Annotation of rpl/lapack/lapack/dgbtf2.f, revision 1.7

1.1       bertrand    1:       SUBROUTINE DGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
                      2: *
                      3: *  -- LAPACK routine (version 3.2) --
                      4: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                      5: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
                      6: *     November 2006
                      7: *
                      8: *     .. Scalar Arguments ..
                      9:       INTEGER            INFO, KL, KU, LDAB, M, N
                     10: *     ..
                     11: *     .. Array Arguments ..
                     12:       INTEGER            IPIV( * )
                     13:       DOUBLE PRECISION   AB( LDAB, * )
                     14: *     ..
                     15: *
                     16: *  Purpose
                     17: *  =======
                     18: *
                     19: *  DGBTF2 computes an LU factorization of a real m-by-n band matrix A
                     20: *  using partial pivoting with row interchanges.
                     21: *
                     22: *  This is the unblocked version of the algorithm, calling Level 2 BLAS.
                     23: *
                     24: *  Arguments
                     25: *  =========
                     26: *
                     27: *  M       (input) INTEGER
                     28: *          The number of rows of the matrix A.  M >= 0.
                     29: *
                     30: *  N       (input) INTEGER
                     31: *          The number of columns of the matrix A.  N >= 0.
                     32: *
                     33: *  KL      (input) INTEGER
                     34: *          The number of subdiagonals within the band of A.  KL >= 0.
                     35: *
                     36: *  KU      (input) INTEGER
                     37: *          The number of superdiagonals within the band of A.  KU >= 0.
                     38: *
                     39: *  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
                     40: *          On entry, the matrix A in band storage, in rows KL+1 to
                     41: *          2*KL+KU+1; rows 1 to KL of the array need not be set.
                     42: *          The j-th column of A is stored in the j-th column of the
                     43: *          array AB as follows:
                     44: *          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
                     45: *
                     46: *          On exit, details of the factorization: U is stored as an
                     47: *          upper triangular band matrix with KL+KU superdiagonals in
                     48: *          rows 1 to KL+KU+1, and the multipliers used during the
                     49: *          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
                     50: *          See below for further details.
                     51: *
                     52: *  LDAB    (input) INTEGER
                     53: *          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
                     54: *
                     55: *  IPIV    (output) INTEGER array, dimension (min(M,N))
                     56: *          The pivot indices; for 1 <= i <= min(M,N), row i of the
                     57: *          matrix was interchanged with row IPIV(i).
                     58: *
                     59: *  INFO    (output) INTEGER
                     60: *          = 0: successful exit
                     61: *          < 0: if INFO = -i, the i-th argument had an illegal value
                     62: *          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
                     63: *               has been completed, but the factor U is exactly
                     64: *               singular, and division by zero will occur if it is used
                     65: *               to solve a system of equations.
                     66: *
                     67: *  Further Details
                     68: *  ===============
                     69: *
                     70: *  The band storage scheme is illustrated by the following example, when
                     71: *  M = N = 6, KL = 2, KU = 1:
                     72: *
                     73: *  On entry:                       On exit:
                     74: *
                     75: *      *    *    *    +    +    +       *    *    *   u14  u25  u36
                     76: *      *    *    +    +    +    +       *    *   u13  u24  u35  u46
                     77: *      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
                     78: *     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
                     79: *     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
                     80: *     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
                     81: *
                     82: *  Array elements marked * are not used by the routine; elements marked
                     83: *  + need not be set on entry, but are required by the routine to store
                     84: *  elements of U, because of fill-in resulting from the row
                     85: *  interchanges.
                     86: *
                     87: *  =====================================================================
                     88: *
                     89: *     .. Parameters ..
                     90:       DOUBLE PRECISION   ONE, ZERO
                     91:       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
                     92: *     ..
                     93: *     .. Local Scalars ..
                     94:       INTEGER            I, J, JP, JU, KM, KV
                     95: *     ..
                     96: *     .. External Functions ..
                     97:       INTEGER            IDAMAX
                     98:       EXTERNAL           IDAMAX
                     99: *     ..
                    100: *     .. External Subroutines ..
                    101:       EXTERNAL           DGER, DSCAL, DSWAP, XERBLA
                    102: *     ..
