Annotation of rpl/lapack/lapack/dgbsvxx.f, revision 1.5

1.5     ! bertrand    1: *> \brief <b> DGBSVXX computes the solution to system of linear equations A * X = B for GB matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DGBSVXX + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgbsvxx.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgbsvxx.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgbsvxx.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DGBSVXX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
        !            22: *                           LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
        !            23: *                           RCOND, RPVGRW, BERR, N_ERR_BNDS,
        !            24: *                           ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
        !            25: *                           WORK, IWORK, INFO )
        !            26: * 
        !            27: *       .. Scalar Arguments ..
        !            28: *       CHARACTER          EQUED, FACT, TRANS
        !            29: *       INTEGER            INFO, LDAB, LDAFB, LDB, LDX, N, NRHS, NPARAMS,
        !            30: *      $                   N_ERR_BNDS, KL, KU
        !            31: *       DOUBLE PRECISION   RCOND, RPVGRW
        !            32: *       ..
        !            33: *       .. Array Arguments ..
        !            34: *       INTEGER            IPIV( * ), IWORK( * )
        !            35: *       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
        !            36: *      $                   X( LDX , * ),WORK( * )
        !            37: *       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
        !            38: *      $                   ERR_BNDS_NORM( NRHS, * ),
        !            39: *      $                   ERR_BNDS_COMP( NRHS, * )
        !            40: *       ..
        !            41: *  
        !            42: *
        !            43: *> \par Purpose:
        !            44: *  =============
        !            45: *>
        !            46: *> \verbatim
        !            47: *>
        !            48: *>    DGBSVXX uses the LU factorization to compute the solution to a
        !            49: *>    double precision system of linear equations  A * X = B,  where A is an
        !            50: *>    N-by-N matrix and X and B are N-by-NRHS matrices.
        !            51: *>
        !            52: *>    If requested, both normwise and maximum componentwise error bounds
        !            53: *>    are returned. DGBSVXX will return a solution with a tiny
        !            54: *>    guaranteed error (O(eps) where eps is the working machine
        !            55: *>    precision) unless the matrix is very ill-conditioned, in which
        !            56: *>    case a warning is returned. Relevant condition numbers also are
        !            57: *>    calculated and returned.
        !            58: *>
        !            59: *>    DGBSVXX accepts user-provided factorizations and equilibration
        !            60: *>    factors; see the definitions of the FACT and EQUED options.
        !            61: *>    Solving with refinement and using a factorization from a previous
        !            62: *>    DGBSVXX call will also produce a solution with either O(eps)
        !            63: *>    errors or warnings, but we cannot make that claim for general
        !            64: *>    user-provided factorizations and equilibration factors if they
        !            65: *>    differ from what DGBSVXX would itself produce.
        !            66: *> \endverbatim
        !            67: *
        !            68: *> \par Description:
        !            69: *  =================
        !            70: *>
        !            71: *> \verbatim
        !            72: *>
        !            73: *>    The following steps are performed:
        !            74: *>
        !            75: *>    1. If FACT = 'E', double precision scaling factors are computed to equilibrate
        !            76: *>    the system:
        !            77: *>
        !            78: *>      TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
        !            79: *>      TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
        !            80: *>      TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
        !            81: *>
        !            82: *>    Whether or not the system will be equilibrated depends on the
        !            83: *>    scaling of the matrix A, but if equilibration is used, A is
        !            84: *>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
        !            85: *>    or diag(C)*B (if TRANS = 'T' or 'C').
        !            86: *>
        !            87: *>    2. If FACT = 'N' or 'E', the LU decomposition is used to factor
        !            88: *>    the matrix A (after equilibration if FACT = 'E') as
        !            89: *>
        !            90: *>      A = P * L * U,
        !            91: *>
        !            92: *>    where P is a permutation matrix, L is a unit lower triangular
        !            93: *>    matrix, and U is upper triangular.
        !            94: *>
        !            95: *>    3. If some U(i,i)=0, so that U is exactly singular, then the
        !            96: *>    routine returns with INFO = i. Otherwise, the factored form of A
        !            97: *>    is used to estimate the condition number of the matrix A (see
        !            98: *>    argument RCOND). If the reciprocal of the condition number is less
        !            99: *>    than machine precision, the routine still goes on to solve for X
        !           100: *>    and compute error bounds as described below.
        !           101: *>
        !           102: *>    4. The system of equations is solved for X using the factored form
        !           103: *>    of A.
        !           104: *>
        !           105: *>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
        !           106: *>    the routine will use iterative refinement to try to get a small
        !           107: *>    error and error bounds.  Refinement calculates the residual to at
        !           108: *>    least twice the working precision.
