Annotation of rpl/lapack/lapack/dgebrd.f, revision 1.18

1.9       bertrand    1: *> \brief \b DGEBRD
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
1.15      bertrand    5: * Online html documentation available at
                      6: *            http://www.netlib.org/lapack/explore-html/
1.9       bertrand    7: *
                      8: *> \htmlonly
1.15      bertrand    9: *> Download DGEBRD + dependencies
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgebrd.f">
                     11: *> [TGZ]</a>
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgebrd.f">
                     13: *> [ZIP]</a>
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgebrd.f">
1.9       bertrand   15: *> [TXT]</a>
1.15      bertrand   16: *> \endhtmlonly
1.9       bertrand   17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
                     22: *                          INFO )
1.15      bertrand   23: *
1.9       bertrand   24: *       .. Scalar Arguments ..
                     25: *       INTEGER            INFO, LDA, LWORK, M, N
                     26: *       ..
                     27: *       .. Array Arguments ..
                     28: *       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
                     29: *      $                   TAUQ( * ), WORK( * )
                     30: *       ..
1.15      bertrand   31: *
1.9       bertrand   32: *
                     33: *> \par Purpose:
                     34: *  =============
                     35: *>
                     36: *> \verbatim
                     37: *>
                     38: *> DGEBRD reduces a general real M-by-N matrix A to upper or lower
                     39: *> bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.
                     40: *>
                     41: *> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
                     42: *> \endverbatim
                     43: *
                     44: *  Arguments:
                     45: *  ==========
                     46: *
                     47: *> \param[in] M
                     48: *> \verbatim
                     49: *>          M is INTEGER
                     50: *>          The number of rows in the matrix A.  M >= 0.
                     51: *> \endverbatim
                     52: *>
                     53: *> \param[in] N
                     54: *> \verbatim
                     55: *>          N is INTEGER
                     56: *>          The number of columns in the matrix A.  N >= 0.
                     57: *> \endverbatim
                     58: *>
                     59: *> \param[in,out] A
                     60: *> \verbatim
                     61: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
                     62: *>          On entry, the M-by-N general matrix to be reduced.
                     63: *>          On exit,
                     64: *>          if m >= n, the diagonal and the first superdiagonal are
                     65: *>            overwritten with the upper bidiagonal matrix B; the
                     66: *>            elements below the diagonal, with the array TAUQ, represent
                     67: *>            the orthogonal matrix Q as a product of elementary
                     68: *>            reflectors, and the elements above the first superdiagonal,
                     69: *>            with the array TAUP, represent the orthogonal matrix P as
                     70: *>            a product of elementary reflectors;
                     71: *>          if m < n, the diagonal and the first subdiagonal are
                     72: *>            overwritten with the lower bidiagonal matrix B; the
                     73: *>            elements below the first subdiagonal, with the array TAUQ,
                     74: *>            represent the orthogonal matrix Q as a product of
                     75: *>            elementary reflectors, and the elements above the diagonal,
                     76: *>            with the array TAUP, represent the orthogonal matrix P as
                     77: *>            a product of elementary reflectors.
                     78: *>          See Further Details.
                     79: *> \endverbatim
                     80: *>
                     81: *> \param[in] LDA
                     82: *> \verbatim
                     83: *>          LDA is INTEGER
                     84: *>          The leading dimension of the array A.  LDA >= max(1,M).
                     85: *> \endverbatim
                     86: *>
                     87: *> \param[out] D
                     88: *> \verbatim
                     89: *>          D is DOUBLE PRECISION array, dimension (min(M,N))
                     90: *>          The diagonal elements of the bidiagonal matrix B:
                     91: *>          D(i) = A(i,i).
                     92: *> \endverbatim
                     93: *>
                     94: *> \param[out] E
                     95: *> \verbatim
                     96: *>          E is DOUBLE PRECISION array, dimension (min(M,N)-1)
                     97: *>          The off-diagonal elements of the bidiagonal matrix B:
                     98: *>          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
                     99: *>          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
                    100: *> \endverbatim
                    101: *>
                    102: *> \param[out] TAUQ
                    103: *> \verbatim
1.17      bertrand  104: *>          TAUQ is DOUBLE PRECISION array, dimension (min(M,N))
1.9       bertrand  105: *>          The scalar factors of the elementary reflectors which
                    106: *>          represent the orthogonal matrix Q. See Further Details.
                    107: *> \endverbatim
                    108: *>
                    109: *> \param[out] TAUP
                    110: *> \verbatim
                    111: *>          TAUP is DOUBLE PRECISION array, dimension (min(M,N))
                    112: *>          The scalar factors of the elementary reflectors which
                    113: *>          represent the orthogonal matrix P. See Further Details.
                    114: *> \endverbatim
                    115: *>
                    116: *> \param[out] WORK
                    117: *> \verbatim
                    118: *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                    119: *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in] LWORK
                    123: *> \verbatim
                    124: *>          LWORK is INTEGER
                    125: *>          The length of the array WORK.  LWORK >= max(1,M,N).
