Annotation of rpl/lapack/lapack/dgebrd.f, revision 1.1

1.1     ! bertrand    1:       SUBROUTINE DGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
        !             2:      $                   INFO )
        !             3: *
        !             4: *  -- LAPACK routine (version 3.2) --
        !             5: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !             6: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !             7: *     November 2006
        !             8: *
        !             9: *     .. Scalar Arguments ..
        !            10:       INTEGER            INFO, LDA, LWORK, M, N
        !            11: *     ..
        !            12: *     .. Array Arguments ..
        !            13:       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
        !            14:      $                   TAUQ( * ), WORK( * )
        !            15: *     ..
        !            16: *
        !            17: *  Purpose
        !            18: *  =======
        !            19: *
        !            20: *  DGEBRD reduces a general real M-by-N matrix A to upper or lower
        !            21: *  bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.
        !            22: *
        !            23: *  If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
        !            24: *
        !            25: *  Arguments
        !            26: *  =========
        !            27: *
        !            28: *  M       (input) INTEGER
        !            29: *          The number of rows in the matrix A.  M >= 0.
        !            30: *
        !            31: *  N       (input) INTEGER
        !            32: *          The number of columns in the matrix A.  N >= 0.
        !            33: *
        !            34: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
        !            35: *          On entry, the M-by-N general matrix to be reduced.
        !            36: *          On exit,
        !            37: *          if m >= n, the diagonal and the first superdiagonal are
        !            38: *            overwritten with the upper bidiagonal matrix B; the
        !            39: *            elements below the diagonal, with the array TAUQ, represent
        !            40: *            the orthogonal matrix Q as a product of elementary
        !            41: *            reflectors, and the elements above the first superdiagonal,
        !            42: *            with the array TAUP, represent the orthogonal matrix P as
        !            43: *            a product of elementary reflectors;
        !            44: *          if m < n, the diagonal and the first subdiagonal are
        !            45: *            overwritten with the lower bidiagonal matrix B; the
        !            46: *            elements below the first subdiagonal, with the array TAUQ,
        !            47: *            represent the orthogonal matrix Q as a product of
        !            48: *            elementary reflectors, and the elements above the diagonal,
        !            49: *            with the array TAUP, represent the orthogonal matrix P as
        !            50: *            a product of elementary reflectors.
        !            51: *          See Further Details.
        !            52: *
        !            53: *  LDA     (input) INTEGER
        !            54: *          The leading dimension of the array A.  LDA >= max(1,M).
        !            55: *
        !            56: *  D       (output) DOUBLE PRECISION array, dimension (min(M,N))
        !            57: *          The diagonal elements of the bidiagonal matrix B:
        !            58: *          D(i) = A(i,i).
        !            59: *
        !            60: *  E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
        !            61: *          The off-diagonal elements of the bidiagonal matrix B:
        !            62: *          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
        !            63: *          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
        !            64: *
        !            65: *  TAUQ    (output) DOUBLE PRECISION array dimension (min(M,N))
        !            66: *          The scalar factors of the elementary reflectors which
        !            67: *          represent the orthogonal matrix Q. See Further Details.
        !            68: *
        !            69: *  TAUP    (output) DOUBLE PRECISION array, dimension (min(M,N))
        !            70: *          The scalar factors of the elementary reflectors which
        !            71: *          represent the orthogonal matrix P. See Further Details.
        !            72: *
        !            73: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
        !            74: *          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
        !            75: *
        !            76: *  LWORK   (input) INTEGER
        !            77: *          The length of the array WORK.  LWORK >= max(1,M,N).
        !            78: *          For optimum performance LWORK >= (M+N)*NB, where NB
        !            79: *          is the optimal blocksize.
        !            80: *
        !            81: *          If LWORK = -1, then a workspace query is assumed; the routine
        !            82: *          only calculates the optimal size of the WORK array, returns
        !            83: *          this value as the first entry of the WORK array, and no error
        !            84: *          message related to LWORK is issued by XERBLA.
        !            85: *
        !            86: *  INFO    (output) INTEGER
        !            87: *          = 0:  successful exit
        !            88: *          < 0:  if INFO = -i, the i-th argument had an illegal value.
