File:  [local] / rpl / lapack / lapack / dgees.f
Revision 1.18: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:48 2023 UTC (9 months, 1 week ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief <b> DGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGEES + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgees.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgees.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgees.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
   22: *                         VS, LDVS, WORK, LWORK, BWORK, INFO )
   23: *
   24: *       .. Scalar Arguments ..
   25: *       CHARACTER          JOBVS, SORT
   26: *       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
   27: *       ..
   28: *       .. Array Arguments ..
   29: *       LOGICAL            BWORK( * )
   30: *       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
   31: *      $                   WR( * )
   32: *       ..
   33: *       .. Function Arguments ..
   34: *       LOGICAL            SELECT
   35: *       EXTERNAL           SELECT
   36: *       ..
   37: *
   38: *
   39: *> \par Purpose:
   40: *  =============
   41: *>
   42: *> \verbatim
   43: *>
   44: *> DGEES computes for an N-by-N real nonsymmetric matrix A, the
   45: *> eigenvalues, the real Schur form T, and, optionally, the matrix of
   46: *> Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T).
   47: *>
   48: *> Optionally, it also orders the eigenvalues on the diagonal of the
   49: *> real Schur form so that selected eigenvalues are at the top left.
   50: *> The leading columns of Z then form an orthonormal basis for the
   51: *> invariant subspace corresponding to the selected eigenvalues.
   52: *>
   53: *> A matrix is in real Schur form if it is upper quasi-triangular with
   54: *> 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the
   55: *> form
   56: *>         [  a  b  ]
   57: *>         [  c  a  ]
   58: *>
   59: *> where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
   60: *> \endverbatim
   61: *
   62: *  Arguments:
   63: *  ==========
   64: *
   65: *> \param[in] JOBVS
   66: *> \verbatim
   67: *>          JOBVS is CHARACTER*1
   68: *>          = 'N': Schur vectors are not computed;
   69: *>          = 'V': Schur vectors are computed.
   70: *> \endverbatim
   71: *>
   72: *> \param[in] SORT
   73: *> \verbatim
   74: *>          SORT is CHARACTER*1
   75: *>          Specifies whether or not to order the eigenvalues on the
   76: *>          diagonal of the Schur form.
   77: *>          = 'N': Eigenvalues are not ordered;
   78: *>          = 'S': Eigenvalues are ordered (see SELECT).
   79: *> \endverbatim
   80: *>
   81: *> \param[in] SELECT
   82: *> \verbatim
   83: *>          SELECT is a LOGICAL FUNCTION of two DOUBLE PRECISION arguments
   84: *>          SELECT must be declared EXTERNAL in the calling subroutine.
   85: *>          If SORT = 'S', SELECT is used to select eigenvalues to sort
   86: *>          to the top left of the Schur form.
   87: *>          If SORT = 'N', SELECT is not referenced.
   88: *>          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
   89: *>          SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex
   90: *>          conjugate pair of eigenvalues is selected, then both complex
   91: *>          eigenvalues are selected.
   92: *>          Note that a selected complex eigenvalue may no longer
   93: *>          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
   94: *>          ordering may change the value of complex eigenvalues
   95: *>          (especially if the eigenvalue is ill-conditioned); in this
   96: *>          case INFO is set to N+2 (see INFO below).
   97: *> \endverbatim
   98: *>
   99: *> \param[in] N
  100: *> \verbatim
  101: *>          N is INTEGER
  102: *>          The order of the matrix A. N >= 0.
  103: *> \endverbatim
  104: *>
  105: *> \param[in,out] A
  106: *> \verbatim
  107: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
  108: *>          On entry, the N-by-N matrix A.
  109: *>          On exit, A has been overwritten by its real Schur form T.
  110: *> \endverbatim
  111: *>
  112: *> \param[in] LDA
  113: *> \verbatim
  114: *>          LDA is INTEGER
  115: *>          The leading dimension of the array A.  LDA >= max(1,N).
