File:  [local] / rpl / lapack / lapack / dgebd2.f
Revision 1.20: download - view: text, annotated - select for diffs - revision graph
Mon Aug 7 08:38:47 2023 UTC (8 months, 3 weeks ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_1_35, rpl-4_1_34, HEAD
Première mise à jour de lapack et blas.

    1: *> \brief \b DGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at
    6: *            http://www.netlib.org/lapack/explore-html/
    7: *
    8: *> \htmlonly
    9: *> Download DGEBD2 + dependencies
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgebd2.f">
   11: *> [TGZ]</a>
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgebd2.f">
   13: *> [ZIP]</a>
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgebd2.f">
   15: *> [TXT]</a>
   16: *> \endhtmlonly
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
   22: *
   23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, LDA, M, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
   28: *      $                   TAUQ( * ), WORK( * )
   29: *       ..
   30: *
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DGEBD2 reduces a real general m by n matrix A to upper or lower
   38: *> bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.
   39: *>
   40: *> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] M
   47: *> \verbatim
   48: *>          M is INTEGER
   49: *>          The number of rows in the matrix A.  M >= 0.
   50: *> \endverbatim
   51: *>
   52: *> \param[in] N
   53: *> \verbatim
   54: *>          N is INTEGER
   55: *>          The number of columns in the matrix A.  N >= 0.
   56: *> \endverbatim
   57: *>
   58: *> \param[in,out] A
   59: *> \verbatim
   60: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   61: *>          On entry, the m by n general matrix to be reduced.
   62: *>          On exit,
   63: *>          if m >= n, the diagonal and the first superdiagonal are
   64: *>            overwritten with the upper bidiagonal matrix B; the
   65: *>            elements below the diagonal, with the array TAUQ, represent
   66: *>            the orthogonal matrix Q as a product of elementary
   67: *>            reflectors, and the elements above the first superdiagonal,
   68: *>            with the array TAUP, represent the orthogonal matrix P as
   69: *>            a product of elementary reflectors;
   70: *>          if m < n, the diagonal and the first subdiagonal are
   71: *>            overwritten with the lower bidiagonal matrix B; the
   72: *>            elements below the first subdiagonal, with the array TAUQ,
   73: *>            represent the orthogonal matrix Q as a product of
   74: *>            elementary reflectors, and the elements above the diagonal,
   75: *>            with the array TAUP, represent the orthogonal matrix P as
   76: *>            a product of elementary reflectors.
   77: *>          See Further Details.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] LDA
   81: *> \verbatim
   82: *>          LDA is INTEGER
   83: *>          The leading dimension of the array A.  LDA >= max(1,M).
   84: *> \endverbatim
   85: *>
   86: *> \param[out] D
   87: *> \verbatim
   88: *>          D is DOUBLE PRECISION array, dimension (min(M,N))
   89: *>          The diagonal elements of the bidiagonal matrix B:
   90: *>          D(i) = A(i,i).
   91: *> \endverbatim
   92: *>
   93: *> \param[out] E
   94: *> \verbatim
   95: *>          E is DOUBLE PRECISION array, dimension (min(M,N)-1)
   96: *>          The off-diagonal elements of the bidiagonal matrix B:
   97: *>          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
   98: *>          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
   99: *> \endverbatim
  100: *>
  101: *> \param[out] TAUQ
  102: *> \verbatim
  103: *>          TAUQ is DOUBLE PRECISION array, dimension (min(M,N))
  104: *>          The scalar factors of the elementary reflectors which
  105: *>          represent the orthogonal matrix Q. See Further Details.
  106: *> \endverbatim
  107: *>
  108: *> \param[out] TAUP
  109: *> \verbatim
  110: *>          TAUP is DOUBLE PRECISION array, dimension (min(M,N))
  111: *>          The scalar factors of the elementary reflectors which
  112: *>          represent the orthogonal matrix P. See Further Details.
  113: *> \endverbatim
  114: *>
  115: *> \param[out] WORK
  116: *> \verbatim
  117: *>          WORK is DOUBLE PRECISION array, dimension (max(M,N))
  118: *> \endverbatim
  119: *>
  120: *> \param[out] INFO
  121: *> \verbatim
  122: *>          INFO is INTEGER
  123: *>          = 0: successful exit.
  124: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
  125: *> \endverbatim
  126: *
  127: *  Authors:
  128: *  ========
  129: *
  130: *> \author Univ. of Tennessee
  131: *> \author Univ. of California Berkeley
  132: *> \author Univ. of Colorado Denver
  133: *> \author NAG Ltd.
  134: *
  135: *> \ingroup doubleGEcomputational
  136: *
  137: *> \par Further Details:
  138: *  =====================
  139: *>
  140: *> \verbatim
  141: *>
  142: *>  The matrices Q and P are represented as products of elementary
  143: *>  reflectors:
  144: *>
  145: *>  If m >= n,
  146: *>
  147: *>     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
  148: *>
  149: *>  Each H(i) and G(i) has the form:
  150: *>
  151: *>     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T
  152: *>
  153: *>  where tauq and taup are real scalars, and v and u are real vectors;
  154: *>  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
  155: *>  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
  156: *>  tauq is stored in TAUQ(i) and taup in TAUP(i).
  157: *>
  158: *>  If m < n,
  159: *>
  160: *>     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
  161: *>
  162: *>  Each H(i) and G(i) has the form:
  163: *>
  164: *>     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T
  165: *>
  166: *>  where tauq and taup are real scalars, and v and u are real vectors;
  167: *>  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
  168: *>  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
  169: *>  tauq is stored in TAUQ(i) and taup in TAUP(i).