                    103: *     .. Intrinsic Functions ..
                    104:       INTRINSIC          MAX, MIN
                    105: *     ..
                    106: *     .. Executable Statements ..
                    107: *
                    108: *     KV is the number of superdiagonals in the factor U, allowing for
                    109: *     fill-in.
                    110: *
                    111:       KV = KU + KL
                    112: *
                    113: *     Test the input parameters.
                    114: *
                    115:       INFO = 0
                    116:       IF( M.LT.0 ) THEN
                    117:          INFO = -1
                    118:       ELSE IF( N.LT.0 ) THEN
                    119:          INFO = -2
                    120:       ELSE IF( KL.LT.0 ) THEN
                    121:          INFO = -3
                    122:       ELSE IF( KU.LT.0 ) THEN
                    123:          INFO = -4
                    124:       ELSE IF( LDAB.LT.KL+KV+1 ) THEN
                    125:          INFO = -6
                    126:       END IF
                    127:       IF( INFO.NE.0 ) THEN
                    128:          CALL XERBLA( 'DGBTF2', -INFO )
                    129:          RETURN
                    130:       END IF
                    131: *
                    132: *     Quick return if possible
                    133: *
                    134:       IF( M.EQ.0 .OR. N.EQ.0 )
                    135:      $   RETURN
                    136: *
                    137: *     Gaussian elimination with partial pivoting
                    138: *
                    139: *     Set fill-in elements in columns KU+2 to KV to zero.
                    140: *
                    141:       DO 20 J = KU + 2, MIN( KV, N )
                    142:          DO 10 I = KV - J + 2, KL
                    143:             AB( I, J ) = ZERO
                    144:    10    CONTINUE
                    145:    20 CONTINUE
                    146: *
                    147: *     JU is the index of the last column affected by the current stage
                    148: *     of the factorization.
                    149: *
                    150:       JU = 1
                    151: *
                    152:       DO 40 J = 1, MIN( M, N )
                    153: *
                    154: *        Set fill-in elements in column J+KV to zero.
                    155: *
                    156:          IF( J+KV.LE.N ) THEN
                    157:             DO 30 I = 1, KL
                    158:                AB( I, J+KV ) = ZERO
                    159:    30       CONTINUE
                    160:          END IF
                    161: *
                    162: *        Find pivot and test for singularity. KM is the number of
                    163: *        subdiagonal elements in the current column.
                    164: *
                    165:          KM = MIN( KL, M-J )
                    166:          JP = IDAMAX( KM+1, AB( KV+1, J ), 1 )
                    167:          IPIV( J ) = JP + J - 1
                    168:          IF( AB( KV+JP, J ).NE.ZERO ) THEN
                    169:             JU = MAX( JU, MIN( J+KU+JP-1, N ) )
                    170: *
                    171: *           Apply interchange to columns J to JU.
                    172: *
                    173:             IF( JP.NE.1 )
                    174:      $         CALL DSWAP( JU-J+1, AB( KV+JP, J ), LDAB-1,
                    175:      $                     AB( KV+1, J ), LDAB-1 )
                    176: *
                    177:             IF( KM.GT.0 ) THEN
                    178: *
                    179: *              Compute multipliers.
                    180: *
                    181:                CALL DSCAL( KM, ONE / AB( KV+1, J ), AB( KV+2, J ), 1 )
                    182: *
                    183: *              Update trailing submatrix within the band.
                    184: *
                    185:                IF( JU.GT.J )
                    186:      $            CALL DGER( KM, JU-J, -ONE, AB( KV+2, J ), 1,
                    187:      $                       AB( KV, J+1 ), LDAB-1, AB( KV+1, J+1 ),
                    188:      $                       LDAB-1 )
                    189:             END IF
                    190:          ELSE
                    191: *
                    192: *           If pivot is zero, set INFO to the index of the pivot
                    193: *           unless a zero pivot has already been found.
                    194: *
                    195:             IF( INFO.EQ.0 )
                    196:      $         INFO = J
                    197:          END IF
                    198:    40 CONTINUE
                    199:       RETURN
                    200: *
                    201: *     End of DGBTF2
                    202: *
                    203:       END

CVSweb interface <joel.bertrand@systella.fr>