File:  [local] / rpl / lapack / lapack / dgebd2.f
Revision 1.12: download - view: text, annotated - select for diffs - revision graph
Fri Dec 14 12:30:20 2012 UTC (11 years, 5 months ago) by bertrand
Branches: MAIN
CVS tags: HEAD
Mise à jour de Lapack vers la version 3.4.2 et des scripts de compilation
pour rplcas. En particulier, le Makefile.am de giac a été modifié pour ne
compiler que le répertoire src.

    1: *> \brief \b DGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.
    2: *
    3: *  =========== DOCUMENTATION ===========
    4: *
    5: * Online html documentation available at 
    6: *            http://www.netlib.org/lapack/explore-html/ 
    7: *
    8: *> \htmlonly
    9: *> Download DGEBD2 + dependencies 
   10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgebd2.f"> 
   11: *> [TGZ]</a> 
   12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgebd2.f"> 
   13: *> [ZIP]</a> 
   14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgebd2.f"> 
   15: *> [TXT]</a>
   16: *> \endhtmlonly 
   17: *
   18: *  Definition:
   19: *  ===========
   20: *
   21: *       SUBROUTINE DGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
   22:    23: *       .. Scalar Arguments ..
   24: *       INTEGER            INFO, LDA, M, N
   25: *       ..
   26: *       .. Array Arguments ..
   27: *       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
   28: *      $                   TAUQ( * ), WORK( * )
   29: *       ..
   30: *  
   31: *
   32: *> \par Purpose:
   33: *  =============
   34: *>
   35: *> \verbatim
   36: *>
   37: *> DGEBD2 reduces a real general m by n matrix A to upper or lower
   38: *> bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.
   39: *>
   40: *> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
   41: *> \endverbatim
   42: *
   43: *  Arguments:
   44: *  ==========
   45: *
   46: *> \param[in] M
   47: *> \verbatim
   48: *>          M is INTEGER
   49: *>          The number of rows in the matrix A.  M >= 0.
   50: *> \endverbatim
   51: *>
   52: *> \param[in] N
   53: *> \verbatim
   54: *>          N is INTEGER
   55: *>          The number of columns in the matrix A.  N >= 0.
   56: *> \endverbatim
   57: *>
   58: *> \param[in,out] A
   59: *> \verbatim
   60: *>          A is DOUBLE PRECISION array, dimension (LDA,N)
   61: *>          On entry, the m by n general matrix to be reduced.
   62: *>          On exit,
   63: *>          if m >= n, the diagonal and the first superdiagonal are
   64: *>            overwritten with the upper bidiagonal matrix B; the
   65: *>            elements below the diagonal, with the array TAUQ, represent
   66: *>            the orthogonal matrix Q as a product of elementary
   67: *>            reflectors, and the elements above the first superdiagonal,
   68: *>            with the array TAUP, represent the orthogonal matrix P as
   69: *>            a product of elementary reflectors;
   70: *>          if m < n, the diagonal and the first subdiagonal are
   71: *>            overwritten with the lower bidiagonal matrix B; the
   72: *>            elements below the first subdiagonal, with the array TAUQ,
   73: *>            represent the orthogonal matrix Q as a product of
   74: *>            elementary reflectors, and the elements above the diagonal,
   75: *>            with the array TAUP, represent the orthogonal matrix P as
   76: *>            a product of elementary reflectors.
   77: *>          See Further Details.
   78: *> \endverbatim
   79: *>
   80: *> \param[in] LDA
   81: *> \verbatim
   82: *>          LDA is INTEGER
   83: *>          The leading dimension of the array A.  LDA >= max(1,M).
   84: *> \endverbatim
   85: *>
   86: *> \param[out] D
   87: *> \verbatim
   88: *>          D is DOUBLE PRECISION array, dimension (min(M,N))
   89: *>          The diagonal elements of the bidiagonal matrix B:
   90: *>          D(i) = A(i,i).
