Annotation of rpl/lapack/lapack/dgebrd.f, revision 1.9

1.9     ! bertrand    1: *> \brief \b DGEBRD
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DGEBRD + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgebrd.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgebrd.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgebrd.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
        !            22: *                          INFO )
        !            23: * 
        !            24: *       .. Scalar Arguments ..
        !            25: *       INTEGER            INFO, LDA, LWORK, M, N
        !            26: *       ..
        !            27: *       .. Array Arguments ..
        !            28: *       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
        !            29: *      $                   TAUQ( * ), WORK( * )
        !            30: *       ..
        !            31: *  
        !            32: *
        !            33: *> \par Purpose:
        !            34: *  =============
        !            35: *>
        !            36: *> \verbatim
        !            37: *>
        !            38: *> DGEBRD reduces a general real M-by-N matrix A to upper or lower
        !            39: *> bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.
        !            40: *>
        !            41: *> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
        !            42: *> \endverbatim
        !            43: *
        !            44: *  Arguments:
        !            45: *  ==========
        !            46: *
        !            47: *> \param[in] M
        !            48: *> \verbatim
        !            49: *>          M is INTEGER
        !            50: *>          The number of rows in the matrix A.  M >= 0.
        !            51: *> \endverbatim
        !            52: *>
        !            53: *> \param[in] N
        !            54: *> \verbatim
        !            55: *>          N is INTEGER
        !            56: *>          The number of columns in the matrix A.  N >= 0.
        !            57: *> \endverbatim
        !            58: *>
        !            59: *> \param[in,out] A
        !            60: *> \verbatim
        !            61: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
        !            62: *>          On entry, the M-by-N general matrix to be reduced.
        !            63: *>          On exit,
        !            64: *>          if m >= n, the diagonal and the first superdiagonal are
        !            65: *>            overwritten with the upper bidiagonal matrix B; the
        !            66: *>            elements below the diagonal, with the array TAUQ, represent
        !            67: *>            the orthogonal matrix Q as a product of elementary
        !            68: *>            reflectors, and the elements above the first superdiagonal,
        !            69: *>            with the array TAUP, represent the orthogonal matrix P as
        !            70: *>            a product of elementary reflectors;
        !            71: *>          if m < n, the diagonal and the first subdiagonal are
        !            72: *>            overwritten with the lower bidiagonal matrix B; the
        !            73: *>            elements below the first subdiagonal, with the array TAUQ,
        !            74: *>            represent the orthogonal matrix Q as a product of
        !            75: *>            elementary reflectors, and the elements above the diagonal,
        !            76: *>            with the array TAUP, represent the orthogonal matrix P as
        !            77: *>            a product of elementary reflectors.
        !            78: *>          See Further Details.
        !            79: *> \endverbatim
        !            80: *>
        !            81: *> \param[in] LDA
        !            82: *> \verbatim
        !            83: *>          LDA is INTEGER
        !            84: *>          The leading dimension of the array A.  LDA >= max(1,M).
        !            85: *> \endverbatim
        !            86: *>
        !            87: *> \param[out] D
        !            88: *> \verbatim
        !            89: *>          D is DOUBLE PRECISION array, dimension (min(M,N))
        !            90: *>          The diagonal elements of the bidiagonal matrix B:
        !            91: *>          D(i) = A(i,i).
        !            92: *> \endverbatim
        !            93: *>
        !            94: *> \param[out] E
        !            95: *> \verbatim
        !            96: *>          E is DOUBLE PRECISION array, dimension (min(M,N)-1)
        !            97: *>          The off-diagonal elements of the bidiagonal matrix B:
        !            98: *>          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
        !            99: *>          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
        !           100: *> \endverbatim
        !           101: *>
        !           102: *> \param[out] TAUQ
        !           103: *> \verbatim
        !           104: *>          TAUQ is DOUBLE PRECISION array dimension (min(M,N))
        !           105: *>          The scalar factors of the elementary reflectors which
        !           106: *>          represent the orthogonal matrix Q. See Further Details.
        !           107: *> \endverbatim
        !           108: *>
        !           109: *> \param[out] TAUP
        !           110: *> \verbatim
        !           111: *>          TAUP is DOUBLE PRECISION array, dimension (min(M,N))
        !           112: *>          The scalar factors of the elementary reflectors which
        !           113: *>          represent the orthogonal matrix P. See Further Details.
        !           114: *> \endverbatim
        !           115: *>
        !           116: *> \param[out] WORK
        !           117: *> \verbatim
        !           118: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !           119: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !           120: *> \endverbatim
        !           121: *>
        !           122: *> \param[in] LWORK
        !           123: *> \verbatim
        !           124: *>          LWORK is INTEGER
        !           125: *>          The length of the array WORK.  LWORK >= max(1,M,N).
        !           126: *>          For optimum performance LWORK >= (M+N)*NB, where NB
        !           127: *>          is the optimal blocksize.