                    126: *>          For optimum performance LWORK >= (M+N)*NB, where NB
                    127: *>          is the optimal blocksize.
                    128: *>
                    129: *>          If LWORK = -1, then a workspace query is assumed; the routine
                    130: *>          only calculates the optimal size of the WORK array, returns
                    131: *>          this value as the first entry of the WORK array, and no error
                    132: *>          message related to LWORK is issued by XERBLA.
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[out] INFO
                    136: *> \verbatim
                    137: *>          INFO is INTEGER
                    138: *>          = 0:  successful exit
                    139: *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
                    140: *> \endverbatim
                    141: *
                    142: *  Authors:
                    143: *  ========
                    144: *
1.15      bertrand  145: *> \author Univ. of Tennessee
                    146: *> \author Univ. of California Berkeley
                    147: *> \author Univ. of Colorado Denver
                    148: *> \author NAG Ltd.
1.9       bertrand  149: *
1.17      bertrand  150: *> \date November 2017
1.9       bertrand  151: *
                    152: *> \ingroup doubleGEcomputational
                    153: *
                    154: *> \par Further Details:
                    155: *  =====================
                    156: *>
                    157: *> \verbatim
                    158: *>
                    159: *>  The matrices Q and P are represented as products of elementary
                    160: *>  reflectors:
                    161: *>
                    162: *>  If m >= n,
                    163: *>
                    164: *>     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
                    165: *>
                    166: *>  Each H(i) and G(i) has the form:
                    167: *>
                    168: *>     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T
                    169: *>
                    170: *>  where tauq and taup are real scalars, and v and u are real vectors;
                    171: *>  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
                    172: *>  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
                    173: *>  tauq is stored in TAUQ(i) and taup in TAUP(i).
                    174: *>
                    175: *>  If m < n,
                    176: *>
                    177: *>     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
                    178: *>
                    179: *>  Each H(i) and G(i) has the form:
                    180: *>
                    181: *>     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T
                    182: *>
                    183: *>  where tauq and taup are real scalars, and v and u are real vectors;
                    184: *>  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
                    185: *>  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
                    186: *>  tauq is stored in TAUQ(i) and taup in TAUP(i).
                    187: *>
                    188: *>  The contents of A on exit are illustrated by the following examples:
                    189: *>
                    190: *>  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
                    191: *>
                    192: *>    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
                    193: *>    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
                    194: *>    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
                    195: *>    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
                    196: *>    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
                    197: *>    (  v1  v2  v3  v4  v5 )
                    198: *>
                    199: *>  where d and e denote diagonal and off-diagonal elements of B, vi
                    200: *>  denotes an element of the vector defining H(i), and ui an element of
                    201: *>  the vector defining G(i).
                    202: *> \endverbatim
                    203: *>
                    204: *  =====================================================================
1.1       bertrand  205:       SUBROUTINE DGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
                    206:      $                   INFO )
                    207: *
1.17      bertrand  208: *  -- LAPACK computational routine (version 3.8.0) --
1.1       bertrand  209: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    210: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.17      bertrand  211: *     November 2017
1.1       bertrand  212: *
                    213: *     .. Scalar Arguments ..
                    214:       INTEGER            INFO, LDA, LWORK, M, N
                    215: *     ..
                    216: *     .. Array Arguments ..
                    217:       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
                    218:      $                   TAUQ( * ), WORK( * )
                    219: *     ..
                    220: *
                    221: *  =====================================================================
                    222: *
                    223: *     .. Parameters ..
                    224:       DOUBLE PRECISION   ONE
                    225:       PARAMETER          ( ONE = 1.0D+0 )
                    226: *     ..
                    227: *     .. Local Scalars ..
                    228:       LOGICAL            LQUERY
                    229:       INTEGER            I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB,
1.17      bertrand  230:      $                   NBMIN, NX, WS
1.1       bertrand  231: *     ..
                    232: *     .. External Subroutines ..
                    233:       EXTERNAL           DGEBD2, DGEMM, DLABRD, XERBLA
                    234: *     ..
                    235: *     .. Intrinsic Functions ..
                    236:       INTRINSIC          DBLE, MAX, MIN
                    237: *     ..
                    238: *     .. External Functions ..
                    239:       INTEGER            ILAENV
                    240:       EXTERNAL           ILAENV
                    241: *     ..
                    242: *     .. Executable Statements ..