  170: *>
  171: *>  The contents of A on exit are illustrated by the following examples:
  172: *>
  173: *>  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
  174: *>
  175: *>    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
  176: *>    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
  177: *>    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
  178: *>    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
  179: *>    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
  180: *>    (  v1  v2  v3  v4  v5 )
  181: *>
  182: *>  where d and e denote diagonal and off-diagonal elements of B, vi
  183: *>  denotes an element of the vector defining H(i), and ui an element of
  184: *>  the vector defining G(i).
  185: *> \endverbatim
  186: *>
  187: *  =====================================================================
  188:       SUBROUTINE DGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
  189: *
  190: *  -- LAPACK computational routine --
  191: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  192: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  193: *
  194: *     .. Scalar Arguments ..
  195:       INTEGER            INFO, LDA, M, N
  196: *     ..
  197: *     .. Array Arguments ..
  198:       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
  199:      $                   TAUQ( * ), WORK( * )
  200: *     ..
  201: *
  202: *  =====================================================================
  203: *
  204: *     .. Parameters ..
  205:       DOUBLE PRECISION   ZERO, ONE
  206:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  207: *     ..
  208: *     .. Local Scalars ..
  209:       INTEGER            I
  210: *     ..
  211: *     .. External Subroutines ..
  212:       EXTERNAL           DLARF, DLARFG, XERBLA
  213: *     ..
  214: *     .. Intrinsic Functions ..
  215:       INTRINSIC          MAX, MIN
  216: *     ..
  217: *     .. Executable Statements ..
  218: *
  219: *     Test the input parameters
  220: *
  221:       INFO = 0
  222:       IF( M.LT.0 ) THEN
  223:          INFO = -1
  224:       ELSE IF( N.LT.0 ) THEN
  225:          INFO = -2
  226:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  227:          INFO = -4
  228:       END IF
  229:       IF( INFO.LT.0 ) THEN
  230:          CALL XERBLA( 'DGEBD2', -INFO )
  231:          RETURN
  232:       END IF
  233: *
  234:       IF( M.GE.N ) THEN
  235: *
  236: *        Reduce to upper bidiagonal form
  237: *
  238:          DO 10 I = 1, N
  239: *
  240: *           Generate elementary reflector H(i) to annihilate A(i+1:m,i)
  241: *
  242:             CALL DLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
  243:      $                   TAUQ( I ) )
  244:             D( I ) = A( I, I )
  245:             A( I, I ) = ONE
  246: *
  247: *           Apply H(i) to A(i:m,i+1:n) from the left
  248: *
  249:             IF( I.LT.N )
  250:      $         CALL DLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAUQ( I ),
  251:      $                     A( I, I+1 ), LDA, WORK )
  252:             A( I, I ) = D( I )
  253: *
  254:             IF( I.LT.N ) THEN
  255: *
  256: *              Generate elementary reflector G(i) to annihilate
  257: *              A(i,i+2:n)
  258: *
  259:                CALL DLARFG( N-I, A( I, I+1 ), A( I, MIN( I+2, N ) ),
  260:      $                      LDA, TAUP( I ) )
  261:                E( I ) = A( I, I+1 )
  262:                A( I, I+1 ) = ONE
  263: *
  264: *              Apply G(i) to A(i+1:m,i+1:n) from the right
  265: *
  266:                CALL DLARF( 'Right', M-I, N-I, A( I, I+1 ), LDA,
  267:      $                     TAUP( I ), A( I+1, I+1 ), LDA, WORK )
  268:                A( I, I+1 ) = E( I )
  269:             ELSE
  270:                TAUP( I ) = ZERO
  271:             END IF
  272:    10    CONTINUE
  273:       ELSE
  274: *
  275: *        Reduce to lower bidiagonal form
  276: *
  277:          DO 20 I = 1, M
  278: *
  279: *           Generate elementary reflector G(i) to annihilate A(i,i+1:n)
  280: *
  281:             CALL DLARFG( N-I+1, A( I, I ), A( I, MIN( I+1, N ) ), LDA,
  282:      $                   TAUP( I ) )
  283:             D( I ) = A( I, I )
  284:             A( I, I ) = ONE
  285: *
  286: *           Apply G(i) to A(i+1:m,i:n) from the right
  287: *
  288:             IF( I.LT.M )
  289:      $         CALL DLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
  290:      $                     TAUP( I ), A( I+1, I ), LDA, WORK )
  291:             A( I, I ) = D( I )
  292: *
  293:             IF( I.LT.M ) THEN
  294: *
  295: *              Generate elementary reflector H(i) to annihilate
  296: *              A(i+2:m,i)
  297: *
  298:                CALL DLARFG( M-I, A( I+1, I ), A( MIN( I+2, M ), I ), 1,
  299:      $                      TAUQ( I ) )
  300:                E( I ) = A( I+1, I )
  301:                A( I+1, I ) = ONE
  302: *
  303: *              Apply H(i) to A(i+1:m,i+1:n) from the left
  304: *
  305:                CALL DLARF( 'Left', M-I, N-I, A( I+1, I ), 1, TAUQ( I ),
  306:      $                     A( I+1, I+1 ), LDA, WORK )
  307:                A( I+1, I ) = E( I )
  308:             ELSE
  309:                TAUQ( I ) = ZERO
  310:             END IF
  311:    20    CONTINUE
  312:       END IF
  313:       RETURN
  314: *
  315: *     End of DGEBD2
  316: *
  317:       END

CVSweb interface <joel.bertrand@systella.fr>