        !           128: *>
        !           129: *>          If LWORK = -1, then a workspace query is assumed; the routine
        !           130: *>          only calculates the optimal size of the WORK array, returns
        !           131: *>          this value as the first entry of the WORK array, and no error
        !           132: *>          message related to LWORK is issued by XERBLA.
        !           133: *> \endverbatim
        !           134: *>
        !           135: *> \param[out] INFO
        !           136: *> \verbatim
        !           137: *>          INFO is INTEGER
        !           138: *>          = 0:  successful exit
        !           139: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !           140: *> \endverbatim
        !           141: *
        !           142: *  Authors:
        !           143: *  ========
        !           144: *
        !           145: *> \author Univ. of Tennessee 
        !           146: *> \author Univ. of California Berkeley 
        !           147: *> \author Univ. of Colorado Denver 
        !           148: *> \author NAG Ltd. 
        !           149: *
        !           150: *> \date November 2011
        !           151: *
        !           152: *> \ingroup doubleGEcomputational
        !           153: *
        !           154: *> \par Further Details:
        !           155: *  =====================
        !           156: *>
        !           157: *> \verbatim
        !           158: *>
        !           159: *>  The matrices Q and P are represented as products of elementary
        !           160: *>  reflectors:
        !           161: *>
        !           162: *>  If m >= n,
        !           163: *>
        !           164: *>     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
        !           165: *>
        !           166: *>  Each H(i) and G(i) has the form:
        !           167: *>
        !           168: *>     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T
        !           169: *>
        !           170: *>  where tauq and taup are real scalars, and v and u are real vectors;
        !           171: *>  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
        !           172: *>  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
        !           173: *>  tauq is stored in TAUQ(i) and taup in TAUP(i).
        !           174: *>
        !           175: *>  If m < n,
        !           176: *>
        !           177: *>     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
        !           178: *>
        !           179: *>  Each H(i) and G(i) has the form:
        !           180: *>
        !           181: *>     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T
        !           182: *>
        !           183: *>  where tauq and taup are real scalars, and v and u are real vectors;
        !           184: *>  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
        !           185: *>  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
        !           186: *>  tauq is stored in TAUQ(i) and taup in TAUP(i).
        !           187: *>
        !           188: *>  The contents of A on exit are illustrated by the following examples:
        !           189: *>
        !           190: *>  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
        !           191: *>
        !           192: *>    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
        !           193: *>    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
        !           194: *>    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
        !           195: *>    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
        !           196: *>    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
        !           197: *>    (  v1  v2  v3  v4  v5 )
        !           198: *>
        !           199: *>  where d and e denote diagonal and off-diagonal elements of B, vi
        !           200: *>  denotes an element of the vector defining H(i), and ui an element of
        !           201: *>  the vector defining G(i).
        !           202: *> \endverbatim
        !           203: *>
        !           204: *  =====================================================================
1.1       bertrand  205:       SUBROUTINE DGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
                    206:      $                   INFO )
                    207: *
1.9     ! bertrand  208: *  -- LAPACK computational routine (version 3.4.0) --
1.1       bertrand  209: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    210: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.9     ! bertrand  211: *     November 2011
1.1       bertrand  212: *
                    213: *     .. Scalar Arguments ..
                    214:       INTEGER            INFO, LDA, LWORK, M, N
                    215: *     ..
                    216: *     .. Array Arguments ..
                    217:       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
                    218:      $                   TAUQ( * ), WORK( * )
                    219: *     ..
                    220: *
                    221: *  =====================================================================
                    222: *
                    223: *     .. Parameters ..
                    224:       DOUBLE PRECISION   ONE
                    225:       PARAMETER          ( ONE = 1.0D+0 )
                    226: *     ..
                    227: *     .. Local Scalars ..
                    228:       LOGICAL            LQUERY
                    229:       INTEGER            I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB,
                    230:      $                   NBMIN, NX
                    231:       DOUBLE PRECISION   WS
                    232: *     ..
                    233: *     .. External Subroutines ..
                    234:       EXTERNAL           DGEBD2, DGEMM, DLABRD, XERBLA
                    235: *     ..
                    236: *     .. Intrinsic Functions ..
                    237:       INTRINSIC          DBLE, MAX, MIN
                    238: *     ..
                    239: *     .. External Functions ..
                    240:       INTEGER            ILAENV
                    241:       EXTERNAL           ILAENV
                    242: *     ..
                    243: *     .. Executable Statements ..
