Annotation of rpl/lapack/lapack/dgeesx.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM,
        !             2:      $                   WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK,
        !             3:      $                   IWORK, LIWORK, BWORK, INFO )
        !             4: *
        !             5: *  -- LAPACK driver routine (version 3.2) --
        !             6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             8: *     November 2006
        !             9: *
        !            10: *     .. Scalar Arguments ..
        !            11:       CHARACTER          JOBVS, SENSE, SORT
        !            12:       INTEGER            INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM
        !            13:       DOUBLE PRECISION   RCONDE, RCONDV
        !            14: *     ..
        !            15: *     .. Array Arguments ..
        !            16:       LOGICAL            BWORK( * )
        !            17:       INTEGER            IWORK( * )
        !            18:       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
        !            19:      $                   WR( * )
        !            20: *     ..
        !            21: *     .. Function Arguments ..
        !            22:       LOGICAL            SELECT
        !            23:       EXTERNAL           SELECT
        !            24: *     ..
        !            25: *
        !            26: *  Purpose
        !            27: *  =======
        !            28: *
        !            29: *  DGEESX computes for an N-by-N real nonsymmetric matrix A, the
        !            30: *  eigenvalues, the real Schur form T, and, optionally, the matrix of
        !            31: *  Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T).
        !            32: *
        !            33: *  Optionally, it also orders the eigenvalues on the diagonal of the
        !            34: *  real Schur form so that selected eigenvalues are at the top left;
        !            35: *  computes a reciprocal condition number for the average of the
        !            36: *  selected eigenvalues (RCONDE); and computes a reciprocal condition
        !            37: *  number for the right invariant subspace corresponding to the
        !            38: *  selected eigenvalues (RCONDV).  The leading columns of Z form an
        !            39: *  orthonormal basis for this invariant subspace.
        !            40: *
        !            41: *  For further explanation of the reciprocal condition numbers RCONDE
        !            42: *  and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
        !            43: *  these quantities are called s and sep respectively).
        !            44: *
        !            45: *  A real matrix is in real Schur form if it is upper quasi-triangular
        !            46: *  with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in
        !            47: *  the form
        !            48: *            [  a  b  ]
        !            49: *            [  c  a  ]
        !            50: *
        !            51: *  where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
        !            52: *
        !            53: *  Arguments
        !            54: *  =========
        !            55: *
        !            56: *  JOBVS   (input) CHARACTER*1
        !            57: *          = 'N': Schur vectors are not computed;
        !            58: *          = 'V': Schur vectors are computed.
        !            59: *
        !            60: *  SORT    (input) CHARACTER*1
        !            61: *          Specifies whether or not to order the eigenvalues on the
        !            62: *          diagonal of the Schur form.
        !            63: *          = 'N': Eigenvalues are not ordered;
        !            64: *          = 'S': Eigenvalues are ordered (see SELECT).
        !            65: *
        !            66: *  SELECT  (external procedure) LOGICAL FUNCTION of two DOUBLE PRECISION arguments
        !            67: *          SELECT must be declared EXTERNAL in the calling subroutine.
        !            68: *          If SORT = 'S', SELECT is used to select eigenvalues to sort
        !            69: *          to the top left of the Schur form.
        !            70: *          If SORT = 'N', SELECT is not referenced.
        !            71: *          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
        !            72: *          SELECT(WR(j),WI(j)) is true; i.e., if either one of a
        !            73: *          complex conjugate pair of eigenvalues is selected, then both
        !            74: *          are.  Note that a selected complex eigenvalue may no longer
        !            75: *          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
        !            76: *          ordering may change the value of complex eigenvalues
        !            77: *          (especially if the eigenvalue is ill-conditioned); in this
        !            78: *          case INFO may be set to N+3 (see INFO below).
        !            79: *
        !            80: *  SENSE   (input) CHARACTER*1
        !            81: *          Determines which reciprocal condition numbers are computed.