  116: *> \endverbatim
  117: *>
  118: *> \param[out] SDIM
  119: *> \verbatim
  120: *>          SDIM is INTEGER
  121: *>          If SORT = 'N', SDIM = 0.
  122: *>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
  123: *>                         for which SELECT is true. (Complex conjugate
  124: *>                         pairs for which SELECT is true for either
  125: *>                         eigenvalue count as 2.)
  126: *> \endverbatim
  127: *>
  128: *> \param[out] WR
  129: *> \verbatim
  130: *>          WR is DOUBLE PRECISION array, dimension (N)
  131: *> \endverbatim
  132: *>
  133: *> \param[out] WI
  134: *> \verbatim
  135: *>          WI is DOUBLE PRECISION array, dimension (N)
  136: *>          WR and WI contain the real and imaginary parts,
  137: *>          respectively, of the computed eigenvalues in the same order
  138: *>          that they appear on the diagonal of the output Schur form T.
  139: *>          Complex conjugate pairs of eigenvalues will appear
  140: *>          consecutively with the eigenvalue having the positive
  141: *>          imaginary part first.
  142: *> \endverbatim
  143: *>
  144: *> \param[out] VS
  145: *> \verbatim
  146: *>          VS is DOUBLE PRECISION array, dimension (LDVS,N)
  147: *>          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
  148: *>          vectors.
  149: *>          If JOBVS = 'N', VS is not referenced.
  150: *> \endverbatim
  151: *>
  152: *> \param[in] LDVS
  153: *> \verbatim
  154: *>          LDVS is INTEGER
  155: *>          The leading dimension of the array VS.  LDVS >= 1; if
  156: *>          JOBVS = 'V', LDVS >= N.
  157: *> \endverbatim
  158: *>
  159: *> \param[out] WORK
  160: *> \verbatim
  161: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  162: *>          On exit, if INFO = 0, WORK(1) contains the optimal LWORK.
  163: *> \endverbatim
  164: *>
  165: *> \param[in] LWORK
  166: *> \verbatim
  167: *>          LWORK is INTEGER
  168: *>          The dimension of the array WORK.  LWORK >= max(1,3*N).
  169: *>          For good performance, LWORK must generally be larger.
  170: *>
  171: *>          If LWORK = -1, then a workspace query is assumed; the routine
  172: *>          only calculates the optimal size of the WORK array, returns
  173: *>          this value as the first entry of the WORK array, and no error
  174: *>          message related to LWORK is issued by XERBLA.
  175: *> \endverbatim
  176: *>
  177: *> \param[out] BWORK
  178: *> \verbatim
  179: *>          BWORK is LOGICAL array, dimension (N)
  180: *>          Not referenced if SORT = 'N'.
  181: *> \endverbatim
  182: *>
  183: *> \param[out] INFO
  184: *> \verbatim
  185: *>          INFO is INTEGER
  186: *>          = 0: successful exit
  187: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
  188: *>          > 0: if INFO = i, and i is
  189: *>             <= N: the QR algorithm failed to compute all the
  190: *>                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
  191: *>                   contain those eigenvalues which have converged; if
  192: *>                   JOBVS = 'V', VS contains the matrix which reduces A
  193: *>                   to its partially converged Schur form.
  194: *>             = N+1: the eigenvalues could not be reordered because some
  195: *>                   eigenvalues were too close to separate (the problem
  196: *>                   is very ill-conditioned);
  197: *>             = N+2: after reordering, roundoff changed values of some
  198: *>                   complex eigenvalues so that leading eigenvalues in
  199: *>                   the Schur form no longer satisfy SELECT=.TRUE.  This
  200: *>                   could also be caused by underflow due to scaling.
