Annotation of rpl/lapack/lapack/dgbsvx.f, revision 1.8

1.8     ! bertrand    1: *> \brief <b> DGBSVX computes the solution to system of linear equations A * X = B for GB matrices</b>
        !             2: *
        !             3: *  =========== DOCUMENTATION ===========
        !             4: *
        !             5: * Online html documentation available at 
        !             6: *            http://www.netlib.org/lapack/explore-html/ 
        !             7: *
        !             8: *> \htmlonly
        !             9: *> Download DGBSVX + dependencies 
        !            10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgbsvx.f"> 
        !            11: *> [TGZ]</a> 
        !            12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgbsvx.f"> 
        !            13: *> [ZIP]</a> 
        !            14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgbsvx.f"> 
        !            15: *> [TXT]</a>
        !            16: *> \endhtmlonly 
        !            17: *
        !            18: *  Definition:
        !            19: *  ===========
        !            20: *
        !            21: *       SUBROUTINE DGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
        !            22: *                          LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
        !            23: *                          RCOND, FERR, BERR, WORK, IWORK, INFO )
        !            24: * 
        !            25: *       .. Scalar Arguments ..
        !            26: *       CHARACTER          EQUED, FACT, TRANS
        !            27: *       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
        !            28: *       DOUBLE PRECISION   RCOND
        !            29: *       ..
        !            30: *       .. Array Arguments ..
        !            31: *       INTEGER            IPIV( * ), IWORK( * )
        !            32: *       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
        !            33: *      $                   BERR( * ), C( * ), FERR( * ), R( * ),
        !            34: *      $                   WORK( * ), X( LDX, * )
        !            35: *       ..
        !            36: *  
        !            37: *
        !            38: *> \par Purpose:
        !            39: *  =============
        !            40: *>
        !            41: *> \verbatim
        !            42: *>
        !            43: *> DGBSVX uses the LU factorization to compute the solution to a real
        !            44: *> system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
        !            45: *> where A is a band matrix of order N with KL subdiagonals and KU
        !            46: *> superdiagonals, and X and B are N-by-NRHS matrices.
        !            47: *>
        !            48: *> Error bounds on the solution and a condition estimate are also
        !            49: *> provided.
        !            50: *> \endverbatim
        !            51: *
        !            52: *> \par Description:
        !            53: *  =================
        !            54: *>
        !            55: *> \verbatim
        !            56: *>
        !            57: *> The following steps are performed by this subroutine:
        !            58: *>
        !            59: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
        !            60: *>    the system:
        !            61: *>       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
        !            62: *>       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
        !            63: *>       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
        !            64: *>    Whether or not the system will be equilibrated depends on the
        !            65: *>    scaling of the matrix A, but if equilibration is used, A is
        !            66: *>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
        !            67: *>    or diag(C)*B (if TRANS = 'T' or 'C').
        !            68: *>
        !            69: *> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
        !            70: *>    matrix A (after equilibration if FACT = 'E') as
        !            71: *>       A = L * U,
        !            72: *>    where L is a product of permutation and unit lower triangular
        !            73: *>    matrices with KL subdiagonals, and U is upper triangular with
        !            74: *>    KL+KU superdiagonals.
        !            75: *>
        !            76: *> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
        !            77: *>    returns with INFO = i. Otherwise, the factored form of A is used
        !            78: *>    to estimate the condition number of the matrix A.  If the
        !            79: *>    reciprocal of the condition number is less than machine precision,
        !            80: *>    INFO = N+1 is returned as a warning, but the routine still goes on
        !            81: *>    to solve for X and compute error bounds as described below.
        !            82: *>
        !            83: *> 4. The system of equations is solved for X using the factored form
        !            84: *>    of A.
        !            85: *>
        !            86: *> 5. Iterative refinement is applied to improve the computed solution
        !            87: *>    matrix and calculate error bounds and backward error estimates
        !            88: *>    for it.
        !            89: *>
        !            90: *> 6. If equilibration was used, the matrix X is premultiplied by
        !            91: *>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
        !            92: *>    that it solves the original system before equilibration.