        !            82: *          = 'N': None are computed;
        !            83: *          = 'E': Computed for average of selected eigenvalues only;
        !            84: *          = 'V': Computed for selected right invariant subspace only;
        !            85: *          = 'B': Computed for both.
        !            86: *          If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
        !            87: *
        !            88: *  N       (input) INTEGER
        !            89: *          The order of the matrix A. N >= 0.
        !            90: *
        !            91: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
        !            92: *          On entry, the N-by-N matrix A.
        !            93: *          On exit, A is overwritten by its real Schur form T.
        !            94: *
        !            95: *  LDA     (input) INTEGER
        !            96: *          The leading dimension of the array A.  LDA >= max(1,N).
        !            97: *
        !            98: *  SDIM    (output) INTEGER
        !            99: *          If SORT = 'N', SDIM = 0.
        !           100: *          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
        !           101: *                         for which SELECT is true. (Complex conjugate
        !           102: *                         pairs for which SELECT is true for either
        !           103: *                         eigenvalue count as 2.)
        !           104: *
        !           105: *  WR      (output) DOUBLE PRECISION array, dimension (N)
        !           106: *  WI      (output) DOUBLE PRECISION array, dimension (N)
        !           107: *          WR and WI contain the real and imaginary parts, respectively,
        !           108: *          of the computed eigenvalues, in the same order that they
        !           109: *          appear on the diagonal of the output Schur form T.  Complex
        !           110: *          conjugate pairs of eigenvalues appear consecutively with the
        !           111: *          eigenvalue having the positive imaginary part first.
        !           112: *
        !           113: *  VS      (output) DOUBLE PRECISION array, dimension (LDVS,N)
        !           114: *          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
        !           115: *          vectors.
        !           116: *          If JOBVS = 'N', VS is not referenced.
        !           117: *
        !           118: *  LDVS    (input) INTEGER
        !           119: *          The leading dimension of the array VS.  LDVS >= 1, and if
        !           120: *          JOBVS = 'V', LDVS >= N.
        !           121: *
        !           122: *  RCONDE  (output) DOUBLE PRECISION
        !           123: *          If SENSE = 'E' or 'B', RCONDE contains the reciprocal
        !           124: *          condition number for the average of the selected eigenvalues.
        !           125: *          Not referenced if SENSE = 'N' or 'V'.
        !           126: *
        !           127: *  RCONDV  (output) DOUBLE PRECISION
        !           128: *          If SENSE = 'V' or 'B', RCONDV contains the reciprocal
        !           129: *          condition number for the selected right invariant subspace.
        !           130: *          Not referenced if SENSE = 'N' or 'E'.
        !           131: *
        !           132: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           133: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           134: *
        !           135: *  LWORK   (input) INTEGER
        !           136: *          The dimension of the array WORK.  LWORK >= max(1,3*N).
        !           137: *          Also, if SENSE = 'E' or 'V' or 'B',
        !           138: *          LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of
        !           139: *          selected eigenvalues computed by this routine.  Note that
        !           140: *          N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only
        !           141: *          returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or
        !           142: *          'B' this may not be large enough.
        !           143: *          For good performance, LWORK must generally be larger.
        !           144: *
        !           145: *          If LWORK = -1, then a workspace query is assumed; the routine
        !           146: *          only calculates upper bounds on the optimal sizes of the
        !           147: *          arrays WORK and IWORK, returns these values as the first
        !           148: *          entries of the WORK and IWORK arrays, and no error messages
        !           149: *          related to LWORK or LIWORK are issued by XERBLA.
        !           150: *
        !           151: *  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
        !           152: *          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
        !           153: *
        !           154: *  LIWORK  (input) INTEGER
        !           155: *          The dimension of the array IWORK.
        !           156: *          LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM).
        !           157: *          Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is
        !           158: *          only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this
        !           159: *          may not be large enough.