        !           109: *>
        !           110: *>    6. If equilibration was used, the matrix X is premultiplied by
        !           111: *>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
        !           112: *>    that it solves the original system before equilibration.
        !           113: *> \endverbatim
        !           114: *
        !           115: *  Arguments:
        !           116: *  ==========
        !           117: *
        !           118: *> \verbatim
        !           119: *>     Some optional parameters are bundled in the PARAMS array.  These
        !           120: *>     settings determine how refinement is performed, but often the
        !           121: *>     defaults are acceptable.  If the defaults are acceptable, users
        !           122: *>     can pass NPARAMS = 0 which prevents the source code from accessing
        !           123: *>     the PARAMS argument.
        !           124: *> \endverbatim
        !           125: *>
        !           126: *> \param[in] FACT
        !           127: *> \verbatim
        !           128: *>          FACT is CHARACTER*1
        !           129: *>     Specifies whether or not the factored form of the matrix A is
        !           130: *>     supplied on entry, and if not, whether the matrix A should be
        !           131: *>     equilibrated before it is factored.
        !           132: *>       = 'F':  On entry, AF and IPIV contain the factored form of A.
        !           133: *>               If EQUED is not 'N', the matrix A has been
        !           134: *>               equilibrated with scaling factors given by R and C.
        !           135: *>               A, AF, and IPIV are not modified.
        !           136: *>       = 'N':  The matrix A will be copied to AF and factored.
        !           137: *>       = 'E':  The matrix A will be equilibrated if necessary, then
        !           138: *>               copied to AF and factored.
        !           139: *> \endverbatim
        !           140: *>
        !           141: *> \param[in] TRANS
        !           142: *> \verbatim
        !           143: *>          TRANS is CHARACTER*1
        !           144: *>     Specifies the form of the system of equations:
        !           145: *>       = 'N':  A * X = B     (No transpose)
        !           146: *>       = 'T':  A**T * X = B  (Transpose)
        !           147: *>       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
        !           148: *> \endverbatim
        !           149: *>
        !           150: *> \param[in] N
        !           151: *> \verbatim
        !           152: *>          N is INTEGER
        !           153: *>     The number of linear equations, i.e., the order of the
        !           154: *>     matrix A.  N >= 0.
        !           155: *> \endverbatim
        !           156: *>
        !           157: *> \param[in] KL
        !           158: *> \verbatim
        !           159: *>          KL is INTEGER
        !           160: *>     The number of subdiagonals within the band of A.  KL >= 0.
        !           161: *> \endverbatim
        !           162: *>
        !           163: *> \param[in] KU
        !           164: *> \verbatim
        !           165: *>          KU is INTEGER
        !           166: *>     The number of superdiagonals within the band of A.  KU >= 0.
        !           167: *> \endverbatim
        !           168: *>
        !           169: *> \param[in] NRHS
        !           170: *> \verbatim
        !           171: *>          NRHS is INTEGER
        !           172: *>     The number of right hand sides, i.e., the number of columns
        !           173: *>     of the matrices B and X.  NRHS >= 0.
        !           174: *> \endverbatim
        !           175: *>
        !           176: *> \param[in,out] AB
        !           177: *> \verbatim
        !           178: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
        !           179: *>     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
        !           180: *>     The j-th column of A is stored in the j-th column of the
        !           181: *>     array AB as follows:
        !           182: *>     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
        !           183: *>
        !           184: *>     If FACT = 'F' and EQUED is not 'N', then AB must have been
        !           185: *>     equilibrated by the scaling factors in R and/or C.  AB is not
        !           186: *>     modified if FACT = 'F' or 'N', or if FACT = 'E' and
        !           187: *>     EQUED = 'N' on exit.
        !           188: *>
        !           189: *>     On exit, if EQUED .ne. 'N', A is scaled as follows:
        !           190: *>     EQUED = 'R':  A := diag(R) * A
        !           191: *>     EQUED = 'C':  A := A * diag(C)
        !           192: *>     EQUED = 'B':  A := diag(R) * A * diag(C).
        !           193: *> \endverbatim
        !           194: *>
        !           195: *> \param[in] LDAB
        !           196: *> \verbatim
        !           197: *>          LDAB is INTEGER
        !           198: *>     The leading dimension of the array AB.  LDAB >= KL+KU+1.