        !            89: *
        !            90: *  Further Details
        !            91: *  ===============
        !            92: *
        !            93: *  The matrices Q and P are represented as products of elementary
        !            94: *  reflectors:
        !            95: *
        !            96: *  If m >= n,
        !            97: *
        !            98: *     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
        !            99: *
        !           100: *  Each H(i) and G(i) has the form:
        !           101: *
        !           102: *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
        !           103: *
        !           104: *  where tauq and taup are real scalars, and v and u are real vectors;
        !           105: *  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
        !           106: *  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
        !           107: *  tauq is stored in TAUQ(i) and taup in TAUP(i).
        !           108: *
        !           109: *  If m < n,
        !           110: *
        !           111: *     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
        !           112: *
        !           113: *  Each H(i) and G(i) has the form:
        !           114: *
        !           115: *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
        !           116: *
        !           117: *  where tauq and taup are real scalars, and v and u are real vectors;
        !           118: *  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
        !           119: *  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
        !           120: *  tauq is stored in TAUQ(i) and taup in TAUP(i).
        !           121: *
        !           122: *  The contents of A on exit are illustrated by the following examples:
        !           123: *
        !           124: *  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
        !           125: *
        !           126: *    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
        !           127: *    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
        !           128: *    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
        !           129: *    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
        !           130: *    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
        !           131: *    (  v1  v2  v3  v4  v5 )
        !           132: *
        !           133: *  where d and e denote diagonal and off-diagonal elements of B, vi
        !           134: *  denotes an element of the vector defining H(i), and ui an element of
        !           135: *  the vector defining G(i).
        !           136: *
        !           137: *  =====================================================================
        !           138: *
        !           139: *     .. Parameters ..
        !           140:       DOUBLE PRECISION   ONE
        !           141:       PARAMETER          ( ONE = 1.0D+0 )
        !           142: *     ..
        !           143: *     .. Local Scalars ..
        !           144:       LOGICAL            LQUERY
        !           145:       INTEGER            I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB,
        !           146:      $                   NBMIN, NX
        !           147:       DOUBLE PRECISION   WS
        !           148: *     ..
        !           149: *     .. External Subroutines ..
        !           150:       EXTERNAL           DGEBD2, DGEMM, DLABRD, XERBLA
        !           151: *     ..
        !           152: *     .. Intrinsic Functions ..
        !           153:       INTRINSIC          DBLE, MAX, MIN
        !           154: *     ..
        !           155: *     .. External Functions ..
        !           156:       INTEGER            ILAENV
        !           157:       EXTERNAL           ILAENV
        !           158: *     ..
        !           159: *     .. Executable Statements ..
        !           160: *
        !           161: *     Test the input parameters
        !           162: *
        !           163:       INFO = 0
        !           164:       NB = MAX( 1, ILAENV( 1, 'DGEBRD', ' ', M, N, -1, -1 ) )
        !           165:       LWKOPT = ( M+N )*NB
        !           166:       WORK( 1 ) = DBLE( LWKOPT )
        !           167:       LQUERY = ( LWORK.EQ.-1 )
        !           168:       IF( M.LT.0 ) THEN
        !           169:          INFO = -1
        !           170:       ELSE IF( N.LT.0 ) THEN
        !           171:          INFO = -2
        !           172:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
        !           173:          INFO = -4
        !           174:       ELSE IF( LWORK.LT.MAX( 1, M, N ) .AND. .NOT.LQUERY ) THEN
        !           175:          INFO = -10
        !           176:       END IF
        !           177:       IF( INFO.LT.0 ) THEN
        !           178:          CALL XERBLA( 'DGEBRD', -INFO )
        !           179:          RETURN
        !           180:       ELSE IF( LQUERY ) THEN
        !           181:          RETURN
        !           182:       END IF
        !           183: *
        !           184: *     Quick return if possible
        !           185: *
        !           186:       MINMN = MIN( M, N )
        !           187:       IF( MINMN.EQ.0 ) THEN
        !           188:          WORK( 1 ) = 1
        !           189:          RETURN
        !           190:       END IF
        !           191: *
        !           192:       WS = MAX( M, N )
        !           193:       LDWRKX = M
        !           194:       LDWRKY = N
        !           195: *
        !           196:       IF( NB.GT.1 .AND. NB.LT.MINMN ) THEN
        !           197: *
        !           198: *        Set the crossover point NX.
