File:  [local] / rpl / lapack / lapack / dgbsvx.f
Revision 1.6: download - view: text, annotated - select for diffs - revision graph
Fri Aug 13 21:03:43 2010 UTC (13 years, 9 months ago) by bertrand
Branches: MAIN
CVS tags: rpl-4_0_19, rpl-4_0_18, HEAD
Patches pour OS/2

    1:       SUBROUTINE DGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
    2:      $                   LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
    3:      $                   RCOND, FERR, BERR, WORK, IWORK, INFO )
    4: *
    5: *  -- LAPACK driver routine (version 3.2) --
    6: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
    7: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
    8: *     November 2006
    9: *
   10: *     .. Scalar Arguments ..
   11:       CHARACTER          EQUED, FACT, TRANS
   12:       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
   13:       DOUBLE PRECISION   RCOND
   14: *     ..
   15: *     .. Array Arguments ..
   16:       INTEGER            IPIV( * ), IWORK( * )
   17:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
   18:      $                   BERR( * ), C( * ), FERR( * ), R( * ),
   19:      $                   WORK( * ), X( LDX, * )
   20: *     ..
   21: *
   22: *  Purpose
   23: *  =======
   24: *
   25: *  DGBSVX uses the LU factorization to compute the solution to a real
   26: *  system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
   27: *  where A is a band matrix of order N with KL subdiagonals and KU
   28: *  superdiagonals, and X and B are N-by-NRHS matrices.
   29: *
   30: *  Error bounds on the solution and a condition estimate are also
   31: *  provided.
   32: *
   33: *  Description
   34: *  ===========
   35: *
   36: *  The following steps are performed by this subroutine:
   37: *
   38: *  1. If FACT = 'E', real scaling factors are computed to equilibrate
   39: *     the system:
   40: *        TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
   41: *        TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
   42: *        TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
   43: *     Whether or not the system will be equilibrated depends on the
   44: *     scaling of the matrix A, but if equilibration is used, A is
   45: *     overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
   46: *     or diag(C)*B (if TRANS = 'T' or 'C').
   47: *
   48: *  2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
   49: *     matrix A (after equilibration if FACT = 'E') as
   50: *        A = L * U,
   51: *     where L is a product of permutation and unit lower triangular
   52: *     matrices with KL subdiagonals, and U is upper triangular with
   53: *     KL+KU superdiagonals.
   54: *
   55: *  3. If some U(i,i)=0, so that U is exactly singular, then the routine
   56: *     returns with INFO = i. Otherwise, the factored form of A is used
   57: *     to estimate the condition number of the matrix A.  If the
   58: *     reciprocal of the condition number is less than machine precision,
   59: *     INFO = N+1 is returned as a warning, but the routine still goes on
   60: *     to solve for X and compute error bounds as described below.
   61: *
   62: *  4. The system of equations is solved for X using the factored form
   63: *     of A.
   64: *
   65: *  5. Iterative refinement is applied to improve the computed solution
   66: *     matrix and calculate error bounds and backward error estimates
   67: *     for it.
   68: *
   69: *  6. If equilibration was used, the matrix X is premultiplied by
   70: *     diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
   71: *     that it solves the original system before equilibration.
   72: *
   73: *  Arguments
   74: *  =========
   75: *
   76: *  FACT    (input) CHARACTER*1
   77: *          Specifies whether or not the factored form of the matrix A is
   78: *          supplied on entry, and if not, whether the matrix A should be
   79: *          equilibrated before it is factored.
   80: *          = 'F':  On entry, AFB and IPIV contain the factored form of
   81: *                  A.  If EQUED is not 'N', the matrix A has been
   82: *                  equilibrated with scaling factors given by R and C.
   83: *                  AB, AFB, and IPIV are not modified.
   84: *          = 'N':  The matrix A will be copied to AFB and factored.
   85: *          = 'E':  The matrix A will be equilibrated if necessary, then
   86: *                  copied to AFB and factored.
   87: *
   88: *  TRANS   (input) CHARACTER*1
   89: *          Specifies the form of the system of equations.
   90: *          = 'N':  A * X = B     (No transpose)
   91: *          = 'T':  A**T * X = B  (Transpose)
   92: *          = 'C':  A**H * X = B  (Transpose)
   93: *
   94: *  N       (input) INTEGER
   95: *          The number of linear equations, i.e., the order of the
   96: *          matrix A.  N >= 0.