        !           199: *> \endverbatim
        !           200: *>
        !           201: *> \param[in,out] AFB
        !           202: *> \verbatim
        !           203: *>          AFB is or output) DOUBLE PRECISION array, dimension (LDAFB,N)
        !           204: *>     If FACT = 'F', then AFB is an input argument and on entry
        !           205: *>     contains details of the LU factorization of the band matrix
        !           206: *>     A, as computed by DGBTRF.  U is stored as an upper triangular
        !           207: *>     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
        !           208: *>     and the multipliers used during the factorization are stored
        !           209: *>     in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
        !           210: *>     the factored form of the equilibrated matrix A.
        !           211: *>
        !           212: *>     If FACT = 'N', then AF is an output argument and on exit
        !           213: *>     returns the factors L and U from the factorization A = P*L*U
        !           214: *>     of the original matrix A.
        !           215: *>
        !           216: *>     If FACT = 'E', then AF is an output argument and on exit
        !           217: *>     returns the factors L and U from the factorization A = P*L*U
        !           218: *>     of the equilibrated matrix A (see the description of A for
        !           219: *>     the form of the equilibrated matrix).
        !           220: *> \endverbatim
        !           221: *>
        !           222: *> \param[in] LDAFB
        !           223: *> \verbatim
        !           224: *>          LDAFB is INTEGER
        !           225: *>     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
        !           226: *> \endverbatim
        !           227: *>
        !           228: *> \param[in,out] IPIV
        !           229: *> \verbatim
        !           230: *>          IPIV is or output) INTEGER array, dimension (N)
        !           231: *>     If FACT = 'F', then IPIV is an input argument and on entry
        !           232: *>     contains the pivot indices from the factorization A = P*L*U
        !           233: *>     as computed by DGETRF; row i of the matrix was interchanged
        !           234: *>     with row IPIV(i).
        !           235: *>
        !           236: *>     If FACT = 'N', then IPIV is an output argument and on exit
        !           237: *>     contains the pivot indices from the factorization A = P*L*U
        !           238: *>     of the original matrix A.
        !           239: *>
        !           240: *>     If FACT = 'E', then IPIV is an output argument and on exit
        !           241: *>     contains the pivot indices from the factorization A = P*L*U
        !           242: *>     of the equilibrated matrix A.
        !           243: *> \endverbatim
        !           244: *>
        !           245: *> \param[in,out] EQUED
        !           246: *> \verbatim
        !           247: *>          EQUED is or output) CHARACTER*1
        !           248: *>     Specifies the form of equilibration that was done.
        !           249: *>       = 'N':  No equilibration (always true if FACT = 'N').
        !           250: *>       = 'R':  Row equilibration, i.e., A has been premultiplied by
        !           251: *>               diag(R).
        !           252: *>       = 'C':  Column equilibration, i.e., A has been postmultiplied
        !           253: *>               by diag(C).
        !           254: *>       = 'B':  Both row and column equilibration, i.e., A has been
        !           255: *>               replaced by diag(R) * A * diag(C).
        !           256: *>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
        !           257: *>     output argument.
        !           258: *> \endverbatim
        !           259: *>
        !           260: *> \param[in,out] R
        !           261: *> \verbatim
        !           262: *>          R is or output) DOUBLE PRECISION array, dimension (N)
        !           263: *>     The row scale factors for A.  If EQUED = 'R' or 'B', A is
        !           264: *>     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
        !           265: *>     is not accessed.  R is an input argument if FACT = 'F';
        !           266: *>     otherwise, R is an output argument.  If FACT = 'F' and
        !           267: *>     EQUED = 'R' or 'B', each element of R must be positive.
        !           268: *>     If R is output, each element of R is a power of the radix.
        !           269: *>     If R is input, each element of R should be a power of the radix
        !           270: *>     to ensure a reliable solution and error estimates. Scaling by
        !           271: *>     powers of the radix does not cause rounding errors unless the
        !           272: *>     result underflows or overflows. Rounding errors during scaling
        !           273: *>     lead to refining with a matrix that is not equivalent to the
        !           274: *>     input matrix, producing error estimates that may not be
        !           275: *>     reliable.
        !           276: *> \endverbatim
        !           277: *>
        !           278: *> \param[in,out] C
        !           279: *> \verbatim
        !           280: *>          C is or output) DOUBLE PRECISION array, dimension (N)
        !           281: *>     The column scale factors for A.  If EQUED = 'C' or 'B', A is
        !           282: *>     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
        !           283: *>     is not accessed.  C is an input argument if FACT = 'F';
        !           284: *>     otherwise, C is an output argument.  If FACT = 'F' and
        !           285: *>     EQUED = 'C' or 'B', each element of C must be positive.
        !           286: *>     If C is output, each element of C is a power of the radix.