        !           160: *
        !           161: *          If LIWORK = -1, then a workspace query is assumed; the
        !           162: *          routine only calculates upper bounds on the optimal sizes of
        !           163: *          the arrays WORK and IWORK, returns these values as the first
        !           164: *          entries of the WORK and IWORK arrays, and no error messages
        !           165: *          related to LWORK or LIWORK are issued by XERBLA.
        !           166: *
        !           167: *  BWORK   (workspace) LOGICAL array, dimension (N)
        !           168: *          Not referenced if SORT = 'N'.
        !           169: *
        !           170: *  INFO    (output) INTEGER
        !           171: *          = 0: successful exit
        !           172: *          < 0: if INFO = -i, the i-th argument had an illegal value.
        !           173: *          > 0: if INFO = i, and i is
        !           174: *             <= N: the QR algorithm failed to compute all the
        !           175: *                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
        !           176: *                   contain those eigenvalues which have converged; if
        !           177: *                   JOBVS = 'V', VS contains the transformation which
        !           178: *                   reduces A to its partially converged Schur form.
        !           179: *             = N+1: the eigenvalues could not be reordered because some
        !           180: *                   eigenvalues were too close to separate (the problem
        !           181: *                   is very ill-conditioned);
        !           182: *             = N+2: after reordering, roundoff changed values of some
        !           183: *                   complex eigenvalues so that leading eigenvalues in
        !           184: *                   the Schur form no longer satisfy SELECT=.TRUE.  This
        !           185: *                   could also be caused by underflow due to scaling.
        !           186: *
        !           187: *  =====================================================================
        !           188: *
        !           189: *     .. Parameters ..
        !           190:       DOUBLE PRECISION   ZERO, ONE
        !           191:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
        !           192: *     ..
        !           193: *     .. Local Scalars ..
        !           194:       LOGICAL            CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTSB,
        !           195:      $                   WANTSE, WANTSN, WANTST, WANTSV, WANTVS
        !           196:       INTEGER            HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
        !           197:      $                   IHI, ILO, INXT, IP, ITAU, IWRK, LIWRK, LWRK,
        !           198:      $                   MAXWRK, MINWRK
        !           199:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SMLNUM
        !           200: *     ..
        !           201: *     .. Local Arrays ..
        !           202:       DOUBLE PRECISION   DUM( 1 )
        !           203: *     ..
        !           204: *     .. External Subroutines ..
        !           205:       EXTERNAL           DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
        !           206:      $                   DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
        !           207: *     ..
        !           208: *     .. External Functions ..
        !           209:       LOGICAL            LSAME
        !           210:       INTEGER            ILAENV
        !           211:       DOUBLE PRECISION   DLAMCH, DLANGE
        !           212:       EXTERNAL           LSAME, ILAENV, DLABAD, DLAMCH, DLANGE
        !           213: *     ..
        !           214: *     .. Intrinsic Functions ..
        !           215:       INTRINSIC          MAX, SQRT
        !           216: *     ..
        !           217: *     .. Executable Statements ..
        !           218: *
        !           219: *     Test the input arguments
        !           220: *
        !           221:       INFO = 0
        !           222:       WANTVS = LSAME( JOBVS, 'V' )
        !           223:       WANTST = LSAME( SORT, 'S' )
        !           224:       WANTSN = LSAME( SENSE, 'N' )
        !           225:       WANTSE = LSAME( SENSE, 'E' )
        !           226:       WANTSV = LSAME( SENSE, 'V' )
        !           227:       WANTSB = LSAME( SENSE, 'B' )
        !           228:       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
        !           229:       IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
        !           230:          INFO = -1
        !           231:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
        !           232:          INFO = -2
        !           233:       ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
        !           234:      $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
        !           235:          INFO = -4
        !           236:       ELSE IF( N.LT.0 ) THEN
        !           237:          INFO = -5
        !           238:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
        !           239:          INFO = -7
        !           240:       ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
        !           241:          INFO = -12
        !           242:       END IF
        !           243: *
        !           244: *     Compute workspace
        !           245: *      (Note: Comments in the code beginning "RWorkspace:" describe the
        !           246: *       minimal amount of real workspace needed at that point in the
        !           247: *       code, as well as the preferred amount for good performance.