        !           199: *
        !           200:          NX = MAX( NB, ILAENV( 3, 'DGEBRD', ' ', M, N, -1, -1 ) )
        !           201: *
        !           202: *        Determine when to switch from blocked to unblocked code.
        !           203: *
        !           204:          IF( NX.LT.MINMN ) THEN
        !           205:             WS = ( M+N )*NB
        !           206:             IF( LWORK.LT.WS ) THEN
        !           207: *
        !           208: *              Not enough work space for the optimal NB, consider using
        !           209: *              a smaller block size.
        !           210: *
        !           211:                NBMIN = ILAENV( 2, 'DGEBRD', ' ', M, N, -1, -1 )
        !           212:                IF( LWORK.GE.( M+N )*NBMIN ) THEN
        !           213:                   NB = LWORK / ( M+N )
        !           214:                ELSE
        !           215:                   NB = 1
        !           216:                   NX = MINMN
        !           217:                END IF
        !           218:             END IF
        !           219:          END IF
        !           220:       ELSE
        !           221:          NX = MINMN
        !           222:       END IF
        !           223: *
        !           224:       DO 30 I = 1, MINMN - NX, NB
        !           225: *
        !           226: *        Reduce rows and columns i:i+nb-1 to bidiagonal form and return
        !           227: *        the matrices X and Y which are needed to update the unreduced
        !           228: *        part of the matrix
        !           229: *
        !           230:          CALL DLABRD( M-I+1, N-I+1, NB, A( I, I ), LDA, D( I ), E( I ),
        !           231:      $                TAUQ( I ), TAUP( I ), WORK, LDWRKX,
        !           232:      $                WORK( LDWRKX*NB+1 ), LDWRKY )
        !           233: *
        !           234: *        Update the trailing submatrix A(i+nb:m,i+nb:n), using an update
        !           235: *        of the form  A := A - V*Y' - X*U'
        !           236: *
        !           237:          CALL DGEMM( 'No transpose', 'Transpose', M-I-NB+1, N-I-NB+1,
        !           238:      $               NB, -ONE, A( I+NB, I ), LDA,
        !           239:      $               WORK( LDWRKX*NB+NB+1 ), LDWRKY, ONE,
        !           240:      $               A( I+NB, I+NB ), LDA )
        !           241:          CALL DGEMM( 'No transpose', 'No transpose', M-I-NB+1, N-I-NB+1,
        !           242:      $               NB, -ONE, WORK( NB+1 ), LDWRKX, A( I, I+NB ), LDA,
        !           243:      $               ONE, A( I+NB, I+NB ), LDA )
        !           244: *
        !           245: *        Copy diagonal and off-diagonal elements of B back into A
        !           246: *
        !           247:          IF( M.GE.N ) THEN
        !           248:             DO 10 J = I, I + NB - 1
        !           249:                A( J, J ) = D( J )
        !           250:                A( J, J+1 ) = E( J )
        !           251:    10       CONTINUE
        !           252:          ELSE
        !           253:             DO 20 J = I, I + NB - 1
        !           254:                A( J, J ) = D( J )
        !           255:                A( J+1, J ) = E( J )
        !           256:    20       CONTINUE
        !           257:          END IF
        !           258:    30 CONTINUE
        !           259: *
        !           260: *     Use unblocked code to reduce the remainder of the matrix
        !           261: *
        !           262:       CALL DGEBD2( M-I+1, N-I+1, A( I, I ), LDA, D( I ), E( I ),
        !           263:      $             TAUQ( I ), TAUP( I ), WORK, IINFO )
        !           264:       WORK( 1 ) = WS
        !           265:       RETURN
        !           266: *
        !           267: *     End of DGEBRD
        !           268: *
        !           269:       END

CVSweb interface <joel.bertrand@systella.fr>