        !           287: *>     If C is input, each element of C should be a power of the radix
        !           288: *>     to ensure a reliable solution and error estimates. Scaling by
        !           289: *>     powers of the radix does not cause rounding errors unless the
        !           290: *>     result underflows or overflows. Rounding errors during scaling
        !           291: *>     lead to refining with a matrix that is not equivalent to the
        !           292: *>     input matrix, producing error estimates that may not be
        !           293: *>     reliable.
        !           294: *> \endverbatim
        !           295: *>
        !           296: *> \param[in,out] B
        !           297: *> \verbatim
        !           298: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           299: *>     On entry, the N-by-NRHS right hand side matrix B.
        !           300: *>     On exit,
        !           301: *>     if EQUED = 'N', B is not modified;
        !           302: *>     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
        !           303: *>        diag(R)*B;
        !           304: *>     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
        !           305: *>        overwritten by diag(C)*B.
        !           306: *> \endverbatim
        !           307: *>
        !           308: *> \param[in] LDB
        !           309: *> \verbatim
        !           310: *>          LDB is INTEGER
        !           311: *>     The leading dimension of the array B.  LDB >= max(1,N).
        !           312: *> \endverbatim
        !           313: *>
        !           314: *> \param[out] X
        !           315: *> \verbatim
        !           316: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
        !           317: *>     If INFO = 0, the N-by-NRHS solution matrix X to the original
        !           318: *>     system of equations.  Note that A and B are modified on exit
        !           319: *>     if EQUED .ne. 'N', and the solution to the equilibrated system is
        !           320: *>     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or
        !           321: *>     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'.
        !           322: *> \endverbatim
        !           323: *>
        !           324: *> \param[in] LDX
        !           325: *> \verbatim
        !           326: *>          LDX is INTEGER
        !           327: *>     The leading dimension of the array X.  LDX >= max(1,N).
        !           328: *> \endverbatim
        !           329: *>
        !           330: *> \param[out] RCOND
        !           331: *> \verbatim
        !           332: *>          RCOND is DOUBLE PRECISION
        !           333: *>     Reciprocal scaled condition number.  This is an estimate of the
        !           334: *>     reciprocal Skeel condition number of the matrix A after
        !           335: *>     equilibration (if done).  If this is less than the machine
        !           336: *>     precision (in particular, if it is zero), the matrix is singular
        !           337: *>     to working precision.  Note that the error may still be small even
        !           338: *>     if this number is very small and the matrix appears ill-
        !           339: *>     conditioned.
        !           340: *> \endverbatim
        !           341: *>
        !           342: *> \param[out] RPVGRW
        !           343: *> \verbatim
        !           344: *>          RPVGRW is DOUBLE PRECISION
        !           345: *>     Reciprocal pivot growth.  On exit, this contains the reciprocal
        !           346: *>     pivot growth factor norm(A)/norm(U). The "max absolute element"
        !           347: *>     norm is used.  If this is much less than 1, then the stability of
        !           348: *>     the LU factorization of the (equilibrated) matrix A could be poor.
        !           349: *>     This also means that the solution X, estimated condition numbers,
        !           350: *>     and error bounds could be unreliable. If factorization fails with
        !           351: *>     0<INFO<=N, then this contains the reciprocal pivot growth factor
        !           352: *>     for the leading INFO columns of A.  In DGESVX, this quantity is
        !           353: *>     returned in WORK(1).
        !           354: *> \endverbatim
        !           355: *>
        !           356: *> \param[out] BERR
        !           357: *> \verbatim
        !           358: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
        !           359: *>     Componentwise relative backward error.  This is the
        !           360: *>     componentwise relative backward error of each solution vector X(j)
        !           361: *>     (i.e., the smallest relative change in any element of A or B that
        !           362: *>     makes X(j) an exact solution).
        !           363: *> \endverbatim
        !           364: *>
        !           365: *> \param[in] N_ERR_BNDS
        !           366: *> \verbatim
        !           367: *>          N_ERR_BNDS is INTEGER
        !           368: *>     Number of error bounds to return for each right hand side
        !           369: *>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
        !           370: *>     ERR_BNDS_COMP below.
        !           371: *> \endverbatim
        !           372: *>
        !           373: *> \param[out] ERR_BNDS_NORM
        !           374: *> \verbatim
        !           375: *>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
        !           376: *>     For each right-hand side, this array contains information about
        !           377: *>     various error bounds and condition numbers corresponding to the
        !           378: *>     normwise relative error, which is defined as follows:
        !           379: *>
        !           380: *>     Normwise relative error in the ith solution vector:
        !           381: *>             max_j (abs(XTRUE(j,i) - X(j,i)))
        !           382: *>            ------------------------------
        !           383: *>                  max_j abs(X(j,i))
        !           384: *>
        !           385: *>     The array is indexed by the type of error information as described
        !           386: *>     below. There currently are up to three pieces of information
        !           387: *>     returned.