  201: *> \endverbatim
  202: *
  203: *  Authors:
  204: *  ========
  205: *
  206: *> \author Univ. of Tennessee
  207: *> \author Univ. of California Berkeley
  208: *> \author Univ. of Colorado Denver
  209: *> \author NAG Ltd.
  210: *
  211: *> \ingroup doubleGEeigen
  212: *
  213: *  =====================================================================
  214:       SUBROUTINE DGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
  215:      $                  VS, LDVS, WORK, LWORK, BWORK, INFO )
  216: *
  217: *  -- LAPACK driver routine --
  218: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  219: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  220: *
  221: *     .. Scalar Arguments ..
  222:       CHARACTER          JOBVS, SORT
  223:       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
  224: *     ..
  225: *     .. Array Arguments ..
  226:       LOGICAL            BWORK( * )
  227:       DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
  228:      $                   WR( * )
  229: *     ..
  230: *     .. Function Arguments ..
  231:       LOGICAL            SELECT
  232:       EXTERNAL           SELECT
  233: *     ..
  234: *
  235: *  =====================================================================
  236: *
  237: *     .. Parameters ..
  238:       DOUBLE PRECISION   ZERO, ONE
  239:       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
  240: *     ..
  241: *     .. Local Scalars ..
  242:       LOGICAL            CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTST,
  243:      $                   WANTVS
  244:       INTEGER            HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
  245:      $                   IHI, ILO, INXT, IP, ITAU, IWRK, MAXWRK, MINWRK
  246:       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
  247: *     ..
  248: *     .. Local Arrays ..
  249:       INTEGER            IDUM( 1 )
  250:       DOUBLE PRECISION   DUM( 1 )
  251: *     ..
  252: *     .. External Subroutines ..
  253:       EXTERNAL           DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY,
  254:      $                   DLABAD, DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA
  255: *     ..
  256: *     .. External Functions ..
  257:       LOGICAL            LSAME
  258:       INTEGER            ILAENV
  259:       DOUBLE PRECISION   DLAMCH, DLANGE
  260:       EXTERNAL           LSAME, ILAENV, DLAMCH, DLANGE
  261: *     ..
  262: *     .. Intrinsic Functions ..
  263:       INTRINSIC          MAX, SQRT
  264: *     ..
  265: *     .. Executable Statements ..
  266: *
  267: *     Test the input arguments
  268: *
  269:       INFO = 0
  270:       LQUERY = ( LWORK.EQ.-1 )
  271:       WANTVS = LSAME( JOBVS, 'V' )
  272:       WANTST = LSAME( SORT, 'S' )
  273:       IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
  274:          INFO = -1
  275:       ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
  276:          INFO = -2
  277:       ELSE IF( N.LT.0 ) THEN
  278:          INFO = -4
  279:       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  280:          INFO = -6
  281:       ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
  282:          INFO = -11
  283:       END IF
  284: *
  285: *     Compute workspace
  286: *      (Note: Comments in the code beginning "Workspace:" describe the
  287: *       minimal amount of workspace needed at that point in the code,
  288: *       as well as the preferred amount for good performance.
  289: *       NB refers to the optimal block size for the immediately
  290: *       following subroutine, as returned by ILAENV.
  291: *       HSWORK refers to the workspace preferred by DHSEQR, as
  292: *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  293: *       the worst case.)