        !           248: *       IWorkspace refers to integer workspace.
        !           249: *       NB refers to the optimal block size for the immediately
        !           250: *       following subroutine, as returned by ILAENV.
        !           251: *       HSWORK refers to the workspace preferred by DHSEQR, as
        !           252: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
        !           253: *       the worst case.
        !           254: *       If SENSE = 'E', 'V' or 'B', then the amount of workspace needed
        !           255: *       depends on SDIM, which is computed by the routine DTRSEN later
        !           256: *       in the code.)
        !           257: *
        !           258:       IF( INFO.EQ.0 ) THEN
        !           259:          LIWRK = 1
        !           260:          IF( N.EQ.0 ) THEN
        !           261:             MINWRK = 1
        !           262:             LWRK = 1
        !           263:          ELSE
        !           264:             MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
        !           265:             MINWRK = 3*N
        !           266: *
        !           267:             CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
        !           268:      $             WORK, -1, IEVAL )
        !           269:             HSWORK = WORK( 1 )
        !           270: *
        !           271:             IF( .NOT.WANTVS ) THEN
        !           272:                MAXWRK = MAX( MAXWRK, N + HSWORK )
        !           273:             ELSE
        !           274:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
        !           275:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
        !           276:                MAXWRK = MAX( MAXWRK, N + HSWORK )
        !           277:             END IF
        !           278:             LWRK = MAXWRK
        !           279:             IF( .NOT.WANTSN )
        !           280:      $         LWRK = MAX( LWRK, N + ( N*N )/2 )
        !           281:             IF( WANTSV .OR. WANTSB )
        !           282:      $         LIWRK = ( N*N )/4
        !           283:          END IF
        !           284:          IWORK( 1 ) = LIWRK
        !           285:          WORK( 1 ) = LWRK
        !           286: *
        !           287:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
        !           288:             INFO = -16
        !           289:          ELSE IF( LIWORK.LT.1 .AND. .NOT.LQUERY ) THEN
        !           290:             INFO = -18
        !           291:          END IF
        !           292:       END IF
        !           293: *
        !           294:       IF( INFO.NE.0 ) THEN
        !           295:          CALL XERBLA( 'DGEESX', -INFO )
        !           296:          RETURN
        !           297:       END IF
        !           298: *
        !           299: *     Quick return if possible
        !           300: *
        !           301:       IF( N.EQ.0 ) THEN
        !           302:          SDIM = 0
        !           303:          RETURN
        !           304:       END IF
        !           305: *
        !           306: *     Get machine constants
        !           307: *
        !           308:       EPS = DLAMCH( 'P' )
        !           309:       SMLNUM = DLAMCH( 'S' )
        !           310:       BIGNUM = ONE / SMLNUM
        !           311:       CALL DLABAD( SMLNUM, BIGNUM )
        !           312:       SMLNUM = SQRT( SMLNUM ) / EPS
        !           313:       BIGNUM = ONE / SMLNUM
        !           314: *
        !           315: *     Scale A if max element outside range [SMLNUM,BIGNUM]
        !           316: *
        !           317:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
        !           318:       SCALEA = .FALSE.
        !           319:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
        !           320:          SCALEA = .TRUE.
        !           321:          CSCALE = SMLNUM
        !           322:       ELSE IF( ANRM.GT.BIGNUM ) THEN
        !           323:          SCALEA = .TRUE.