                    243: *
                    244: *     Test the input parameters
                    245: *
                    246:       INFO = 0
                    247:       NB = MAX( 1, ILAENV( 1, 'DGEBRD', ' ', M, N, -1, -1 ) )
                    248:       LWKOPT = ( M+N )*NB
                    249:       WORK( 1 ) = DBLE( LWKOPT )
                    250:       LQUERY = ( LWORK.EQ.-1 )
                    251:       IF( M.LT.0 ) THEN
                    252:          INFO = -1
                    253:       ELSE IF( N.LT.0 ) THEN
                    254:          INFO = -2
                    255:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    256:          INFO = -4
                    257:       ELSE IF( LWORK.LT.MAX( 1, M, N ) .AND. .NOT.LQUERY ) THEN
                    258:          INFO = -10
                    259:       END IF
                    260:       IF( INFO.LT.0 ) THEN
                    261:          CALL XERBLA( 'DGEBRD', -INFO )
                    262:          RETURN
                    263:       ELSE IF( LQUERY ) THEN
                    264:          RETURN
                    265:       END IF
                    266: *
                    267: *     Quick return if possible
                    268: *
                    269:       MINMN = MIN( M, N )
                    270:       IF( MINMN.EQ.0 ) THEN
                    271:          WORK( 1 ) = 1
                    272:          RETURN
                    273:       END IF
                    274: *
                    275:       WS = MAX( M, N )
                    276:       LDWRKX = M
                    277:       LDWRKY = N
                    278: *
                    279:       IF( NB.GT.1 .AND. NB.LT.MINMN ) THEN
                    280: *
                    281: *        Set the crossover point NX.
                    282: *
                    283:          NX = MAX( NB, ILAENV( 3, 'DGEBRD', ' ', M, N, -1, -1 ) )
                    284: *
                    285: *        Determine when to switch from blocked to unblocked code.
                    286: *
                    287:          IF( NX.LT.MINMN ) THEN
                    288:             WS = ( M+N )*NB
                    289:             IF( LWORK.LT.WS ) THEN
                    290: *
                    291: *              Not enough work space for the optimal NB, consider using
                    292: *              a smaller block size.
                    293: *
                    294:                NBMIN = ILAENV( 2, 'DGEBRD', ' ', M, N, -1, -1 )
                    295:                IF( LWORK.GE.( M+N )*NBMIN ) THEN
                    296:                   NB = LWORK / ( M+N )
                    297:                ELSE
                    298:                   NB = 1
                    299:                   NX = MINMN
                    300:                END IF
                    301:             END IF
                    302:          END IF
                    303:       ELSE
                    304:          NX = MINMN
                    305:       END IF
                    306: *
                    307:       DO 30 I = 1, MINMN - NX, NB
                    308: *
                    309: *        Reduce rows and columns i:i+nb-1 to bidiagonal form and return
                    310: *        the matrices X and Y which are needed to update the unreduced
                    311: *        part of the matrix
                    312: *
                    313:          CALL DLABRD( M-I+1, N-I+1, NB, A( I, I ), LDA, D( I ), E( I ),
                    314:      $                TAUQ( I ), TAUP( I ), WORK, LDWRKX,
                    315:      $                WORK( LDWRKX*NB+1 ), LDWRKY )
                    316: *
                    317: *        Update the trailing submatrix A(i+nb:m,i+nb:n), using an update
1.8       bertrand  318: *        of the form  A := A - V*Y**T - X*U**T
1.1       bertrand  319: *
                    320:          CALL DGEMM( 'No transpose', 'Transpose', M-I-NB+1, N-I-NB+1,
                    321:      $               NB, -ONE, A( I+NB, I ), LDA,
                    322:      $               WORK( LDWRKX*NB+NB+1 ), LDWRKY, ONE,
                    323:      $               A( I+NB, I+NB ), LDA )
                    324:          CALL DGEMM( 'No transpose', 'No transpose', M-I-NB+1, N-I-NB+1,
                    325:      $               NB, -ONE, WORK( NB+1 ), LDWRKX, A( I, I+NB ), LDA,
                    326:      $               ONE, A( I+NB, I+NB ), LDA )
                    327: *
                    328: *        Copy diagonal and off-diagonal elements of B back into A
                    329: *
                    330:          IF( M.GE.N ) THEN
                    331:             DO 10 J = I, I + NB - 1
                    332:                A( J, J ) = D( J )
                    333:                A( J, J+1 ) = E( J )
                    334:    10       CONTINUE
                    335:          ELSE
                    336:             DO 20 J = I, I + NB - 1
                    337:                A( J, J ) = D( J )
                    338:                A( J+1, J ) = E( J )
                    339:    20       CONTINUE
                    340:          END IF
                    341:    30 CONTINUE
                    342: *
                    343: *     Use unblocked code to reduce the remainder of the matrix
                    344: *
                    345:       CALL DGEBD2( M-I+1, N-I+1, A( I, I ), LDA, D( I ), E( I ),
                    346:      $             TAUQ( I ), TAUP( I ), WORK, IINFO )
                    347:       WORK( 1 ) = WS
                    348:       RETURN
                    349: *
                    350: *     End of DGEBRD
                    351: *
                    352:       END

CVSweb interface <joel.bertrand@systella.fr>