   97: *
   98: *  KL      (input) INTEGER
   99: *          The number of subdiagonals within the band of A.  KL >= 0.
  100: *
  101: *  KU      (input) INTEGER
  102: *          The number of superdiagonals within the band of A.  KU >= 0.
  103: *
  104: *  NRHS    (input) INTEGER
  105: *          The number of right hand sides, i.e., the number of columns
  106: *          of the matrices B and X.  NRHS >= 0.
  107: *
  108: *  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
  109: *          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
  110: *          The j-th column of A is stored in the j-th column of the
  111: *          array AB as follows:
  112: *          AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
  113: *
  114: *          If FACT = 'F' and EQUED is not 'N', then A must have been
  115: *          equilibrated by the scaling factors in R and/or C.  AB is not
  116: *          modified if FACT = 'F' or 'N', or if FACT = 'E' and
  117: *          EQUED = 'N' on exit.
  118: *
  119: *          On exit, if EQUED .ne. 'N', A is scaled as follows:
  120: *          EQUED = 'R':  A := diag(R) * A
  121: *          EQUED = 'C':  A := A * diag(C)
  122: *          EQUED = 'B':  A := diag(R) * A * diag(C).
  123: *
  124: *  LDAB    (input) INTEGER
  125: *          The leading dimension of the array AB.  LDAB >= KL+KU+1.
  126: *
  127: *  AFB     (input or output) DOUBLE PRECISION array, dimension (LDAFB,N)
  128: *          If FACT = 'F', then AFB is an input argument and on entry
  129: *          contains details of the LU factorization of the band matrix
  130: *          A, as computed by DGBTRF.  U is stored as an upper triangular
  131: *          band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
  132: *          and the multipliers used during the factorization are stored
  133: *          in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
  134: *          the factored form of the equilibrated matrix A.
  135: *
  136: *          If FACT = 'N', then AFB is an output argument and on exit
  137: *          returns details of the LU factorization of A.
  138: *
  139: *          If FACT = 'E', then AFB is an output argument and on exit
  140: *          returns details of the LU factorization of the equilibrated
  141: *          matrix A (see the description of AB for the form of the
  142: *          equilibrated matrix).
  143: *
  144: *  LDAFB   (input) INTEGER
  145: *          The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
  146: *
  147: *  IPIV    (input or output) INTEGER array, dimension (N)
  148: *          If FACT = 'F', then IPIV is an input argument and on entry
  149: *          contains the pivot indices from the factorization A = L*U
  150: *          as computed by DGBTRF; row i of the matrix was interchanged
  151: *          with row IPIV(i).
  152: *
  153: *          If FACT = 'N', then IPIV is an output argument and on exit
  154: *          contains the pivot indices from the factorization A = L*U
  155: *          of the original matrix A.
  156: *
  157: *          If FACT = 'E', then IPIV is an output argument and on exit
  158: *          contains the pivot indices from the factorization A = L*U
  159: *          of the equilibrated matrix A.
  160: *
  161: *  EQUED   (input or output) CHARACTER*1
  162: *          Specifies the form of equilibration that was done.
  163: *          = 'N':  No equilibration (always true if FACT = 'N').
  164: *          = 'R':  Row equilibration, i.e., A has been premultiplied by
  165: *                  diag(R).
  166: *          = 'C':  Column equilibration, i.e., A has been postmultiplied
  167: *                  by diag(C).
  168: *          = 'B':  Both row and column equilibration, i.e., A has been
  169: *                  replaced by diag(R) * A * diag(C).
  170: *          EQUED is an input argument if FACT = 'F'; otherwise, it is an
  171: *          output argument.
  172: *
  173: *  R       (input or output) DOUBLE PRECISION array, dimension (N)
  174: *          The row scale factors for A.  If EQUED = 'R' or 'B', A is
  175: *          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
  176: *          is not accessed.  R is an input argument if FACT = 'F';
  177: *          otherwise, R is an output argument.  If FACT = 'F' and
  178: *          EQUED = 'R' or 'B', each element of R must be positive.
  179: *
  180: *  C       (input or output) DOUBLE PRECISION array, dimension (N)
  181: *          The column scale factors for A.  If EQUED = 'C' or 'B', A is
  182: *          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
  183: *          is not accessed.  C is an input argument if FACT = 'F';
  184: *          otherwise, C is an output argument.  If FACT = 'F' and
  185: *          EQUED = 'C' or 'B', each element of C must be positive.
