Annotation of rpl/lapack/lapack/dgeesx.f, revision 1.11

1.9       bertrand    1: *> \brief <b> DGEESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DGEESX + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeesx.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeesx.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeesx.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
                     22: *                          WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
                     23: *                          IWORK, LIWORK, BWORK, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          JOBVS, SENSE, SORT
                     27: *       INTEGER            INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
                     28: *       DOUBLE PRECISION   RCONDE, RCONDV
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       LOGICAL            BWORK( * )
                     32: *       INTEGER            IWORK( * )
                     33: *       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
                     34: *      $                   WR( * )
                     35: *       ..
                     36: *       .. Function Arguments ..
                     37: *       LOGICAL            SELECT
                     38: *       EXTERNAL           SELECT
                     39: *       ..
                     40: *  
                     41: *
                     42: *> \par Purpose:
                     43: *  =============
                     44: *>
                     45: *> \verbatim
                     46: *>
                     47: *> DGEESX computes for an N-by-N real nonsymmetric matrix A, the
                     48: *> eigenvalues, the real Schur form T, and, optionally, the matrix of
                     49: *> Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T).
                     50: *>
                     51: *> Optionally, it also orders the eigenvalues on the diagonal of the
                     52: *> real Schur form so that selected eigenvalues are at the top left;
                     53: *> computes a reciprocal condition number for the average of the
                     54: *> selected eigenvalues (RCONDE); and computes a reciprocal condition
                     55: *> number for the right invariant subspace corresponding to the
                     56: *> selected eigenvalues (RCONDV).  The leading columns of Z form an
                     57: *> orthonormal basis for this invariant subspace.
                     58: *>
                     59: *> For further explanation of the reciprocal condition numbers RCONDE
                     60: *> and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
                     61: *> these quantities are called s and sep respectively).
                     62: *>
                     63: *> A real matrix is in real Schur form if it is upper quasi-triangular
                     64: *> with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in
                     65: *> the form
                     66: *>           [  a  b  ]
                     67: *>           [  c  a  ]
                     68: *>
                     69: *> where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
                     70: *> \endverbatim
                     71: *
                     72: *  Arguments:
                     73: *  ==========
                     74: *
                     75: *> \param[in] JOBVS
                     76: *> \verbatim
                     77: *>          JOBVS is CHARACTER*1
                     78: *>          = 'N': Schur vectors are not computed;
                     79: *>          = 'V': Schur vectors are computed.
                     80: *> \endverbatim
                     81: *>
                     82: *> \param[in] SORT
                     83: *> \verbatim
                     84: *>          SORT is CHARACTER*1
                     85: *>          Specifies whether or not to order the eigenvalues on the
                     86: *>          diagonal of the Schur form.
                     87: *>          = 'N': Eigenvalues are not ordered;
                     88: *>          = 'S': Eigenvalues are ordered (see SELECT).
                     89: *> \endverbatim
                     90: *>
                     91: *> \param[in] SELECT
                     92: *> \verbatim
                     93: *>          SELECT is procedure) LOGICAL FUNCTION of two DOUBLE PRECISION arguments
                     94: *>          SELECT must be declared EXTERNAL in the calling subroutine.
                     95: *>          If SORT = 'S', SELECT is used to select eigenvalues to sort
                     96: *>          to the top left of the Schur form.
                     97: *>          If SORT = 'N', SELECT is not referenced.
                     98: *>          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
                     99: *>          SELECT(WR(j),WI(j)) is true; i.e., if either one of a
                    100: *>          complex conjugate pair of eigenvalues is selected, then both
                    101: *>          are.  Note that a selected complex eigenvalue may no longer
                    102: *>          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
                    103: *>          ordering may change the value of complex eigenvalues
                    104: *>          (especially if the eigenvalue is ill-conditioned); in this
                    105: *>          case INFO may be set to N+3 (see INFO below).
                    106: *> \endverbatim
                    107: *>
                    108: *> \param[in] SENSE
                    109: *> \verbatim
                    110: *>          SENSE is CHARACTER*1
                    111: *>          Determines which reciprocal condition numbers are computed.
                    112: *>          = 'N': None are computed;
                    113: *>          = 'E': Computed for average of selected eigenvalues only;
                    114: *>          = 'V': Computed for selected right invariant subspace only;
                    115: *>          = 'B': Computed for both.