        !            93: *> \endverbatim
        !            94: *
        !            95: *  Arguments:
        !            96: *  ==========
        !            97: *
        !            98: *> \param[in] FACT
        !            99: *> \verbatim
        !           100: *>          FACT is CHARACTER*1
        !           101: *>          Specifies whether or not the factored form of the matrix A is
        !           102: *>          supplied on entry, and if not, whether the matrix A should be
        !           103: *>          equilibrated before it is factored.
        !           104: *>          = 'F':  On entry, AFB and IPIV contain the factored form of
        !           105: *>                  A.  If EQUED is not 'N', the matrix A has been
        !           106: *>                  equilibrated with scaling factors given by R and C.
        !           107: *>                  AB, AFB, and IPIV are not modified.
        !           108: *>          = 'N':  The matrix A will be copied to AFB and factored.
        !           109: *>          = 'E':  The matrix A will be equilibrated if necessary, then
        !           110: *>                  copied to AFB and factored.
        !           111: *> \endverbatim
        !           112: *>
        !           113: *> \param[in] TRANS
        !           114: *> \verbatim
        !           115: *>          TRANS is CHARACTER*1
        !           116: *>          Specifies the form of the system of equations.
        !           117: *>          = 'N':  A * X = B     (No transpose)
        !           118: *>          = 'T':  A**T * X = B  (Transpose)
        !           119: *>          = 'C':  A**H * X = B  (Transpose)
        !           120: *> \endverbatim
        !           121: *>
        !           122: *> \param[in] N
        !           123: *> \verbatim
        !           124: *>          N is INTEGER
        !           125: *>          The number of linear equations, i.e., the order of the
        !           126: *>          matrix A.  N >= 0.
        !           127: *> \endverbatim
        !           128: *>
        !           129: *> \param[in] KL
        !           130: *> \verbatim
        !           131: *>          KL is INTEGER
        !           132: *>          The number of subdiagonals within the band of A.  KL >= 0.
        !           133: *> \endverbatim
        !           134: *>
        !           135: *> \param[in] KU
        !           136: *> \verbatim
        !           137: *>          KU is INTEGER
        !           138: *>          The number of superdiagonals within the band of A.  KU >= 0.
        !           139: *> \endverbatim
        !           140: *>
        !           141: *> \param[in] NRHS
        !           142: *> \verbatim
        !           143: *>          NRHS is INTEGER
        !           144: *>          The number of right hand sides, i.e., the number of columns
        !           145: *>          of the matrices B and X.  NRHS >= 0.
        !           146: *> \endverbatim
        !           147: *>
        !           148: *> \param[in,out] AB
        !           149: *> \verbatim
        !           150: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
        !           151: *>          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
        !           152: *>          The j-th column of A is stored in the j-th column of the
        !           153: *>          array AB as follows:
        !           154: *>          AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
        !           155: *>
        !           156: *>          If FACT = 'F' and EQUED is not 'N', then A must have been
        !           157: *>          equilibrated by the scaling factors in R and/or C.  AB is not
        !           158: *>          modified if FACT = 'F' or 'N', or if FACT = 'E' and
        !           159: *>          EQUED = 'N' on exit.
        !           160: *>
        !           161: *>          On exit, if EQUED .ne. 'N', A is scaled as follows:
        !           162: *>          EQUED = 'R':  A := diag(R) * A
        !           163: *>          EQUED = 'C':  A := A * diag(C)
        !           164: *>          EQUED = 'B':  A := diag(R) * A * diag(C).
        !           165: *> \endverbatim
        !           166: *>
        !           167: *> \param[in] LDAB
        !           168: *> \verbatim
        !           169: *>          LDAB is INTEGER
        !           170: *>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
        !           171: *> \endverbatim
        !           172: *>
        !           173: *> \param[in,out] AFB
        !           174: *> \verbatim
        !           175: *>          AFB is or output) DOUBLE PRECISION array, dimension (LDAFB,N)
        !           176: *>          If FACT = 'F', then AFB is an input argument and on entry
        !           177: *>          contains details of the LU factorization of the band matrix
        !           178: *>          A, as computed by DGBTRF.  U is stored as an upper triangular
        !           179: *>          band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
        !           180: *>          and the multipliers used during the factorization are stored
        !           181: *>          in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
        !           182: *>          the factored form of the equilibrated matrix A.