  186: *
  187: *  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
  188: *          On entry, the right hand side matrix B.
  189: *          On exit,
  190: *          if EQUED = 'N', B is not modified;
  191: *          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
  192: *          diag(R)*B;
  193: *          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
  194: *          overwritten by diag(C)*B.
  195: *
  196: *  LDB     (input) INTEGER
  197: *          The leading dimension of the array B.  LDB >= max(1,N).
  198: *
  199: *  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
  200: *          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
  201: *          to the original system of equations.  Note that A and B are
  202: *          modified on exit if EQUED .ne. 'N', and the solution to the
  203: *          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
  204: *          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
  205: *          and EQUED = 'R' or 'B'.
  206: *
  207: *  LDX     (input) INTEGER
  208: *          The leading dimension of the array X.  LDX >= max(1,N).
  209: *
  210: *  RCOND   (output) DOUBLE PRECISION
  211: *          The estimate of the reciprocal condition number of the matrix
  212: *          A after equilibration (if done).  If RCOND is less than the
  213: *          machine precision (in particular, if RCOND = 0), the matrix
  214: *          is singular to working precision.  This condition is
  215: *          indicated by a return code of INFO > 0.
  216: *
  217: *  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  218: *          The estimated forward error bound for each solution vector
  219: *          X(j) (the j-th column of the solution matrix X).
  220: *          If XTRUE is the true solution corresponding to X(j), FERR(j)
  221: *          is an estimated upper bound for the magnitude of the largest
  222: *          element in (X(j) - XTRUE) divided by the magnitude of the
  223: *          largest element in X(j).  The estimate is as reliable as
  224: *          the estimate for RCOND, and is almost always a slight
  225: *          overestimate of the true error.
  226: *
  227: *  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
  228: *          The componentwise relative backward error of each solution
  229: *          vector X(j) (i.e., the smallest relative change in
  230: *          any element of A or B that makes X(j) an exact solution).
  231: *
  232: *  WORK    (workspace/output) DOUBLE PRECISION array, dimension (3*N)
  233: *          On exit, WORK(1) contains the reciprocal pivot growth
  234: *          factor norm(A)/norm(U). The "max absolute element" norm is
  235: *          used. If WORK(1) is much less than 1, then the stability
  236: *          of the LU factorization of the (equilibrated) matrix A
  237: *          could be poor. This also means that the solution X, condition
  238: *          estimator RCOND, and forward error bound FERR could be
  239: *          unreliable. If factorization fails with 0<INFO<=N, then
  240: *          WORK(1) contains the reciprocal pivot growth factor for the
  241: *          leading INFO columns of A.
  242: *
  243: *  IWORK   (workspace) INTEGER array, dimension (N)
  244: *
  245: *  INFO    (output) INTEGER
  246: *          = 0:  successful exit
  247: *          < 0:  if INFO = -i, the i-th argument had an illegal value
  248: *          > 0:  if INFO = i, and i is
  249: *                <= N:  U(i,i) is exactly zero.  The factorization
  250: *                       has been completed, but the factor U is exactly
  251: *                       singular, so the solution and error bounds
  252: *                       could not be computed. RCOND = 0 is returned.
  253: *                = N+1: U is nonsingular, but RCOND is less than machine
  254: *                       precision, meaning that the matrix is singular
  255: *                       to working precision.  Nevertheless, the
  256: *                       solution and error bounds are computed because
  257: *                       there are a number of situations where the
  258: *                       computed solution can be more accurate than the
  259: *                       value of RCOND would suggest.
  260: *
  261: *  =====================================================================
  262: *
  263: *     .. Parameters ..
  264:       DOUBLE PRECISION   ZERO, ONE
  265:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  266: *     ..
  267: *     .. Local Scalars ..
  268:       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
  269:       CHARACTER          NORM
  270:       INTEGER            I, INFEQU, J, J1, J2
  271:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
  272:      $                   ROWCND, RPVGRW, SMLNUM
  273: *     ..
  274: *     .. External Functions ..
  275:       LOGICAL            LSAME
  276:       DOUBLE PRECISION   DLAMCH, DLANGB, DLANTB
  277:       EXTERNAL           LSAME, DLAMCH, DLANGB, DLANTB
  278: *     ..