                    116: *>          If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
                    117: *> \endverbatim
                    118: *>
                    119: *> \param[in] N
                    120: *> \verbatim
                    121: *>          N is INTEGER
                    122: *>          The order of the matrix A. N >= 0.
                    123: *> \endverbatim
                    124: *>
                    125: *> \param[in,out] A
                    126: *> \verbatim
                    127: *>          A is DOUBLE PRECISION array, dimension (LDA, N)
                    128: *>          On entry, the N-by-N matrix A.
                    129: *>          On exit, A is overwritten by its real Schur form T.
                    130: *> \endverbatim
                    131: *>
                    132: *> \param[in] LDA
                    133: *> \verbatim
                    134: *>          LDA is INTEGER
                    135: *>          The leading dimension of the array A.  LDA >= max(1,N).
                    136: *> \endverbatim
                    137: *>
                    138: *> \param[out] SDIM
                    139: *> \verbatim
                    140: *>          SDIM is INTEGER
                    141: *>          If SORT = 'N', SDIM = 0.
                    142: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
                    143: *>                         for which SELECT is true. (Complex conjugate
                    144: *>                         pairs for which SELECT is true for either
                    145: *>                         eigenvalue count as 2.)
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[out] WR
                    149: *> \verbatim
                    150: *>          WR is DOUBLE PRECISION array, dimension (N)
                    151: *> \endverbatim
                    152: *>
                    153: *> \param[out] WI
                    154: *> \verbatim
                    155: *>          WI is DOUBLE PRECISION array, dimension (N)
                    156: *>          WR and WI contain the real and imaginary parts, respectively,
                    157: *>          of the computed eigenvalues, in the same order that they
                    158: *>          appear on the diagonal of the output Schur form T.  Complex
                    159: *>          conjugate pairs of eigenvalues appear consecutively with the
                    160: *>          eigenvalue having the positive imaginary part first.
                    161: *> \endverbatim
                    162: *>
                    163: *> \param[out] VS
                    164: *> \verbatim
                    165: *>          VS is DOUBLE PRECISION array, dimension (LDVS,N)
                    166: *>          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
                    167: *>          vectors.
                    168: *>          If JOBVS = 'N', VS is not referenced.
                    169: *> \endverbatim
                    170: *>
                    171: *> \param[in] LDVS
                    172: *> \verbatim
                    173: *>          LDVS is INTEGER
                    174: *>          The leading dimension of the array VS.  LDVS >= 1, and if
                    175: *>          JOBVS = 'V', LDVS >= N.
                    176: *> \endverbatim
                    177: *>
                    178: *> \param[out] RCONDE
                    179: *> \verbatim
                    180: *>          RCONDE is DOUBLE PRECISION
                    181: *>          If SENSE = 'E' or 'B', RCONDE contains the reciprocal
                    182: *>          condition number for the average of the selected eigenvalues.
                    183: *>          Not referenced if SENSE = 'N' or 'V'.
                    184: *> \endverbatim
                    185: *>
                    186: *> \param[out] RCONDV
                    187: *> \verbatim
                    188: *>          RCONDV is DOUBLE PRECISION
                    189: *>          If SENSE = 'V' or 'B', RCONDV contains the reciprocal
                    190: *>          condition number for the selected right invariant subspace.
                    191: *>          Not referenced if SENSE = 'N' or 'E'.
                    192: *> \endverbatim
                    193: *>
                    194: *> \param[out] WORK
                    195: *> \verbatim
                    196: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    197: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    198: *> \endverbatim
                    199: *>
                    200: *> \param[in] LWORK
                    201: *> \verbatim
                    202: *>          LWORK is INTEGER
                    203: *>          The dimension of the array WORK.  LWORK >= max(1,3*N).
                    204: *>          Also, if SENSE = 'E' or 'V' or 'B',
                    205: *>          LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of
                    206: *>          selected eigenvalues computed by this routine.  Note that
                    207: *>          N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only
                    208: *>          returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or
                    209: *>          'B' this may not be large enough.
                    210: *>          For good performance, LWORK must generally be larger.
                    211: *>
                    212: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    213: *>          only calculates upper bounds on the optimal sizes of the
                    214: *>          arrays WORK and IWORK, returns these values as the first
                    215: *>          entries of the WORK and IWORK arrays, and no error messages
                    216: *>          related to LWORK or LIWORK are issued by XERBLA.