        !           183: *>
        !           184: *>          If FACT = 'N', then AFB is an output argument and on exit
        !           185: *>          returns details of the LU factorization of A.
        !           186: *>
        !           187: *>          If FACT = 'E', then AFB is an output argument and on exit
        !           188: *>          returns details of the LU factorization of the equilibrated
        !           189: *>          matrix A (see the description of AB for the form of the
        !           190: *>          equilibrated matrix).
        !           191: *> \endverbatim
        !           192: *>
        !           193: *> \param[in] LDAFB
        !           194: *> \verbatim
        !           195: *>          LDAFB is INTEGER
        !           196: *>          The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
        !           197: *> \endverbatim
        !           198: *>
        !           199: *> \param[in,out] IPIV
        !           200: *> \verbatim
        !           201: *>          IPIV is or output) INTEGER array, dimension (N)
        !           202: *>          If FACT = 'F', then IPIV is an input argument and on entry
        !           203: *>          contains the pivot indices from the factorization A = L*U
        !           204: *>          as computed by DGBTRF; row i of the matrix was interchanged
        !           205: *>          with row IPIV(i).
        !           206: *>
        !           207: *>          If FACT = 'N', then IPIV is an output argument and on exit
        !           208: *>          contains the pivot indices from the factorization A = L*U
        !           209: *>          of the original matrix A.
        !           210: *>
        !           211: *>          If FACT = 'E', then IPIV is an output argument and on exit
        !           212: *>          contains the pivot indices from the factorization A = L*U
        !           213: *>          of the equilibrated matrix A.
        !           214: *> \endverbatim
        !           215: *>
        !           216: *> \param[in,out] EQUED
        !           217: *> \verbatim
        !           218: *>          EQUED is or output) CHARACTER*1
        !           219: *>          Specifies the form of equilibration that was done.
        !           220: *>          = 'N':  No equilibration (always true if FACT = 'N').
        !           221: *>          = 'R':  Row equilibration, i.e., A has been premultiplied by
        !           222: *>                  diag(R).
        !           223: *>          = 'C':  Column equilibration, i.e., A has been postmultiplied
        !           224: *>                  by diag(C).
        !           225: *>          = 'B':  Both row and column equilibration, i.e., A has been
        !           226: *>                  replaced by diag(R) * A * diag(C).
        !           227: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
        !           228: *>          output argument.
        !           229: *> \endverbatim
        !           230: *>
        !           231: *> \param[in,out] R
        !           232: *> \verbatim
        !           233: *>          R is or output) DOUBLE PRECISION array, dimension (N)
        !           234: *>          The row scale factors for A.  If EQUED = 'R' or 'B', A is
        !           235: *>          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
        !           236: *>          is not accessed.  R is an input argument if FACT = 'F';
        !           237: *>          otherwise, R is an output argument.  If FACT = 'F' and
        !           238: *>          EQUED = 'R' or 'B', each element of R must be positive.
        !           239: *> \endverbatim
        !           240: *>
        !           241: *> \param[in,out] C
        !           242: *> \verbatim
        !           243: *>          C is or output) DOUBLE PRECISION array, dimension (N)
        !           244: *>          The column scale factors for A.  If EQUED = 'C' or 'B', A is
        !           245: *>          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
        !           246: *>          is not accessed.  C is an input argument if FACT = 'F';
        !           247: *>          otherwise, C is an output argument.  If FACT = 'F' and
        !           248: *>          EQUED = 'C' or 'B', each element of C must be positive.
        !           249: *> \endverbatim
        !           250: *>
        !           251: *> \param[in,out] B
        !           252: *> \verbatim
        !           253: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
        !           254: *>          On entry, the right hand side matrix B.
        !           255: *>          On exit,
        !           256: *>          if EQUED = 'N', B is not modified;
        !           257: *>          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
        !           258: *>          diag(R)*B;
        !           259: *>          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
        !           260: *>          overwritten by diag(C)*B.