  279: *     .. External Subroutines ..
  280:       EXTERNAL           DCOPY, DGBCON, DGBEQU, DGBRFS, DGBTRF, DGBTRS,
  281:      $                   DLACPY, DLAQGB, XERBLA
  282: *     ..
  283: *     .. Intrinsic Functions ..
  284:       INTRINSIC          ABS, MAX, MIN
  285: *     ..
  286: *     .. Executable Statements ..
  287: *
  288:       INFO = 0
  289:       NOFACT = LSAME( FACT, 'N' )
  290:       EQUIL = LSAME( FACT, 'E' )
  291:       NOTRAN = LSAME( TRANS, 'N' )
  292:       IF( NOFACT .OR. EQUIL ) THEN
  293:          EQUED = 'N'
  294:          ROWEQU = .FALSE.
  295:          COLEQU = .FALSE.
  296:       ELSE
  297:          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  298:          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  299:          SMLNUM = DLAMCH( 'Safe minimum' )
  300:          BIGNUM = ONE / SMLNUM
  301:       END IF
  302: *
  303: *     Test the input parameters.
  304: *
  305:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  306:      $     THEN
  307:          INFO = -1
  308:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  309:      $         LSAME( TRANS, 'C' ) ) THEN
  310:          INFO = -2
  311:       ELSE IF( N.LT.0 ) THEN
  312:          INFO = -3
  313:       ELSE IF( KL.LT.0 ) THEN
  314:          INFO = -4
  315:       ELSE IF( KU.LT.0 ) THEN
  316:          INFO = -5
  317:       ELSE IF( NRHS.LT.0 ) THEN
  318:          INFO = -6
  319:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  320:          INFO = -8
  321:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
  322:          INFO = -10
  323:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  324:      $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  325:          INFO = -12
  326:       ELSE
  327:          IF( ROWEQU ) THEN
  328:             RCMIN = BIGNUM
  329:             RCMAX = ZERO
  330:             DO 10 J = 1, N
  331:                RCMIN = MIN( RCMIN, R( J ) )
  332:                RCMAX = MAX( RCMAX, R( J ) )
  333:    10       CONTINUE
  334:             IF( RCMIN.LE.ZERO ) THEN
  335:                INFO = -13
  336:             ELSE IF( N.GT.0 ) THEN
  337:                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  338:             ELSE
  339:                ROWCND = ONE
  340:             END IF
  341:          END IF
  342:          IF( COLEQU .AND. INFO.EQ.0 ) THEN
  343:             RCMIN = BIGNUM
  344:             RCMAX = ZERO
  345:             DO 20 J = 1, N
  346:                RCMIN = MIN( RCMIN, C( J ) )
  347:                RCMAX = MAX( RCMAX, C( J ) )
  348:    20       CONTINUE
  349:             IF( RCMIN.LE.ZERO ) THEN
  350:                INFO = -14
  351:             ELSE IF( N.GT.0 ) THEN
  352:                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  353:             ELSE
  354:                COLCND = ONE
  355:             END IF
  356:          END IF
  357:          IF( INFO.EQ.0 ) THEN
  358:             IF( LDB.LT.MAX( 1, N ) ) THEN
  359:                INFO = -16
  360:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  361:                INFO = -18
  362:             END IF
  363:          END IF
  364:       END IF
  365: *
  366:       IF( INFO.NE.0 ) THEN
  367:          CALL XERBLA( 'DGBSVX', -INFO )
  368:          RETURN
  369:       END IF
  370: *
  371:       IF( EQUIL ) THEN
  372: *
  373: *        Compute row and column scalings to equilibrate the matrix A.
  374: *
  375:          CALL DGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
  376:      $                AMAX, INFEQU )
  377:          IF( INFEQU.EQ.0 ) THEN
  378: *
  379: *           Equilibrate the matrix.
  380: *
  381:             CALL DLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
  382:      $                   AMAX, EQUED )
  383:             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  384:             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  385:          END IF
  386:       END IF
  387: *
  388: *     Scale the right hand side.
