*SDIM*( N-SDIM ) )
                    393:          IF( ICOND.EQ.-15 ) THEN
                    394: *
                    395: *           Not enough real workspace
                    396: *
                    397:             INFO = -16
                    398:          ELSE IF( ICOND.EQ.-17 ) THEN
                    399: *
                    400: *           Not enough integer workspace
                    401: *
                    402:             INFO = -18
                    403:          ELSE IF( ICOND.GT.0 ) THEN
                    404: *
                    405: *           DTRSEN failed to reorder or to restore standard Schur form
                    406: *
                    407:             INFO = ICOND + N
                    408:          END IF
                    409:       END IF
                    410: *
                    411:       IF( WANTVS ) THEN
                    412: *
                    413: *        Undo balancing
                    414: *        (RWorkspace: need N)
                    415: *
                    416:          CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
                    417:      $                IERR )
                    418:       END IF
                    419: *
                    420:       IF( SCALEA ) THEN
                    421: *
                    422: *        Undo scaling for the Schur form of A
                    423: *
                    424:          CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
                    425:          CALL DCOPY( N, A, LDA+1, WR, 1 )
                    426:          IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN
                    427:             DUM( 1 ) = RCONDV
                    428:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
                    429:             RCONDV = DUM( 1 )
                    430:          END IF
                    431:          IF( CSCALE.EQ.SMLNUM ) THEN
                    432: *
                    433: *           If scaling back towards underflow, adjust WI if an
                    434: *           offdiagonal element of a 2-by-2 block in the Schur form
                    435: *           underflows.
                    436: *
                    437:             IF( IEVAL.GT.0 ) THEN
                    438:                I1 = IEVAL + 1
                    439:                I2 = IHI - 1
                    440:                CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
                    441:      $                      IERR )
                    442:             ELSE IF( WANTST ) THEN
                    443:                I1 = 1
                    444:                I2 = N - 1
                    445:             ELSE
                    446:                I1 = ILO
                    447:                I2 = IHI - 1
                    448:             END IF
                    449:             INXT = I1 - 1
                    450:             DO 20 I = I1, I2
                    451:                IF( I.LT.INXT )
                    452:      $            GO TO 20
                    453:                IF( WI( I ).EQ.ZERO ) THEN
                    454:                   INXT = I + 1
                    455:                ELSE
                    456:                   IF( A( I+1, I ).EQ.ZERO ) THEN
                    457:                      WI( I ) = ZERO
                    458:                      WI( I+1 ) = ZERO
                    459:                   ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
                    460:      $                     ZERO ) THEN
                    461:                      WI( I ) = ZERO
                    462:                      WI( I+1 ) = ZERO
                    463:                      IF( I.GT.1 )
                    464:      $                  CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
                    465:                      IF( N.GT.I+1 )
                    466:      $                  CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
                    467:      $                              A( I+1, I+2 ), LDA )
                    468:                      CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
                    469:                      A( I, I+1 ) = A( I+1, I )
                    470:                      A( I+1, I ) = ZERO
                    471:                   END IF
                    472:                   INXT = I + 2
                    473:                END IF
                    474:    20       CONTINUE
                    475:          END IF
                    476:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
                    477:      $                WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
                    478:       END IF
                    479: *
                    480:       IF( WANTST .AND. INFO.EQ.0 ) THEN
                    481: *
                    482: *        Check if reordering successful
                    483: *
                    484:          LASTSL = .TRUE.
                    485:          LST2SL = .TRUE.
                    486:          SDIM = 0
                    487:          IP = 0
                    488:          DO 30 I = 1, N
                    489:             CURSL = SELECT( WR( I ), WI( I ) )
                    490:             IF( WI( I ).EQ.ZERO ) THEN
                    491:                IF( CURSL )
                    492:      $            SDIM = SDIM + 1
                    493:                IP = 0
                    494:                IF( CURSL .AND. .NOT.LASTSL )
                    495:      $            INFO = N + 2
                    496:             ELSE
                    497:                IF( IP.EQ.1 ) THEN
                    498: *
                    499: *                 Last eigenvalue of conjugate pair
                    500: *
                    501:                   CURSL = CURSL .OR. LASTSL
                    502:                   LASTSL = CURSL
                    503:                   IF( CURSL )
                    504:      $               SDIM = SDIM + 2
                    505:                   IP = -1
                    506:                   IF( CURSL .AND. .NOT.LST2SL )
                    507:      $               INFO = N + 2
                    508:                ELSE
                    509: *
                    510: *                 First eigenvalue of conjugate pair
                    511: *
                    512:                   IP = 1
                    513:                END IF
                    514:             END IF
                    515:             LST2SL = LASTSL
                    516:             LASTSL = CURSL
                    517:    30    CONTINUE
                    518:       END IF
                    519: *
                    520:       WORK( 1 ) = MAXWRK
                    521:       IF( WANTSV .OR. WANTSB ) THEN
                    522:          IWORK( 1 ) = MAX( 1, SDIM*( N-SDIM ) )
                    523:       ELSE
                    524:          IWORK( 1 ) = 1
                    525:       END IF
                    526: *
                    527:       RETURN
                    528: *
                    529: *     End of DGEESX
                    530: *
                    531:       END

CVSweb interface <joel.bertrand@systella.fr>