                    217: *> \endverbatim
                    218: *>
                    219: *> \param[out] IWORK
                    220: *> \verbatim
                    221: *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                    222: *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
                    223: *> \endverbatim
                    224: *>
                    225: *> \param[in] LIWORK
                    226: *> \verbatim
                    227: *>          LIWORK is INTEGER
                    228: *>          The dimension of the array IWORK.
                    229: *>          LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM).
                    230: *>          Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is
                    231: *>          only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this
                    232: *>          may not be large enough.
                    233: *>
                    234: *>          If LIWORK = -1, then a workspace query is assumed; the
                    235: *>          routine only calculates upper bounds on the optimal sizes of
                    236: *>          the arrays WORK and IWORK, returns these values as the first
                    237: *>          entries of the WORK and IWORK arrays, and no error messages
                    238: *>          related to LWORK or LIWORK are issued by XERBLA.
                    239: *> \endverbatim
                    240: *>
                    241: *> \param[out] BWORK
                    242: *> \verbatim
                    243: *>          BWORK is LOGICAL array, dimension (N)
                    244: *>          Not referenced if SORT = 'N'.
                    245: *> \endverbatim
                    246: *>
                    247: *> \param[out] INFO
                    248: *> \verbatim
                    249: *>          INFO is INTEGER
                    250: *>          = 0: successful exit
                    251: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
                    252: *>          > 0: if INFO = i, and i is
                    253: *>             <= N: the QR algorithm failed to compute all the
                    254: *>                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
                    255: *>                   contain those eigenvalues which have converged; if
                    256: *>                   JOBVS = 'V', VS contains the transformation which
                    257: *>                   reduces A to its partially converged Schur form.
                    258: *>             = N+1: the eigenvalues could not be reordered because some
                    259: *>                   eigenvalues were too close to separate (the problem
                    260: *>                   is very ill-conditioned);
                    261: *>             = N+2: after reordering, roundoff changed values of some
                    262: *>                   complex eigenvalues so that leading eigenvalues in
                    263: *>                   the Schur form no longer satisfy SELECT=.TRUE.  This
                    264: *>                   could also be caused by underflow due to scaling.
                    265: *> \endverbatim
                    266: *
                    267: *  Authors:
                    268: *  ========
                    269: *
                    270: *> \author Univ. of Tennessee 
                    271: *> \author Univ. of California Berkeley 
                    272: *> \author Univ. of Colorado Denver 
                    273: *> \author NAG Ltd. 
                    274: *
                    275: *> \date November 2011
                    276: *
                    277: *> \ingroup doubleGEeigen
                    278: *
                    279: *  =====================================================================
1.1       bertrand  280:       SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
                    281:      $                   WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
                    282:      $                   IWORK, LIWORK, BWORK, INFO )
                    283: *
1.9       bertrand  284: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  285: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    286: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9       bertrand  287: *     November 2011
1.1       bertrand  288: *
                    289: *     .. Scalar Arguments ..
                    290:       CHARACTER          JOBVS, SENSE, SORT
                    291:       INTEGER            INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
                    292:       DOUBLE PRECISION   RCONDE, RCONDV
                    293: *     ..
                    294: *     .. Array Arguments ..
                    295:       LOGICAL            BWORK( * )
                    296:       INTEGER            IWORK( * )
                    297:       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
                    298:      $                   WR( * )
                    299: *     ..
                    300: *     .. Function Arguments ..
                    301:       LOGICAL            SELECT
                    302:       EXTERNAL           SELECT
                    303: *     ..
                    304: *
                    305: *  =====================================================================
                    306: *
                    307: *     .. Parameters ..
                    308:       DOUBLE PRECISION   ZERO, ONE
                    309:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
                    310: *     ..
                    311: *     .. Local Scalars ..
                    312:       LOGICAL            CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTSB,
                    313:      $                   WANTSE, WANTSN, WANTST, WANTSV, WANTVS
                    314:       INTEGER            HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
                    315:      $                   IHI, ILO, INXT, IP, ITAU, IWRK, LIWRK, LWRK,
                    316:      $                   MAXWRK, MINWRK
                    317:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SMLNUM
                    318: *     ..
                    319: *     .. Local Arrays ..
                    320:       DOUBLE PRECISION   DUM( 1 )
                    321: *     ..