   91: *> \endverbatim
   92: *>
   93: *> \param[out] E
   94: *> \verbatim
   95: *>          E is DOUBLE PRECISION array, dimension (min(M,N)-1)
   96: *>          The off-diagonal elements of the bidiagonal matrix B:
   97: *>          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
   98: *>          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
   99: *> \endverbatim
  100: *>
  101: *> \param[out] TAUQ
  102: *> \verbatim
  103: *>          TAUQ is DOUBLE PRECISION array dimension (min(M,N))
  104: *>          The scalar factors of the elementary reflectors which
  105: *>          represent the orthogonal matrix Q. See Further Details.
  106: *> \endverbatim
  107: *>
  108: *> \param[out] TAUP
  109: *> \verbatim
  110: *>          TAUP is DOUBLE PRECISION array, dimension (min(M,N))
  111: *>          The scalar factors of the elementary reflectors which
  112: *>          represent the orthogonal matrix P. See Further Details.
  113: *> \endverbatim
  114: *>
  115: *> \param[out] WORK
  116: *> \verbatim
  117: *>          WORK is DOUBLE PRECISION array, dimension (max(M,N))
  118: *> \endverbatim
  119: *>
  120: *> \param[out] INFO
  121: *> \verbatim
  122: *>          INFO is INTEGER
  123: *>          = 0: successful exit.
  124: *>          < 0: if INFO = -i, the i-th argument had an illegal value.
  125: *> \endverbatim
  126: *
  127: *  Authors:
  128: *  ========
  129: *
  130: *> \author Univ. of Tennessee 
  131: *> \author Univ. of California Berkeley 
  132: *> \author Univ. of Colorado Denver 
  133: *> \author NAG Ltd. 
  134: *
  135: *> \date September 2012
  136: *
  137: *> \ingroup doubleGEcomputational
  138: *
  139: *> \par Further Details:
  140: *  =====================
  141: *>
  142: *> \verbatim
  143: *>
  144: *>  The matrices Q and P are represented as products of elementary
  145: *>  reflectors:
  146: *>
  147: *>  If m >= n,
  148: *>
  149: *>     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
  150: *>
  151: *>  Each H(i) and G(i) has the form:
  152: *>
  153: *>     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T
  154: *>
  155: *>  where tauq and taup are real scalars, and v and u are real vectors;
  156: *>  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
  157: *>  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
  158: *>  tauq is stored in TAUQ(i) and taup in TAUP(i).
  159: *>
  160: *>  If m < n,
  161: *>
  162: *>     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
  163: *>
  164: *>  Each H(i) and G(i) has the form:
  165: *>
  166: *>     H(i) = I - tauq * v * v**T  and G(i) = I - taup * u * u**T
  167: *>
  168: *>  where tauq and taup are real scalars, and v and u are real vectors;
  169: *>  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
  170: *>  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
  171: *>  tauq is stored in TAUQ(i) and taup in TAUP(i).
  172: *>
  173: *>  The contents of A on exit are illustrated by the following examples:
  174: *>
  175: *>  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
  176: *>
  177: *>    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
  178: *>    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
  179: *>    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
  180: *>    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
  181: *>    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
  182: *>    (  v1  v2  v3  v4  v5 )
  183: *>
  184: *>  where d and e denote diagonal and off-diagonal elements of B, vi
  185: *>  denotes an element of the vector defining H(i), and ui an element of
  186: *>  the vector defining G(i).
  187: *> \endverbatim
  188: *>
  189: *  =====================================================================
  190:       SUBROUTINE DGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
  191: *
  192: *  -- LAPACK computational routine (version 3.4.2) --
  193: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
  194: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  195: *     September 2012
  196: *
  197: *     .. Scalar Arguments ..
  198:       INTEGER            INFO, LDA, M, N
  199: *     ..
  200: *     .. Array Arguments ..
  201:       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
  202:      $                   TAUQ( * ), WORK( * )
  203: *     ..
  204: *
  205: *  =====================================================================
  206: *
  207: *     .. Parameters ..
  208:       DOUBLE PRECISION   ZERO, ONE
  209:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  210: *     ..
  211: *     .. Local Scalars ..
  212:       INTEGER            I
  213: *     ..
  214: *     .. External Subroutines ..
  215:       EXTERNAL           DLARF, DLARFG, XERBLA
  216: *     ..
  217: *     .. Intrinsic Functions ..