        !           324:          CSCALE = BIGNUM
        !           325:       END IF
        !           326:       IF( SCALEA )
        !           327:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
        !           328: *
        !           329: *     Permute the matrix to make it more nearly triangular
        !           330: *     (RWorkspace: need N)
        !           331: *
        !           332:       IBAL = 1
        !           333:       CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
        !           334: *
        !           335: *     Reduce to upper Hessenberg form
        !           336: *     (RWorkspace: need 3*N, prefer 2*N+N*NB)
        !           337: *
        !           338:       ITAU = N + IBAL
        !           339:       IWRK = N + ITAU
        !           340:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
        !           341:      $             LWORK-IWRK+1, IERR )
        !           342: *
        !           343:       IF( WANTVS ) THEN
        !           344: *
        !           345: *        Copy Householder vectors to VS
        !           346: *
        !           347:          CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
        !           348: *
        !           349: *        Generate orthogonal matrix in VS
        !           350: *        (RWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB)
        !           351: *
        !           352:          CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
        !           353:      $                LWORK-IWRK+1, IERR )
        !           354:       END IF
        !           355: *
        !           356:       SDIM = 0
        !           357: *
        !           358: *     Perform QR iteration, accumulating Schur vectors in VS if desired
        !           359: *     (RWorkspace: need N+1, prefer N+HSWORK (see comments) )
        !           360: *
        !           361:       IWRK = ITAU
        !           362:       CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
        !           363:      $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
        !           364:       IF( IEVAL.GT.0 )
        !           365:      $   INFO = IEVAL
        !           366: *
        !           367: *     Sort eigenvalues if desired
        !           368: *
        !           369:       IF( WANTST .AND. INFO.EQ.0 ) THEN
        !           370:          IF( SCALEA ) THEN
        !           371:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
        !           372:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
        !           373:          END IF
        !           374:          DO 10 I = 1, N
        !           375:             BWORK( I ) = SELECT( WR( I ), WI( I ) )
        !           376:    10    CONTINUE
        !           377: *
        !           378: *        Reorder eigenvalues, transform Schur vectors, and compute
        !           379: *        reciprocal condition numbers
        !           380: *        (RWorkspace: if SENSE is not 'N', need N+2*SDIM*(N-SDIM)
        !           381: *                     otherwise, need N )
        !           382: *        (IWorkspace: if SENSE is 'V' or 'B', need SDIM*(N-SDIM)
        !           383: *                     otherwise, need 0 )
        !           384: *
        !           385:          CALL DTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
        !           386:      $                SDIM, RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1,
        !           387:      $                IWORK, LIWORK, ICOND )
        !           388:          IF( .NOT.WANTSN )
        !           389:      $      MAXWRK = MAX( MAXWRK, N+2*SDIM*( N-SDIM ) )
        !           390:          IF( ICOND.EQ.-15 ) THEN
        !           391: *
        !           392: *           Not enough real workspace
        !           393: *
        !           394:             INFO = -16
        !           395:          ELSE IF( ICOND.EQ.-17 ) THEN
        !           396: *
        !           397: *           Not enough integer workspace
        !           398: *
        !           399:             INFO = -18
        !           400:          ELSE IF( ICOND.GT.0 ) THEN
        !           401: *
        !           402: *           DTRSEN failed to reorder or to restore standard Schur form
        !           403: *
        !           404:             INFO = ICOND + N
        !           405:          END IF
        !           406:       END IF
        !           407: *
        !           408:       IF( WANTVS ) THEN
        !           409: *
        !           410: *        Undo balancing
        !           411: *        (RWorkspace: need N)
        !           412: *
        !           413:          CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
        !           414:      $                IERR )
        !           415:       END IF
        !           416: *
        !           417:       IF( SCALEA ) THEN
        !           418: *
        !           419: *        Undo scaling for the Schur form of A
        !           420: *
        !           421:          CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
        !           422:          CALL DCOPY( N, A, LDA+1, WR, 1 )
        !           423:          IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN
        !           424:             DUM( 1 ) = RCONDV
        !           425:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR )
        !           426:             RCONDV = DUM( 1 )
        !           427:          END IF
        !           428:          IF( CSCALE.EQ.SMLNUM ) THEN
        !           429: *
        !           430: *           If scaling back towards underflow, adjust WI if an
        !           431: *           offdiagonal element of a 2-by-2 block in the Schur form
        !           432: *           underflows.
