Annotation of rpl/lapack/lapack/dgebd2.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE DGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
                      2: *
                      3: *  -- LAPACK routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       INTEGER            INFO, LDA, M, N
                     10: *     ..
                     11: *     .. Array Arguments ..
                     12:       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), TAUP( * ),
                     13:      $                   TAUQ( * ), WORK( * )
                     14: *     ..
                     15: *
                     16: *  Purpose
                     17: *  =======
                     18: *
                     19: *  DGEBD2 reduces a real general m by n matrix A to upper or lower
                     20: *  bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
                     21: *
                     22: *  If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
                     23: *
                     24: *  Arguments
                     25: *  =========
                     26: *
                     27: *  M       (input) INTEGER
                     28: *          The number of rows in the matrix A.  M >= 0.
                     29: *
                     30: *  N       (input) INTEGER
                     31: *          The number of columns in the matrix A.  N >= 0.
                     32: *
                     33: *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
                     34: *          On entry, the m by n general matrix to be reduced.
                     35: *          On exit,
                     36: *          if m >= n, the diagonal and the first superdiagonal are
                     37: *            overwritten with the upper bidiagonal matrix B; the
                     38: *            elements below the diagonal, with the array TAUQ, represent
                     39: *            the orthogonal matrix Q as a product of elementary
                     40: *            reflectors, and the elements above the first superdiagonal,
                     41: *            with the array TAUP, represent the orthogonal matrix P as
                     42: *            a product of elementary reflectors;
                     43: *          if m < n, the diagonal and the first subdiagonal are
                     44: *            overwritten with the lower bidiagonal matrix B; the
                     45: *            elements below the first subdiagonal, with the array TAUQ,
                     46: *            represent the orthogonal matrix Q as a product of
                     47: *            elementary reflectors, and the elements above the diagonal,
                     48: *            with the array TAUP, represent the orthogonal matrix P as
                     49: *            a product of elementary reflectors.
                     50: *          See Further Details.
                     51: *
                     52: *  LDA     (input) INTEGER
                     53: *          The leading dimension of the array A.  LDA >= max(1,M).
                     54: *
                     55: *  D       (output) DOUBLE PRECISION array, dimension (min(M,N))
                     56: *          The diagonal elements of the bidiagonal matrix B:
                     57: *          D(i) = A(i,i).
                     58: *
                     59: *  E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
                     60: *          The off-diagonal elements of the bidiagonal matrix B:
                     61: *          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
                     62: *          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
                     63: *
                     64: *  TAUQ    (output) DOUBLE PRECISION array dimension (min(M,N))
                     65: *          The scalar factors of the elementary reflectors which
                     66: *          represent the orthogonal matrix Q. See Further Details.
                     67: *
                     68: *  TAUP    (output) DOUBLE PRECISION array, dimension (min(M,N))
                     69: *          The scalar factors of the elementary reflectors which
                     70: *          represent the orthogonal matrix P. See Further Details.
                     71: *
                     72: *  WORK    (workspace) DOUBLE PRECISION array, dimension (max(M,N))
                     73: *
                     74: *  INFO    (output) INTEGER
                     75: *          = 0: successful exit.
                     76: *          < 0: if INFO = -i, the i-th argument had an illegal value.
                     77: *
                     78: *  Further Details
                     79: *  ===============
                     80: *
                     81: *  The matrices Q and P are represented as products of elementary
                     82: *  reflectors:
                     83: *
                     84: *  If m >= n,
                     85: *
                     86: *     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
                     87: *
                     88: *  Each H(i) and G(i) has the form:
                     89: *
                     90: *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
                     91: *
                     92: *  where tauq and taup are real scalars, and v and u are real vectors;
                     93: *  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
                     94: *  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
                     95: *  tauq is stored in TAUQ(i) and taup in TAUP(i).
                     96: *
                     97: *  If m < n,
                     98: *
                     99: *     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
                    100: *
                    101: *  Each H(i) and G(i) has the form:
                    102: *
                    103: *     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
                    104: *
                    105: *  where tauq and taup are real scalars, and v and u are real vectors;
                    106: *  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
                    107: *  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
                    108: *  tauq is stored in TAUQ(i) and taup in TAUP(i).
                    109: *
                    110: *  The contents of A on exit are illustrated by the following examples:
                    111: *
                    112: *  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
                    113: *
                    114: *    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
                    115: *    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
                    116: *    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
                    117: *    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
                    118: *    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
                    119: *    (  v1  v2  v3  v4  v5 )
                    120: *
                    121: *  where d and e denote diagonal and off-diagonal elements of B, vi
                    122: *  denotes an element of the vector defining H(i), and ui an element of
                    123: *  the vector defining G(i).
                    124: *
                    125: *  =====================================================================
                    126: *
                    127: *     .. Parameters ..