  294: *
  295:       IF( INFO.EQ.0 ) THEN
  296:          IF( N.EQ.0 ) THEN
  297:             MINWRK = 1
  298:             MAXWRK = 1
  299:          ELSE
  300:             MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
  301:             MINWRK = 3*N
  302: *
  303:             CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
  304:      $             WORK, -1, IEVAL )
  305:             HSWORK = INT( WORK( 1 ) )
  306: *
  307:             IF( .NOT.WANTVS ) THEN
  308:                MAXWRK = MAX( MAXWRK, N + HSWORK )
  309:             ELSE
  310:                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  311:      $                       'DORGHR', ' ', N, 1, N, -1 ) )
  312:                MAXWRK = MAX( MAXWRK, N + HSWORK )
  313:             END IF
  314:          END IF
  315:          WORK( 1 ) = MAXWRK
  316: *
  317:          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  318:             INFO = -13
  319:          END IF
  320:       END IF
  321: *
  322:       IF( INFO.NE.0 ) THEN
  323:          CALL XERBLA( 'DGEES ', -INFO )
  324:          RETURN
  325:       ELSE IF( LQUERY ) THEN
  326:          RETURN
  327:       END IF
  328: *
  329: *     Quick return if possible
  330: *
  331:       IF( N.EQ.0 ) THEN
  332:          SDIM = 0
  333:          RETURN
  334:       END IF
  335: *
  336: *     Get machine constants
  337: *
  338:       EPS = DLAMCH( 'P' )
  339:       SMLNUM = DLAMCH( 'S' )
  340:       BIGNUM = ONE / SMLNUM
  341:       CALL DLABAD( SMLNUM, BIGNUM )
  342:       SMLNUM = SQRT( SMLNUM ) / EPS
  343:       BIGNUM = ONE / SMLNUM
  344: *
  345: *     Scale A if max element outside range [SMLNUM,BIGNUM]
  346: *
  347:       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
  348:       SCALEA = .FALSE.
  349:       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  350:          SCALEA = .TRUE.
  351:          CSCALE = SMLNUM
  352:       ELSE IF( ANRM.GT.BIGNUM ) THEN
  353:          SCALEA = .TRUE.
  354:          CSCALE = BIGNUM
  355:       END IF
  356:       IF( SCALEA )
  357:      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  358: *
  359: *     Permute the matrix to make it more nearly triangular
  360: *     (Workspace: need N)
  361: *
  362:       IBAL = 1
  363:       CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
  364: *
  365: *     Reduce to upper Hessenberg form
  366: *     (Workspace: need 3*N, prefer 2*N+N*NB)
  367: *
  368:       ITAU = N + IBAL
  369:       IWRK = N + ITAU
  370:       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  371:      $             LWORK-IWRK+1, IERR )
  372: *
  373:       IF( WANTVS ) THEN
  374: *
  375: *        Copy Householder vectors to VS
  376: *
  377:          CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS )
  378: *
  379: *        Generate orthogonal matrix in VS
  380: *        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  381: *
  382:          CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
  383:      $                LWORK-IWRK+1, IERR )
  384:       END IF
  385: *
  386:       SDIM = 0
  387: *
  388: *     Perform QR iteration, accumulating Schur vectors in VS if desired
  389: *     (Workspace: need N+1, prefer N+HSWORK (see comments) )
  390: *
  391:       IWRK = ITAU
  392:       CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
  393:      $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
  394:       IF( IEVAL.GT.0 )
  395:      $   INFO = IEVAL
  396: *
  397: *     Sort eigenvalues if desired
  398: *
  399:       IF( WANTST .AND. INFO.EQ.0 ) THEN
  400:          IF( SCALEA ) THEN
  401:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
  402:             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
  403:          END IF
  404:          DO 10 I = 1, N
  405:             BWORK( I ) = SELECT( WR( I ), WI( I ) )
  406:    10    CONTINUE
  407: *
  408: *        Reorder eigenvalues and transform Schur vectors
  409: *        (Workspace: none needed)
  410: *
  411:          CALL DTRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
  412:      $                SDIM, S, SEP, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
  413:      $                ICOND )
  414:          IF( ICOND.GT.0 )
  415:      $      INFO = N + ICOND
  416:       END IF
  417: *
  418:       IF( WANTVS ) THEN
  419: *
  420: *        Undo balancing
  421: *        (Workspace: need N)
  422: *
  423:          CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
  424:      $                IERR )
  425:       END IF
  426: *
  427:       IF( SCALEA ) THEN
  428: *
  429: *        Undo scaling for the Schur form of A
  430: *
  431:          CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
  432:          CALL DCOPY( N, A, LDA+1, WR, 1 )
  433:          IF( CSCALE.EQ.SMLNUM ) THEN
  434: *
  435: *           If scaling back towards underflow, adjust WI if an
  436: *           offdiagonal element of a 2-by-2 block in the Schur form
  437: *           underflows.