                    322: *     .. External Subroutines ..
                    323:       EXTERNAL           DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
                    324:      $                   DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
                    325: *     ..
                    326: *     .. External Functions ..
                    327:       LOGICAL            LSAME
                    328:       INTEGER            ILAENV
                    329:       DOUBLE PRECISION   DLAMCH, DLANGE
                    330:       EXTERNAL           LSAME, ILAENV, DLABAD, DLAMCH, DLANGE
                    331: *     ..
                    332: *     .. Intrinsic Functions ..
                    333:       INTRINSIC          MAX, SQRT
                    334: *     ..
                    335: *     .. Executable Statements ..
                    336: *
                    337: *     Test the input arguments
                    338: *
                    339:       INFO = 0
                    340:       WANTVS = LSAME( JOBVS, 'V' )
                    341:       WANTST = LSAME( SORT, 'S' )
                    342:       WANTSN = LSAME( SENSE, 'N' )
                    343:       WANTSE = LSAME( SENSE, 'E' )
                    344:       WANTSV = LSAME( SENSE, 'V' )
                    345:       WANTSB = LSAME( SENSE, 'B' )
                    346:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
1.5       bertrand  347: *
1.1       bertrand  348:       IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
                    349:          INFO = -1
                    350:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
                    351:          INFO = -2
                    352:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
                    353:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
                    354:          INFO = -4
                    355:       ELSE IF( N.LT.0 ) THEN
                    356:          INFO = -5
                    357:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
                    358:          INFO = -7
                    359:       ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
                    360:          INFO = -12
                    361:       END IF
                    362: *
                    363: *     Compute workspace
                    364: *      (Note: Comments in the code beginning "RWorkspace:" describe the
                    365: *       minimal amount of real workspace needed at that point in the
                    366: *       code, as well as the preferred amount for good performance.
                    367: *       IWorkspace refers to integer workspace.
                    368: *       NB refers to the optimal block size for the immediately
                    369: *       following subroutine, as returned by ILAENV.
                    370: *       HSWORK refers to the workspace preferred by DHSEQR, as
                    371: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
                    372: *       the worst case.
                    373: *       If SENSE = 'E', 'V' or 'B', then the amount of workspace needed
                    374: *       depends on SDIM, which is computed by the routine DTRSEN later
                    375: *       in the code.)
                    376: *
                    377:       IF( INFO.EQ.0 ) THEN
                    378:          LIWRK = 1
                    379:          IF( N.EQ.0 ) THEN
                    380:             MINWRK = 1
                    381:             LWRK = 1
                    382:          ELSE
                    383:             MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
                    384:             MINWRK = 3*N
                    385: *
                    386:             CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
                    387:      $             WORK, -1, IEVAL )
                    388:             HSWORK = WORK( 1 )
                    389: *
                    390:             IF( .NOT.WANTVS ) THEN
                    391:                MAXWRK = MAX( MAXWRK, N + HSWORK )
                    392:             ELSE
                    393:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
                    394:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
                    395:                MAXWRK = MAX( MAXWRK, N + HSWORK )
                    396:             END IF
                    397:             LWRK = MAXWRK
                    398:             IF( .NOT.WANTSN )
                    399:      $         LWRK = MAX( LWRK, N + ( N*N )/2 )
                    400:             IF( WANTSV .OR. WANTSB )
                    401:      $         LIWRK = ( N*N )/4
                    402:          END IF
                    403:          IWORK( 1 ) = LIWRK
                    404:          WORK( 1 ) = LWRK
                    405: *
                    406:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
                    407:             INFO = -16
                    408:          ELSE IF( LIWORK.LT.1 .AND. .NOT.LQUERY ) THEN
                    409:             INFO = -18
                    410:          END IF
                    411:       END IF
                    412: *
                    413:       IF( INFO.NE.0 ) THEN
                    414:          CALL XERBLA( 'DGEESX', -INFO )
                    415:          RETURN
1.5       bertrand  416:       ELSE IF( LQUERY ) THEN
                    417:          RETURN
1.1       bertrand  418:       END IF
                    419: *
                    420: *     Quick return if possible
                    421: *
                    422:       IF( N.EQ.0 ) THEN
                    423:          SDIM = 0
                    424:          RETURN
                    425:       END IF
                    426: *
                    427: *     Get machine constants
                    428: *
                    429:       EPS = DLAMCH( 'P' )
                    430:       SMLNUM = DLAMCH( 'S' )
                    431:       BIGNUM = ONE / SMLNUM
                    432:       CALL DLABAD( SMLNUM, BIGNUM )
                    433:       SMLNUM = SQRT( SMLNUM ) / EPS
                    434:       BIGNUM = ONE / SMLNUM
                    435: *
                    436: *     Scale A if max element outside range [SMLNUM,BIGNUM]
                    437: *
                    438:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
                    439:       SCALEA = .FALSE.