        !           261: *> \endverbatim
        !           262: *>
        !           263: *> \param[in] LDB
        !           264: *> \verbatim
        !           265: *>          LDB is INTEGER
        !           266: *>          The leading dimension of the array B.  LDB >= max(1,N).
        !           267: *> \endverbatim
        !           268: *>
        !           269: *> \param[out] X
        !           270: *> \verbatim
        !           271: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
        !           272: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
        !           273: *>          to the original system of equations.  Note that A and B are
        !           274: *>          modified on exit if EQUED .ne. 'N', and the solution to the
        !           275: *>          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
        !           276: *>          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
        !           277: *>          and EQUED = 'R' or 'B'.
        !           278: *> \endverbatim
        !           279: *>
        !           280: *> \param[in] LDX
        !           281: *> \verbatim
        !           282: *>          LDX is INTEGER
        !           283: *>          The leading dimension of the array X.  LDX >= max(1,N).
        !           284: *> \endverbatim
        !           285: *>
        !           286: *> \param[out] RCOND
        !           287: *> \verbatim
        !           288: *>          RCOND is DOUBLE PRECISION
        !           289: *>          The estimate of the reciprocal condition number of the matrix
        !           290: *>          A after equilibration (if done).  If RCOND is less than the
        !           291: *>          machine precision (in particular, if RCOND = 0), the matrix
        !           292: *>          is singular to working precision.  This condition is
        !           293: *>          indicated by a return code of INFO > 0.
        !           294: *> \endverbatim
        !           295: *>
        !           296: *> \param[out] FERR
        !           297: *> \verbatim
        !           298: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
        !           299: *>          The estimated forward error bound for each solution vector
        !           300: *>          X(j) (the j-th column of the solution matrix X).
        !           301: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
        !           302: *>          is an estimated upper bound for the magnitude of the largest
        !           303: *>          element in (X(j) - XTRUE) divided by the magnitude of the
        !           304: *>          largest element in X(j).  The estimate is as reliable as
        !           305: *>          the estimate for RCOND, and is almost always a slight
        !           306: *>          overestimate of the true error.
        !           307: *> \endverbatim
        !           308: *>
        !           309: *> \param[out] BERR
        !           310: *> \verbatim
        !           311: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
        !           312: *>          The componentwise relative backward error of each solution
        !           313: *>          vector X(j) (i.e., the smallest relative change in
        !           314: *>          any element of A or B that makes X(j) an exact solution).
        !           315: *> \endverbatim
        !           316: *>
        !           317: *> \param[out] WORK
        !           318: *> \verbatim
        !           319: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
        !           320: *>          On exit, WORK(1) contains the reciprocal pivot growth
        !           321: *>          factor norm(A)/norm(U). The "max absolute element" norm is
        !           322: *>          used. If WORK(1) is much less than 1, then the stability
        !           323: *>          of the LU factorization of the (equilibrated) matrix A
        !           324: *>          could be poor. This also means that the solution X, condition
        !           325: *>          estimator RCOND, and forward error bound FERR could be
        !           326: *>          unreliable. If factorization fails with 0<INFO<=N, then
        !           327: *>          WORK(1) contains the reciprocal pivot growth factor for the
        !           328: *>          leading INFO columns of A.
        !           329: *> \endverbatim
        !           330: *>
        !           331: *> \param[out] IWORK
        !           332: *> \verbatim
        !           333: *>          IWORK is INTEGER array, dimension (N)
        !           334: *> \endverbatim
        !           335: *>
        !           336: *> \param[out] INFO
        !           337: *> \verbatim
        !           338: *>          INFO is INTEGER
        !           339: *>          = 0:  successful exit
        !           340: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
        !           341: *>          > 0:  if INFO = i, and i is
        !           342: *>                <= N:  U(i,i) is exactly zero.  The factorization
        !           343: *>                       has been completed, but the factor U is exactly
        !           344: *>                       singular, so the solution and error bounds
        !           345: *>                       could not be computed. RCOND = 0 is returned.