  389: *
  390:       IF( NOTRAN ) THEN
  391:          IF( ROWEQU ) THEN
  392:             DO 40 J = 1, NRHS
  393:                DO 30 I = 1, N
  394:                   B( I, J ) = R( I )*B( I, J )
  395:    30          CONTINUE
  396:    40       CONTINUE
  397:          END IF
  398:       ELSE IF( COLEQU ) THEN
  399:          DO 60 J = 1, NRHS
  400:             DO 50 I = 1, N
  401:                B( I, J ) = C( I )*B( I, J )
  402:    50       CONTINUE
  403:    60    CONTINUE
  404:       END IF
  405: *
  406:       IF( NOFACT .OR. EQUIL ) THEN
  407: *
  408: *        Compute the LU factorization of the band matrix A.
  409: *
  410:          DO 70 J = 1, N
  411:             J1 = MAX( J-KU, 1 )
  412:             J2 = MIN( J+KL, N )
  413:             CALL DCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1,
  414:      $                  AFB( KL+KU+1-J+J1, J ), 1 )
  415:    70    CONTINUE
  416: *
  417:          CALL DGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
  418: *
  419: *        Return if INFO is non-zero.
  420: *
  421:          IF( INFO.GT.0 ) THEN
  422: *
  423: *           Compute the reciprocal pivot growth factor of the
  424: *           leading rank-deficient INFO columns of A.
  425: *
  426:             ANORM = ZERO
  427:             DO 90 J = 1, INFO
  428:                DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
  429:                   ANORM = MAX( ANORM, ABS( AB( I, J ) ) )
  430:    80          CONTINUE
  431:    90       CONTINUE
  432:             RPVGRW = DLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ),
  433:      $                       AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB,
  434:      $                       WORK )
  435:             IF( RPVGRW.EQ.ZERO ) THEN
  436:                RPVGRW = ONE
  437:             ELSE
  438:                RPVGRW = ANORM / RPVGRW
  439:             END IF
  440:             WORK( 1 ) = RPVGRW
  441:             RCOND = ZERO
  442:             RETURN
  443:          END IF
  444:       END IF
  445: *
  446: *     Compute the norm of the matrix A and the
  447: *     reciprocal pivot growth factor RPVGRW.
  448: *
  449:       IF( NOTRAN ) THEN
  450:          NORM = '1'
  451:       ELSE
  452:          NORM = 'I'
  453:       END IF
  454:       ANORM = DLANGB( NORM, N, KL, KU, AB, LDAB, WORK )
  455:       RPVGRW = DLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, WORK )
  456:       IF( RPVGRW.EQ.ZERO ) THEN
  457:          RPVGRW = ONE
  458:       ELSE
  459:          RPVGRW = DLANGB( 'M', N, KL, KU, AB, LDAB, WORK ) / RPVGRW
  460:       END IF
  461: *
  462: *     Compute the reciprocal of the condition number of A.
  463: *
  464:       CALL DGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
  465:      $             WORK, IWORK, INFO )
  466: *
  467: *     Compute the solution matrix X.
  468: *
  469:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  470:       CALL DGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
  471:      $             INFO )
  472: *
  473: *     Use iterative refinement to improve the computed solution and
  474: *     compute error bounds and backward error estimates for it.
  475: *
  476:       CALL DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV,
  477:      $             B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
  478: *
  479: *     Transform the solution matrix X to a solution of the original
  480: *     system.
  481: *
  482:       IF( NOTRAN ) THEN
  483:          IF( COLEQU ) THEN
  484:             DO 110 J = 1, NRHS
  485:                DO 100 I = 1, N
  486:                   X( I, J ) = C( I )*X( I, J )
  487:   100          CONTINUE
  488:   110       CONTINUE
  489:             DO 120 J = 1, NRHS
  490:                FERR( J ) = FERR( J ) / COLCND
  491:   120       CONTINUE
  492:          END IF
  493:       ELSE IF( ROWEQU ) THEN
  494:          DO 140 J = 1, NRHS
  495:             DO 130 I = 1, N
  496:                X( I, J ) = R( I )*X( I, J )
  497:   130       CONTINUE
  498:   140    CONTINUE
  499:          DO 150 J = 1, NRHS
  500:             FERR( J ) = FERR( J ) / ROWCND
  501:   150    CONTINUE
  502:       END IF
  503: *
  504: *     Set INFO = N+1 if the matrix is singular to working precision.
  505: *
  506:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  507:      $   INFO = N + 1
  508: *
  509:       WORK( 1 ) = RPVGRW
  510:       RETURN
  511: *
  512: *     End of DGBSVX
  513: *
  514:       END

CVSweb interface <joel.bertrand@systella.fr>