  218:       INTRINSIC          MAX, MIN
  219: *     ..
  220: *     .. Executable Statements ..
  221: *
  222: *     Test the input parameters
  223: *
  224:       INFO = 0
  225:       IF( M.LT.0 ) THEN
  226:          INFO = -1
  227:       ELSE IF( N.LT.0 ) THEN
  228:          INFO = -2
  229:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  230:          INFO = -4
  231:       END IF
  232:       IF( INFO.LT.0 ) THEN
  233:          CALL XERBLA( 'DGEBD2', -INFO )
  234:          RETURN
  235:       END IF
  236: *
  237:       IF( M.GE.N ) THEN
  238: *
  239: *        Reduce to upper bidiagonal form
  240: *
  241:          DO 10 I = 1, N
  242: *
  243: *           Generate elementary reflector H(i) to annihilate A(i+1:m,i)
  244: *
  245:             CALL DLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
  246:      $                   TAUQ( I ) )
  247:             D( I ) = A( I, I )
  248:             A( I, I ) = ONE
  249: *
  250: *           Apply H(i) to A(i:m,i+1:n) from the left
  251: *
  252:             IF( I.LT.N )
  253:      $         CALL DLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAUQ( I ),
  254:      $                     A( I, I+1 ), LDA, WORK )
  255:             A( I, I ) = D( I )
  256: *
  257:             IF( I.LT.N ) THEN
  258: *
  259: *              Generate elementary reflector G(i) to annihilate
  260: *              A(i,i+2:n)
  261: *
  262:                CALL DLARFG( N-I, A( I, I+1 ), A( I, MIN( I+2, N ) ),
  263:      $                      LDA, TAUP( I ) )
  264:                E( I ) = A( I, I+1 )
  265:                A( I, I+1 ) = ONE
  266: *
  267: *              Apply G(i) to A(i+1:m,i+1:n) from the right
  268: *
  269:                CALL DLARF( 'Right', M-I, N-I, A( I, I+1 ), LDA,
  270:      $                     TAUP( I ), A( I+1, I+1 ), LDA, WORK )
  271:                A( I, I+1 ) = E( I )
  272:             ELSE
  273:                TAUP( I ) = ZERO
  274:             END IF
  275:    10    CONTINUE
  276:       ELSE
  277: *
  278: *        Reduce to lower bidiagonal form
  279: *
  280:          DO 20 I = 1, M
  281: *
  282: *           Generate elementary reflector G(i) to annihilate A(i,i+1:n)
  283: *
  284:             CALL DLARFG( N-I+1, A( I, I ), A( I, MIN( I+1, N ) ), LDA,
  285:      $                   TAUP( I ) )
  286:             D( I ) = A( I, I )
  287:             A( I, I ) = ONE
  288: *
  289: *           Apply G(i) to A(i+1:m,i:n) from the right
  290: *
  291:             IF( I.LT.M )
  292:      $         CALL DLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
  293:      $                     TAUP( I ), A( I+1, I ), LDA, WORK )
  294:             A( I, I ) = D( I )
  295: *
  296:             IF( I.LT.M ) THEN
  297: *
  298: *              Generate elementary reflector H(i) to annihilate
  299: *              A(i+2:m,i)
  300: *
  301:                CALL DLARFG( M-I, A( I+1, I ), A( MIN( I+2, M ), I ), 1,
  302:      $                      TAUQ( I ) )
  303:                E( I ) = A( I+1, I )
  304:                A( I+1, I ) = ONE
  305: *
  306: *              Apply H(i) to A(i+1:m,i+1:n) from the left
  307: *
  308:                CALL DLARF( 'Left', M-I, N-I, A( I+1, I ), 1, TAUQ( I ),
  309:      $                     A( I+1, I+1 ), LDA, WORK )
  310:                A( I+1, I ) = E( I )
  311:             ELSE
  312:                TAUQ( I ) = ZERO
  313:             END IF
  314:    20    CONTINUE
  315:       END IF
  316:       RETURN
  317: *
  318: *     End of DGEBD2
  319: *
  320:       END

CVSweb interface <joel.bertrand@systella.fr>