                    244: *
                    245: *     Test the input parameters
                    246: *
                    247:       INFO = 0
                    248:       NB = MAX( 1, ILAENV( 1, 'DGEBRD', ' ', M, N, -1, -1 ) )
                    249:       LWKOPT = ( M+N )*NB
                    250:       WORK( 1 ) = DBLE( LWKOPT )
                    251:       LQUERY = ( LWORK.EQ.-1 )
                    252:       IF( M.LT.0 ) THEN
                    253:          INFO = -1
                    254:       ELSE IF( N.LT.0 ) THEN
                    255:          INFO = -2
                    256:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    257:          INFO = -4
                    258:       ELSE IF( LWORK.LT.MAX( 1, M, N ) .AND. .NOT.LQUERY ) THEN
                    259:          INFO = -10
                    260:       END IF
                    261:       IF( INFO.LT.0 ) THEN
                    262:          CALL XERBLA( 'DGEBRD', -INFO )
                    263:          RETURN
                    264:       ELSE IF( LQUERY ) THEN
                    265:          RETURN
                    266:       END IF
                    267: *
                    268: *     Quick return if possible
                    269: *
                    270:       MINMN = MIN( M, N )
                    271:       IF( MINMN.EQ.0 ) THEN
                    272:          WORK( 1 ) = 1
                    273:          RETURN
                    274:       END IF
                    275: *
                    276:       WS = MAX( M, N )
                    277:       LDWRKX = M
                    278:       LDWRKY = N
                    279: *
                    280:       IF( NB.GT.1 .AND. NB.LT.MINMN ) THEN
                    281: *
                    282: *        Set the crossover point NX.
                    283: *
                    284:          NX = MAX( NB, ILAENV( 3, 'DGEBRD', ' ', M, N, -1, -1 ) )
                    285: *
                    286: *        Determine when to switch from blocked to unblocked code.
                    287: *
                    288:          IF( NX.LT.MINMN ) THEN
                    289:             WS = ( M+N )*NB
                    290:             IF( LWORK.LT.WS ) THEN
                    291: *
                    292: *              Not enough work space for the optimal NB, consider using
                    293: *              a smaller block size.
                    294: *
                    295:                NBMIN = ILAENV( 2, 'DGEBRD', ' ', M, N, -1, -1 )
                    296:                IF( LWORK.GE.( M+N )*NBMIN ) THEN
                    297:                   NB = LWORK / ( M+N )
                    298:                ELSE
                    299:                   NB = 1
                    300:                   NX = MINMN
                    301:                END IF
                    302:             END IF
                    303:          END IF
                    304:       ELSE
                    305:          NX = MINMN
                    306:       END IF
                    307: *
                    308:       DO 30 I = 1, MINMN - NX, NB
                    309: *
                    310: *        Reduce rows and columns i:i+nb-1 to bidiagonal form and return
                    311: *        the matrices X and Y which are needed to update the unreduced
                    312: *        part of the matrix
                    313: *
                    314:          CALL DLABRD( M-I+1, N-I+1, NB, A( I, I ), LDA, D( I ), E( I ),
                    315:      $                TAUQ( I ), TAUP( I ), WORK, LDWRKX,
                    316:      $                WORK( LDWRKX*NB+1 ), LDWRKY )
                    317: *
                    318: *        Update the trailing submatrix A(i+nb:m,i+nb:n), using an update
1.8       bertrand  319: *        of the form  A := A - V*Y**T - X*U**T
1.1       bertrand  320: *
                    321:          CALL DGEMM( 'No transpose', 'Transpose', M-I-NB+1, N-I-NB+1,
                    322:      $               NB, -ONE, A( I+NB, I ), LDA,
                    323:      $               WORK( LDWRKX*NB+NB+1 ), LDWRKY, ONE,
                    324:      $               A( I+NB, I+NB ), LDA )
                    325:          CALL DGEMM( 'No transpose', 'No transpose', M-I-NB+1, N-I-NB+1,
                    326:      $               NB, -ONE, WORK( NB+1 ), LDWRKX, A( I, I+NB ), LDA,
                    327:      $               ONE, A( I+NB, I+NB ), LDA )
                    328: *
                    329: *        Copy diagonal and off-diagonal elements of B back into A
                    330: *
                    331:          IF( M.GE.N ) THEN
                    332:             DO 10 J = I, I + NB - 1
                    333:                A( J, J ) = D( J )
                    334:                A( J, J+1 ) = E( J )
                    335:    10       CONTINUE
                    336:          ELSE
                    337:             DO 20 J = I, I + NB - 1
                    338:                A( J, J ) = D( J )
                    339:                A( J+1, J ) = E( J )
                    340:    20       CONTINUE
                    341:          END IF
                    342:    30 CONTINUE
                    343: *
                    344: *     Use unblocked code to reduce the remainder of the matrix
                    345: *
                    346:       CALL DGEBD2( M-I+1, N-I+1, A( I, I ), LDA, D( I ), E( I ),
                    347:      $             TAUQ( I ), TAUP( I ), WORK, IINFO )
                    348:       WORK( 1 ) = WS
                    349:       RETURN
                    350: *
                    351: *     End of DGEBRD
                    352: *
                    353:       END

CVSweb interface <joel.bertrand@systella.fr>