                    440:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
                    441:          SCALEA = .TRUE.
                    442:          CSCALE = SMLNUM
                    443:       ELSE IF( ANRM.GT.BIGNUM ) THEN
                    444:          SCALEA = .TRUE.
                    445:          CSCALE = BIGNUM
                    446:       END IF
                    447:       IF( SCALEA )
                    448:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
                    449: *
                    450: *     Permute the matrix to make it more nearly triangular
                    451: *     (RWorkspace: need N)
                    452: *
                    453:       IBAL = 1
                    454:       CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
                    455: *
                    456: *     Reduce to upper Hessenberg form
                    457: *     (RWorkspace: need 3*N, prefer 2*N+N*NB)
                    458: *
                    459:       ITAU = N + IBAL
                    460:       IWRK = N + ITAU
                    461:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
                    462:      $             LWORK-IWRK+1, IERR )
                    463: *
                    464:       IF( WANTVS ) THEN
                    465: *
                    466: *        Copy Householder vectors to VS
                    467: *
                    468:          CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
                    469: *
                    470: *        Generate orthogonal matrix in VS
                    471: *        (RWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
                    472: *
                    473:          CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
                    474:      $                LWORK-IWRK+1, IERR )
                    475:       END IF
                    476: *
                    477:       SDIM = 0
                    478: *
                    479: *     Perform QR iteration, accumulating Schur vectors in VS if desired
                    480: *     (RWorkspace: need N+1, prefer N+HSWORK (see comments) )
                    481: *
                    482:       IWRK = ITAU
                    483:       CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
                    484:      $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
                    485:       IF( IEVAL.GT.0 )
                    486:      $   INFO = IEVAL
                    487: *
                    488: *     Sort eigenvalues if desired
                    489: *
                    490:       IF( WANTST .AND. INFO.EQ.0 ) THEN
                    491:          IF( SCALEA ) THEN
                    492:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
                    493:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
                    494:          END IF
                    495:          DO 10 I = 1, N
                    496:             BWORK( I ) = SELECT( WR( I ), WI( I ) )
                    497:    10    CONTINUE
                    498: *
                    499: *        Reorder eigenvalues, transform Schur vectors, and compute
                    500: *        reciprocal condition numbers
                    501: *        (RWorkspace: if SENSE is not 'N', need N+2*SDIM*(N-SDIM)
                    502: *                     otherwise, need N )
                    503: *        (IWorkspace: if SENSE is 'V' or 'B', need SDIM*(N-SDIM)
                    504: *                     otherwise, need 0 )
                    505: *
                    506:          CALL DTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
                    507:      $                SDIM, RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1,
                    508:      $                IWORK, LIWORK, ICOND )
                    509:          IF( .NOT.WANTSN )
                    510:      $      MAXWRK = MAX( MAXWRK, N+2*SDIM*( N-SDIM ) )
                    511:          IF( ICOND.EQ.-15 ) THEN
                    512: *
                    513: *           Not enough real workspace
                    514: *
                    515:             INFO = -16
                    516:          ELSE IF( ICOND.EQ.-17 ) THEN
                    517: *
                    518: *           Not enough integer workspace
                    519: *
                    520:             INFO = -18
                    521:          ELSE IF( ICOND.GT.0 ) THEN
                    522: *
                    523: *           DTRSEN failed to reorder or to restore standard Schur form
                    524: *
                    525:             INFO = ICOND + N
                    526:          END IF
                    527:       END IF
                    528: *
                    529:       IF( WANTVS ) THEN
                    530: *
                    531: *        Undo balancing
                    532: *        (RWorkspace: need N)
                    533: *
                    534:          CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
                    535:      $                IERR )
                    536:       END IF
                    537: *
                    538:       IF( SCALEA ) THEN
                    539: *
                    540: *        Undo scaling for the Schur form of A
                    541: *
                    542:          CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
                    543:          CALL DCOPY( N, A, LDA+1, WR, 1 )
                    544:          IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN
                    545:             DUM( 1 ) = RCONDV
                    546:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
                    547:             RCONDV = DUM( 1 )
                    548:          END IF
                    549:          IF( CSCALE.EQ.SMLNUM ) THEN
                    550: *
                    551: *           If scaling back towards underflow, adjust WI if an
                    552: *           offdiagonal element of a 2-by-2 block in the Schur form
                    553: *           underflows.