        !           388: *>
        !           389: *>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
        !           390: *>     right-hand side.
        !           391: *>
        !           392: *>     The second index in ERR_BNDS_NORM(:,err) contains the following
        !           393: *>     three fields:
        !           394: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           395: *>              reciprocal condition number is less than the threshold
        !           396: *>              sqrt(n) * dlamch('Epsilon').
        !           397: *>
        !           398: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           399: *>              almost certainly within a factor of 10 of the true error
        !           400: *>              so long as the next entry is greater than the threshold
        !           401: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
        !           402: *>              be trusted if the previous boolean is true.
        !           403: *>
        !           404: *>     err = 3  Reciprocal condition number: Estimated normwise
        !           405: *>              reciprocal condition number.  Compared with the threshold
        !           406: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
        !           407: *>              estimate is "guaranteed". These reciprocal condition
        !           408: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           409: *>              appropriately scaled matrix Z.
        !           410: *>              Let Z = S*A, where S scales each row by a power of the
        !           411: *>              radix so all absolute row sums of Z are approximately 1.
        !           412: *>
        !           413: *>     See Lapack Working Note 165 for further details and extra
        !           414: *>     cautions.
        !           415: *> \endverbatim
        !           416: *>
        !           417: *> \param[out] ERR_BNDS_COMP
        !           418: *> \verbatim
        !           419: *>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
        !           420: *>     For each right-hand side, this array contains information about
        !           421: *>     various error bounds and condition numbers corresponding to the
        !           422: *>     componentwise relative error, which is defined as follows:
        !           423: *>
        !           424: *>     Componentwise relative error in the ith solution vector:
        !           425: *>                    abs(XTRUE(j,i) - X(j,i))
        !           426: *>             max_j ----------------------
        !           427: *>                         abs(X(j,i))
        !           428: *>
        !           429: *>     The array is indexed by the right-hand side i (on which the
        !           430: *>     componentwise relative error depends), and the type of error
        !           431: *>     information as described below. There currently are up to three
        !           432: *>     pieces of information returned for each right-hand side. If
        !           433: *>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
        !           434: *>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
        !           435: *>     the first (:,N_ERR_BNDS) entries are returned.
        !           436: *>
        !           437: *>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
        !           438: *>     right-hand side.
        !           439: *>
        !           440: *>     The second index in ERR_BNDS_COMP(:,err) contains the following
        !           441: *>     three fields:
        !           442: *>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
        !           443: *>              reciprocal condition number is less than the threshold
        !           444: *>              sqrt(n) * dlamch('Epsilon').
        !           445: *>
        !           446: *>     err = 2 "Guaranteed" error bound: The estimated forward error,
        !           447: *>              almost certainly within a factor of 10 of the true error
        !           448: *>              so long as the next entry is greater than the threshold
        !           449: *>              sqrt(n) * dlamch('Epsilon'). This error bound should only
        !           450: *>              be trusted if the previous boolean is true.
        !           451: *>
        !           452: *>     err = 3  Reciprocal condition number: Estimated componentwise
        !           453: *>              reciprocal condition number.  Compared with the threshold
        !           454: *>              sqrt(n) * dlamch('Epsilon') to determine if the error
        !           455: *>              estimate is "guaranteed". These reciprocal condition
        !           456: *>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
        !           457: *>              appropriately scaled matrix Z.
        !           458: *>              Let Z = S*(A*diag(x)), where x is the solution for the
        !           459: *>              current right-hand side and S scales each row of
        !           460: *>              A*diag(x) by a power of the radix so all absolute row
        !           461: *>              sums of Z are approximately 1.
        !           462: *>
        !           463: *>     See Lapack Working Note 165 for further details and extra
        !           464: *>     cautions.
        !           465: *> \endverbatim
        !           466: *>
        !           467: *> \param[in] NPARAMS
        !           468: *> \verbatim
        !           469: *>          NPARAMS is INTEGER
        !           470: *>     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
        !           471: *>     PARAMS array is never referenced and default values are used.
        !           472: *> \endverbatim
        !           473: *>
        !           474: *> \param[in,out] PARAMS
        !           475: *> \verbatim
        !           476: *>          PARAMS is / output) DOUBLE PRECISION array, dimension (NPARAMS)
        !           477: *>     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
        !           478: *>     that entry will be filled with default value used for that
        !           479: *>     parameter.  Only positions up to NPARAMS are accessed; defaults
        !           480: *>     are used for higher-numbered parameters.