                    128:       DOUBLE PRECISION   ZERO, ONE
                    129:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    130: *     ..
                    131: *     .. Local Scalars ..
                    132:       INTEGER            I
                    133: *     ..
                    134: *     .. External Subroutines ..
                    135:       EXTERNAL           DLARF, DLARFG, XERBLA
                    136: *     ..
                    137: *     .. Intrinsic Functions ..
                    138:       INTRINSIC          MAX, MIN
                    139: *     ..
                    140: *     .. Executable Statements ..
                    141: *
                    142: *     Test the input parameters
                    143: *
                    144:       INFO = 0
                    145:       IF( M.LT.0 ) THEN
                    146:          INFO = -1
                    147:       ELSE IF( N.LT.0 ) THEN
                    148:          INFO = -2
                    149:       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
                    150:          INFO = -4
                    151:       END IF
                    152:       IF( INFO.LT.0 ) THEN
                    153:          CALL XERBLA( 'DGEBD2', -INFO )
                    154:          RETURN
                    155:       END IF
                    156: *
                    157:       IF( M.GE.N ) THEN
                    158: *
                    159: *        Reduce to upper bidiagonal form
                    160: *
                    161:          DO 10 I = 1, N
                    162: *
                    163: *           Generate elementary reflector H(i) to annihilate A(i+1:m,i)
                    164: *
                    165:             CALL DLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
                    166:      $                   TAUQ( I ) )
                    167:             D( I ) = A( I, I )
                    168:             A( I, I ) = ONE
                    169: *
                    170: *           Apply H(i) to A(i:m,i+1:n) from the left
                    171: *
                    172:             IF( I.LT.N )
                    173:      $         CALL DLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAUQ( I ),
                    174:      $                     A( I, I+1 ), LDA, WORK )
                    175:             A( I, I ) = D( I )
                    176: *
                    177:             IF( I.LT.N ) THEN
                    178: *
                    179: *              Generate elementary reflector G(i) to annihilate
                    180: *              A(i,i+2:n)
                    181: *
                    182:                CALL DLARFG( N-I, A( I, I+1 ), A( I, MIN( I+2, N ) ),
                    183:      $                      LDA, TAUP( I ) )
                    184:                E( I ) = A( I, I+1 )
                    185:                A( I, I+1 ) = ONE
                    186: *
                    187: *              Apply G(i) to A(i+1:m,i+1:n) from the right
                    188: *
                    189:                CALL DLARF( 'Right', M-I, N-I, A( I, I+1 ), LDA,
                    190:      $                     TAUP( I ), A( I+1, I+1 ), LDA, WORK )
                    191:                A( I, I+1 ) = E( I )
                    192:             ELSE
                    193:                TAUP( I ) = ZERO
                    194:             END IF
                    195:    10    CONTINUE
                    196:       ELSE
                    197: *
                    198: *        Reduce to lower bidiagonal form
                    199: *
                    200:          DO 20 I = 1, M
                    201: *
                    202: *           Generate elementary reflector G(i) to annihilate A(i,i+1:n)
                    203: *
                    204:             CALL DLARFG( N-I+1, A( I, I ), A( I, MIN( I+1, N ) ), LDA,
                    205:      $                   TAUP( I ) )
                    206:             D( I ) = A( I, I )
                    207:             A( I, I ) = ONE
                    208: *
                    209: *           Apply G(i) to A(i+1:m,i:n) from the right
                    210: *
                    211:             IF( I.LT.M )
                    212:      $         CALL DLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
                    213:      $                     TAUP( I ), A( I+1, I ), LDA, WORK )
                    214:             A( I, I ) = D( I )
                    215: *
                    216:             IF( I.LT.M ) THEN
                    217: *
                    218: *              Generate elementary reflector H(i) to annihilate
                    219: *              A(i+2:m,i)
                    220: *
                    221:                CALL DLARFG( M-I, A( I+1, I ), A( MIN( I+2, M ), I ), 1,
                    222:      $                      TAUQ( I ) )
                    223:                E( I ) = A( I+1, I )
                    224:                A( I+1, I ) = ONE
                    225: *
                    226: *              Apply H(i) to A(i+1:m,i+1:n) from the left
                    227: *
                    228:                CALL DLARF( 'Left', M-I, N-I, A( I+1, I ), 1, TAUQ( I ),
                    229:      $                     A( I+1, I+1 ), LDA, WORK )
                    230:                A( I+1, I ) = E( I )
                    231:             ELSE
                    232:                TAUQ( I ) = ZERO
                    233:             END IF
                    234:    20    CONTINUE
                    235:       END IF
                    236:       RETURN
                    237: *
                    238: *     End of DGEBD2
                    239: *
                    240:       END

CVSweb interface <joel.bertrand@systella.fr>