                    554: *
                    555:             IF( IEVAL.GT.0 ) THEN
                    556:                I1 = IEVAL + 1
                    557:                I2 = IHI - 1
                    558:                CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
                    559:      $                      IERR )
                    560:             ELSE IF( WANTST ) THEN
                    561:                I1 = 1
                    562:                I2 = N - 1
                    563:             ELSE
                    564:                I1 = ILO
                    565:                I2 = IHI - 1
                    566:             END IF
                    567:             INXT = I1 - 1
                    568:             DO 20 I = I1, I2
                    569:                IF( I.LT.INXT )
                    570:      $            GO TO 20
                    571:                IF( WI( I ).EQ.ZERO ) THEN
                    572:                   INXT = I + 1
                    573:                ELSE
                    574:                   IF( A( I+1, I ).EQ.ZERO ) THEN
                    575:                      WI( I ) = ZERO
                    576:                      WI( I+1 ) = ZERO
                    577:                   ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
                    578:      $                     ZERO ) THEN
                    579:                      WI( I ) = ZERO
                    580:                      WI( I+1 ) = ZERO
                    581:                      IF( I.GT.1 )
                    582:      $                  CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
                    583:                      IF( N.GT.I+1 )
                    584:      $                  CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
                    585:      $                              A( I+1, I+2 ), LDA )
                    586:                      CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
                    587:                      A( I, I+1 ) = A( I+1, I )
                    588:                      A( I+1, I ) = ZERO
                    589:                   END IF
                    590:                   INXT = I + 2
                    591:                END IF
                    592:    20       CONTINUE
                    593:          END IF
                    594:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
                    595:      $                WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
                    596:       END IF
                    597: *
                    598:       IF( WANTST .AND. INFO.EQ.0 ) THEN
                    599: *
                    600: *        Check if reordering successful
                    601: *
                    602:          LASTSL = .TRUE.
                    603:          LST2SL = .TRUE.
                    604:          SDIM = 0
                    605:          IP = 0
                    606:          DO 30 I = 1, N
                    607:             CURSL = SELECT( WR( I ), WI( I ) )
                    608:             IF( WI( I ).EQ.ZERO ) THEN
                    609:                IF( CURSL )
                    610:      $            SDIM = SDIM + 1
                    611:                IP = 0
                    612:                IF( CURSL .AND. .NOT.LASTSL )
                    613:      $            INFO = N + 2
                    614:             ELSE
                    615:                IF( IP.EQ.1 ) THEN
                    616: *
                    617: *                 Last eigenvalue of conjugate pair
                    618: *
                    619:                   CURSL = CURSL .OR. LASTSL
                    620:                   LASTSL = CURSL
                    621:                   IF( CURSL )
                    622:      $               SDIM = SDIM + 2
                    623:                   IP = -1
                    624:                   IF( CURSL .AND. .NOT.LST2SL )
                    625:      $               INFO = N + 2
                    626:                ELSE
                    627: *
                    628: *                 First eigenvalue of conjugate pair
                    629: *
                    630:                   IP = 1
                    631:                END IF
                    632:             END IF
                    633:             LST2SL = LASTSL
                    634:             LASTSL = CURSL
                    635:    30    CONTINUE
                    636:       END IF
                    637: *
                    638:       WORK( 1 ) = MAXWRK
                    639:       IF( WANTSV .OR. WANTSB ) THEN
                    640:          IWORK( 1 ) = MAX( 1, SDIM*( N-SDIM ) )
                    641:       ELSE
                    642:          IWORK( 1 ) = 1
                    643:       END IF
                    644: *
                    645:       RETURN
                    646: *
                    647: *     End of DGEESX
                    648: *
                    649:       END

CVSweb interface <joel.bertrand@systella.fr>