        !           481: *>
        !           482: *>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
        !           483: *>            refinement or not.
        !           484: *>         Default: 1.0D+0
        !           485: *>            = 0.0 : No refinement is performed, and no error bounds are
        !           486: *>                    computed.
        !           487: *>            = 1.0 : Use the extra-precise refinement algorithm.
        !           488: *>              (other values are reserved for future use)
        !           489: *>
        !           490: *>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
        !           491: *>            computations allowed for refinement.
        !           492: *>         Default: 10
        !           493: *>         Aggressive: Set to 100 to permit convergence using approximate
        !           494: *>                     factorizations or factorizations other than LU. If
        !           495: *>                     the factorization uses a technique other than
        !           496: *>                     Gaussian elimination, the guarantees in
        !           497: *>                     err_bnds_norm and err_bnds_comp may no longer be
        !           498: *>                     trustworthy.
        !           499: *>
        !           500: *>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
        !           501: *>            will attempt to find a solution with small componentwise
        !           502: *>            relative error in the double-precision algorithm.  Positive
        !           503: *>            is true, 0.0 is false.
        !           504: *>         Default: 1.0 (attempt componentwise convergence)
        !           505: *> \endverbatim
        !           506: *>
        !           507: *> \param[out] WORK
        !           508: *> \verbatim
        !           509: *>          WORK is DOUBLE PRECISION array, dimension (4*N)
        !           510: *> \endverbatim
        !           511: *>
        !           512: *> \param[out] IWORK
        !           513: *> \verbatim
        !           514: *>          IWORK is INTEGER array, dimension (N)
        !           515: *> \endverbatim
        !           516: *>
        !           517: *> \param[out] INFO
        !           518: *> \verbatim
        !           519: *>          INFO is INTEGER
        !           520: *>       = 0:  Successful exit. The solution to every right-hand side is
        !           521: *>         guaranteed.
        !           522: *>       < 0:  If INFO = -i, the i-th argument had an illegal value
        !           523: *>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
        !           524: *>         has been completed, but the factor U is exactly singular, so
        !           525: *>         the solution and error bounds could not be computed. RCOND = 0
        !           526: *>         is returned.
        !           527: *>       = N+J: The solution corresponding to the Jth right-hand side is
        !           528: *>         not guaranteed. The solutions corresponding to other right-
        !           529: *>         hand sides K with K > J may not be guaranteed as well, but
        !           530: *>         only the first such right-hand side is reported. If a small
        !           531: *>         componentwise error is not requested (PARAMS(3) = 0.0) then
        !           532: *>         the Jth right-hand side is the first with a normwise error
        !           533: *>         bound that is not guaranteed (the smallest J such
        !           534: *>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
        !           535: *>         the Jth right-hand side is the first with either a normwise or
        !           536: *>         componentwise error bound that is not guaranteed (the smallest
        !           537: *>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
        !           538: *>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
        !           539: *>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
        !           540: *>         about all of the right-hand sides check ERR_BNDS_NORM or
        !           541: *>         ERR_BNDS_COMP.
        !           542: *> \endverbatim
        !           543: *
        !           544: *  Authors:
        !           545: *  ========
        !           546: *
        !           547: *> \author Univ. of Tennessee 
        !           548: *> \author Univ. of California Berkeley 
        !           549: *> \author Univ. of Colorado Denver 
        !           550: *> \author NAG Ltd. 
        !           551: *
        !           552: *> \date November 2011
        !           553: *
        !           554: *> \ingroup doubleGBsolve
        !           555: *
        !           556: *  =====================================================================
1.1       bertrand  557:       SUBROUTINE DGBSVXX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
                    558:      $                    LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
                    559:      $                    RCOND, RPVGRW, BERR, N_ERR_BNDS,
                    560:      $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
                    561:      $                    WORK, IWORK, INFO )
                    562: *
1.5     ! bertrand  563: *  -- LAPACK driver routine (version 3.4.0) --
        !           564: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
        !           565: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
        !           566: *     November 2011
1.1       bertrand  567: *
                    568: *     .. Scalar Arguments ..
                    569:       CHARACTER          EQUED, FACT, TRANS
                    570:       INTEGER            INFO, LDAB, LDAFB, LDB, LDX, N, NRHS, NPARAMS,
                    571:      $                   N_ERR_BNDS, KL, KU
                    572:       DOUBLE PRECISION   RCOND, RPVGRW
                    573: *     ..
                    574: *     .. Array Arguments ..