  438: *
  439:             IF( IEVAL.GT.0 ) THEN
  440:                I1 = IEVAL + 1
  441:                I2 = IHI - 1
  442:                CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI,
  443:      $                      MAX( ILO-1, 1 ), IERR )
  444:             ELSE IF( WANTST ) THEN
  445:                I1 = 1
  446:                I2 = N - 1
  447:             ELSE
  448:                I1 = ILO
  449:                I2 = IHI - 1
  450:             END IF
  451:             INXT = I1 - 1
  452:             DO 20 I = I1, I2
  453:                IF( I.LT.INXT )
  454:      $            GO TO 20
  455:                IF( WI( I ).EQ.ZERO ) THEN
  456:                   INXT = I + 1
  457:                ELSE
  458:                   IF( A( I+1, I ).EQ.ZERO ) THEN
  459:                      WI( I ) = ZERO
  460:                      WI( I+1 ) = ZERO
  461:                   ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
  462:      $                     ZERO ) THEN
  463:                      WI( I ) = ZERO
  464:                      WI( I+1 ) = ZERO
  465:                      IF( I.GT.1 )
  466:      $                  CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
  467:                      IF( N.GT.I+1 )
  468:      $                  CALL DSWAP( N-I-1, A( I, I+2 ), LDA,
  469:      $                              A( I+1, I+2 ), LDA )
  470:                      IF( WANTVS ) THEN
  471:                         CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
  472:                      END IF
  473:                      A( I, I+1 ) = A( I+1, I )
  474:                      A( I+1, I ) = ZERO
  475:                   END IF
  476:                   INXT = I + 2
  477:                END IF
  478:    20       CONTINUE
  479:          END IF
  480: *
  481: *        Undo scaling for the imaginary part of the eigenvalues
  482: *
  483:          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
  484:      $                WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
  485:       END IF
  486: *
  487:       IF( WANTST .AND. INFO.EQ.0 ) THEN
  488: *
  489: *        Check if reordering successful
  490: *
  491:          LASTSL = .TRUE.
  492:          LST2SL = .TRUE.
  493:          SDIM = 0
  494:          IP = 0
  495:          DO 30 I = 1, N
  496:             CURSL = SELECT( WR( I ), WI( I ) )
  497:             IF( WI( I ).EQ.ZERO ) THEN
  498:                IF( CURSL )
  499:      $            SDIM = SDIM + 1
  500:                IP = 0
  501:                IF( CURSL .AND. .NOT.LASTSL )
  502:      $            INFO = N + 2
  503:             ELSE
  504:                IF( IP.EQ.1 ) THEN
  505: *
  506: *                 Last eigenvalue of conjugate pair
  507: *
  508:                   CURSL = CURSL .OR. LASTSL
  509:                   LASTSL = CURSL
  510:                   IF( CURSL )
  511:      $               SDIM = SDIM + 2
  512:                   IP = -1
  513:                   IF( CURSL .AND. .NOT.LST2SL )
  514:      $               INFO = N + 2
  515:                ELSE
  516: *
  517: *                 First eigenvalue of conjugate pair
  518: *
  519:                   IP = 1
  520:                END IF
  521:             END IF
  522:             LST2SL = LASTSL
  523:             LASTSL = CURSL
  524:    30    CONTINUE
  525:       END IF
  526: *
  527:       WORK( 1 ) = MAXWRK
  528:       RETURN
  529: *
  530: *     End of DGEES
  531: *
  532:       END

CVSweb interface <joel.bertrand@systella.fr>