        !           433: *
        !           434:             IF( IEVAL.GT.0 ) THEN
        !           435:                I1 = IEVAL + 1
        !           436:                I2 = IHI - 1
        !           437:                CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
        !           438:      $                      IERR )
        !           439:             ELSE IF( WANTST ) THEN
        !           440:                I1 = 1
        !           441:                I2 = N - 1
        !           442:             ELSE
        !           443:                I1 = ILO
        !           444:                I2 = IHI - 1
        !           445:             END IF
        !           446:             INXT = I1 - 1
        !           447:             DO 20 I = I1, I2
        !           448:                IF( I.LT.INXT )
        !           449:      $            GO TO 20
        !           450:                IF( WI( I ).EQ.ZERO ) THEN
        !           451:                   INXT = I + 1
        !           452:                ELSE
        !           453:                   IF( A( I+1, I ).EQ.ZERO ) THEN
        !           454:                      WI( I ) = ZERO
        !           455:                      WI( I+1 ) = ZERO
        !           456:                   ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
        !           457:      $                     ZERO ) THEN
        !           458:                      WI( I ) = ZERO
        !           459:                      WI( I+1 ) = ZERO
        !           460:                      IF( I.GT.1 )
        !           461:      $                  CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
        !           462:                      IF( N.GT.I+1 )
        !           463:      $                  CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
        !           464:      $                              A( I+1, I+2 ), LDA )
        !           465:                      CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
        !           466:                      A( I, I+1 ) = A( I+1, I )
        !           467:                      A( I+1, I ) = ZERO
        !           468:                   END IF
        !           469:                   INXT = I + 2
        !           470:                END IF
        !           471:    20       CONTINUE
        !           472:          END IF
        !           473:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
        !           474:      $                WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
        !           475:       END IF
        !           476: *
        !           477:       IF( WANTST .AND. INFO.EQ.0 ) THEN
        !           478: *
        !           479: *        Check if reordering successful
        !           480: *
        !           481:          LASTSL = .TRUE.
        !           482:          LST2SL = .TRUE.
        !           483:          SDIM = 0
        !           484:          IP = 0
        !           485:          DO 30 I = 1, N
        !           486:             CURSL = SELECT( WR( I ), WI( I ) )
        !           487:             IF( WI( I ).EQ.ZERO ) THEN
        !           488:                IF( CURSL )
        !           489:      $            SDIM = SDIM + 1
        !           490:                IP = 0
        !           491:                IF( CURSL .AND. .NOT.LASTSL )
        !           492:      $            INFO = N + 2
        !           493:             ELSE
        !           494:                IF( IP.EQ.1 ) THEN
        !           495: *
        !           496: *                 Last eigenvalue of conjugate pair
        !           497: *
        !           498:                   CURSL = CURSL .OR. LASTSL
        !           499:                   LASTSL = CURSL
        !           500:                   IF( CURSL )
        !           501:      $               SDIM = SDIM + 2
        !           502:                   IP = -1
        !           503:                   IF( CURSL .AND. .NOT.LST2SL )
        !           504:      $               INFO = N + 2
        !           505:                ELSE
        !           506: *
        !           507: *                 First eigenvalue of conjugate pair
        !           508: *
        !           509:                   IP = 1
        !           510:                END IF
        !           511:             END IF
        !           512:             LST2SL = LASTSL
        !           513:             LASTSL = CURSL
        !           514:    30    CONTINUE
        !           515:       END IF
        !           516: *
        !           517:       WORK( 1 ) = MAXWRK
        !           518:       IF( WANTSV .OR. WANTSB ) THEN
        !           519:          IWORK( 1 ) = MAX( 1, SDIM*( N-SDIM ) )
        !           520:       ELSE
        !           521:          IWORK( 1 ) = 1
        !           522:       END IF
        !           523: *
        !           524:       RETURN
        !           525: *
        !           526: *     End of DGEESX
        !           527: *
        !           528:       END

CVSweb interface <joel.bertrand@systella.fr>