                    575:       INTEGER            IPIV( * ), IWORK( * )
                    576:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    577:      $                   X( LDX , * ),WORK( * )
                    578:       DOUBLE PRECISION   R( * ), C( * ), PARAMS( * ), BERR( * ),
                    579:      $                   ERR_BNDS_NORM( NRHS, * ),
                    580:      $                   ERR_BNDS_COMP( NRHS, * )
                    581: *     ..
                    582: *
1.5     ! bertrand  583: *  ==================================================================
1.1       bertrand  584: *
                    585: *     .. Parameters ..
                    586:       DOUBLE PRECISION   ZERO, ONE
                    587:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    588:       INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
                    589:       INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
                    590:       INTEGER            CMP_ERR_I, PIV_GROWTH_I
                    591:       PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
                    592:      $                   BERR_I = 3 )
                    593:       PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
                    594:       PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
                    595:      $                   PIV_GROWTH_I = 9 )
                    596: *     ..
                    597: *     .. Local Scalars ..
                    598:       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
                    599:       INTEGER            INFEQU, I, J
                    600:       DOUBLE PRECISION   AMAX, BIGNUM, COLCND, RCMAX, RCMIN,
                    601:      $                   ROWCND, SMLNUM
                    602: *     ..
                    603: *     .. External Functions ..
                    604:       EXTERNAL           LSAME, DLAMCH, DLA_GBRPVGRW
                    605:       LOGICAL            LSAME
                    606:       DOUBLE PRECISION   DLAMCH, DLA_GBRPVGRW
                    607: *     ..
                    608: *     .. External Subroutines ..
                    609:       EXTERNAL           DGBEQUB, DGBTRF, DGBTRS, DLACPY, DLAQGB,
                    610:      $                   XERBLA, DLASCL2, DGBRFSX
                    611: *     ..
                    612: *     .. Intrinsic Functions ..
                    613:       INTRINSIC          MAX, MIN
                    614: *     ..
                    615: *     .. Executable Statements ..
                    616: *
                    617:       INFO = 0
                    618:       NOFACT = LSAME( FACT, 'N' )
                    619:       EQUIL = LSAME( FACT, 'E' )
                    620:       NOTRAN = LSAME( TRANS, 'N' )
                    621:       SMLNUM = DLAMCH( 'Safe minimum' )
                    622:       BIGNUM = ONE / SMLNUM
                    623:       IF( NOFACT .OR. EQUIL ) THEN
                    624:          EQUED = 'N'
                    625:          ROWEQU = .FALSE.
                    626:          COLEQU = .FALSE.
                    627:       ELSE
                    628:          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    629:          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    630:       END IF
                    631: *
                    632: *     Default is failure.  If an input parameter is wrong or
                    633: *     factorization fails, make everything look horrible.  Only the
                    634: *     pivot growth is set here, the rest is initialized in DGBRFSX.
                    635: *
                    636:       RPVGRW = ZERO
                    637: *
                    638: *     Test the input parameters.  PARAMS is not tested until DGBRFSX.
                    639: *
                    640:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
                    641:      $     LSAME( FACT, 'F' ) ) THEN
                    642:          INFO = -1
                    643:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    644:      $        LSAME( TRANS, 'C' ) ) THEN
                    645:          INFO = -2
                    646:       ELSE IF( N.LT.0 ) THEN
                    647:          INFO = -3
                    648:       ELSE IF( KL.LT.0 ) THEN
                    649:          INFO = -4
                    650:       ELSE IF( KU.LT.0 ) THEN
                    651:          INFO = -5
                    652:       ELSE IF( NRHS.LT.0 ) THEN
                    653:          INFO = -6
                    654:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
                    655:          INFO = -8
                    656:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
                    657:          INFO = -10
                    658:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    659:      $        ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    660:          INFO = -12
                    661:       ELSE
                    662:          IF( ROWEQU ) THEN
                    663:             RCMIN = BIGNUM
                    664:             RCMAX = ZERO
                    665:             DO 10 J = 1, N
                    666:                RCMIN = MIN( RCMIN, R( J ) )
                    667:                RCMAX = MAX( RCMAX, R( J ) )
                    668:  10         CONTINUE
                    669:             IF( RCMIN.LE.ZERO ) THEN
                    670:                INFO = -13
                    671:             ELSE IF( N.GT.0 ) THEN
                    672:                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
                    673:             ELSE
                    674:                ROWCND = ONE
                    675:             END IF
                    676:          END IF
                    677:          IF( COLEQU .AND. INFO.EQ.0 ) THEN
                    678:             RCMIN = BIGNUM
                    679:             RCMAX = ZERO
                    680:             DO 20 J = 1, N
                    681:                RCMIN = MIN( RCMIN, C( J ) )
                    682:                RCMAX = MAX( RCMAX, C( J ) )
                    683:  20         CONTINUE
                    684:             IF( RCMIN.LE.ZERO ) THEN
                    685:                INFO = -14
                    686:             ELSE IF( N.GT.0 ) THEN
                    687:                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
                    688:             ELSE
                    689:                COLCND = ONE
                    690:             END IF
                    691:          END IF
                    692:          IF( INFO.EQ.0 ) THEN
                    693:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    694:                INFO = -15
                    695:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    696:                INFO = -16
                    697:             END IF
                    698:          END IF
                    699:       END IF
                    700: *
                    701:       IF( INFO.NE.0 ) THEN
                    702:          CALL XERBLA( 'DGBSVXX', -INFO )
                    703:          RETURN
                    704:       END IF
                    705: *
                    706:       IF( EQUIL ) THEN
                    707: *
                    708: *     Compute row and column scalings to equilibrate the matrix A.
                    709: *
                    710:          CALL DGBEQUB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
                    711:      $        AMAX, INFEQU )
                    712:          IF( INFEQU.EQ.0 ) THEN
                    713: *
                    714: *     Equilibrate the matrix.
                    715: *
                    716:             CALL DLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
                    717:      $           AMAX, EQUED )
                    718:             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    719:             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    720:          END IF
                    721: *
                    722: *     If the scaling factors are not applied, set them to 1.0.
                    723: *
                    724:          IF ( .NOT.ROWEQU ) THEN
                    725:             DO J = 1, N
                    726:                R( J ) = 1.0D+0
                    727:             END DO
                    728:          END IF
                    729:          IF ( .NOT.COLEQU ) THEN
                    730:             DO J = 1, N
                    731:                C( J ) = 1.0D+0
                    732:             END DO
                    733:          END IF
                    734:       END IF
                    735: *
                    736: *     Scale the right hand side.
                    737: *
                    738:       IF( NOTRAN ) THEN
                    739:          IF( ROWEQU ) CALL DLASCL2(N, NRHS, R, B, LDB)
                    740:       ELSE
                    741:          IF( COLEQU ) CALL DLASCL2(N, NRHS, C, B, LDB)
                    742:       END IF
                    743: *
                    744:       IF( NOFACT .OR. EQUIL ) THEN
                    745: *
                    746: *        Compute the LU factorization of A.
                    747: *
                    748:          DO 40, J = 1, N
                    749:             DO 30, I = KL+1, 2*KL+KU+1
                    750:                AFB( I, J ) = AB( I-KL, J )
                    751:  30         CONTINUE
                    752:  40      CONTINUE
                    753:          CALL DGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
                    754: *
                    755: *        Return if INFO is non-zero.
                    756: *
                    757:          IF( INFO.GT.0 ) THEN
                    758: *
                    759: *           Pivot in column INFO is exactly 0
                    760: *           Compute the reciprocal pivot growth factor of the
                    761: *           leading rank-deficient INFO columns of A.
                    762: *
                    763:             RPVGRW = DLA_GBRPVGRW( N, KL, KU, INFO, AB, LDAB, AFB,
                    764:      $           LDAFB )
                    765:             RETURN
                    766:          END IF
                    767:       END IF
                    768: *
                    769: *     Compute the reciprocal pivot growth factor RPVGRW.
                    770: *
                    771:       RPVGRW = DLA_GBRPVGRW( N, KL, KU, N, AB, LDAB, AFB, LDAFB )
                    772: *
                    773: *     Compute the solution matrix X.
                    774: *
                    775:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    776:       CALL DGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
                    777:      $     INFO )
                    778: *
                    779: *     Use iterative refinement to improve the computed solution and
                    780: *     compute error bounds and backward error estimates for it.
                    781: *
                    782:       CALL DGBRFSX( TRANS, EQUED, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
                    783:      $     IPIV, R, C, B, LDB, X, LDX, RCOND, BERR,
                    784:      $     N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
                    785:      $     WORK, IWORK, INFO )
                    786: *
                    787: *     Scale solutions.
                    788: *
                    789:       IF ( COLEQU .AND. NOTRAN ) THEN
                    790:          CALL DLASCL2 ( N, NRHS, C, X, LDX )
                    791:       ELSE IF ( ROWEQU .AND. .NOT.NOTRAN ) THEN
                    792:          CALL DLASCL2 ( N, NRHS, R, X, LDX )
                    793:       END IF
                    794: *
                    795:       RETURN
                    796: *
                    797: *     End of DGBSVXX
                    798: *
                    799:       END

CVSweb interface <joel.bertrand@systella.fr>