        !           346: *>                = N+1: U is nonsingular, but RCOND is less than machine
        !           347: *>                       precision, meaning that the matrix is singular
        !           348: *>                       to working precision.  Nevertheless, the
        !           349: *>                       solution and error bounds are computed because
        !           350: *>                       there are a number of situations where the
        !           351: *>                       computed solution can be more accurate than the
        !           352: *>                       value of RCOND would suggest.
        !           353: *> \endverbatim
        !           354: *
        !           355: *  Authors:
        !           356: *  ========
        !           357: *
        !           358: *> \author Univ. of Tennessee 
        !           359: *> \author Univ. of California Berkeley 
        !           360: *> \author Univ. of Colorado Denver 
        !           361: *> \author NAG Ltd. 
        !           362: *
        !           363: *> \date November 2011
        !           364: *
        !           365: *> \ingroup doubleGBsolve
        !           366: *
        !           367: *  =====================================================================
1.1       bertrand  368:       SUBROUTINE DGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
                    369:      $                   LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
                    370:      $                   RCOND, FERR, BERR, WORK, IWORK, INFO )
                    371: *
1.8     ! bertrand  372: *  -- LAPACK driver routine (version 3.4.0) --
1.1       bertrand  373: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    374: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.8     ! bertrand  375: *     November 2011
1.1       bertrand  376: *
                    377: *     .. Scalar Arguments ..
                    378:       CHARACTER          EQUED, FACT, TRANS
                    379:       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
                    380:       DOUBLE PRECISION   RCOND
                    381: *     ..
                    382: *     .. Array Arguments ..
                    383:       INTEGER            IPIV( * ), IWORK( * )
                    384:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    385:      $                   BERR( * ), C( * ), FERR( * ), R( * ),
                    386:      $                   WORK( * ), X( LDX, * )
                    387: *     ..
                    388: *
                    389: *  =====================================================================
                    390: *
                    391: *     .. Parameters ..
                    392:       DOUBLE PRECISION   ZERO, ONE
                    393:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    394: *     ..
                    395: *     .. Local Scalars ..
                    396:       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
                    397:       CHARACTER          NORM
                    398:       INTEGER            I, INFEQU, J, J1, J2
                    399:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
                    400:      $                   ROWCND, RPVGRW, SMLNUM
                    401: *     ..
                    402: *     .. External Functions ..
                    403:       LOGICAL            LSAME
                    404:       DOUBLE PRECISION   DLAMCH, DLANGB, DLANTB
                    405:       EXTERNAL           LSAME, DLAMCH, DLANGB, DLANTB
                    406: *     ..
                    407: *     .. External Subroutines ..
                    408:       EXTERNAL           DCOPY, DGBCON, DGBEQU, DGBRFS, DGBTRF, DGBTRS,
                    409:      $                   DLACPY, DLAQGB, XERBLA
                    410: *     ..
                    411: *     .. Intrinsic Functions ..
                    412:       INTRINSIC          ABS, MAX, MIN
                    413: *     ..
                    414: *     .. Executable Statements ..
                    415: *
                    416:       INFO = 0
                    417:       NOFACT = LSAME( FACT, 'N' )
                    418:       EQUIL = LSAME( FACT, 'E' )
                    419:       NOTRAN = LSAME( TRANS, 'N' )
                    420:       IF( NOFACT .OR. EQUIL ) THEN
                    421:          EQUED = 'N'
                    422:          ROWEQU = .FALSE.
                    423:          COLEQU = .FALSE.
                    424:       ELSE
                    425:          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    426:          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    427:          SMLNUM = DLAMCH( 'Safe minimum' )
                    428:          BIGNUM = ONE / SMLNUM
                    429:       END IF
                    430: *
                    431: *     Test the input parameters.
                    432: *
                    433:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
                    434:      $     THEN
                    435:          INFO = -1
                    436:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    437:      $         LSAME( TRANS, 'C' ) ) THEN
                    438:          INFO = -2
                    439:       ELSE IF( N.LT.0 ) THEN
                    440:          INFO = -3
                    441:       ELSE IF( KL.LT.0 ) THEN
                    442:          INFO = -4
                    443:       ELSE IF( KU.LT.0 ) THEN
                    444:          INFO = -5
                    445:       ELSE IF( NRHS.LT.0 ) THEN
                    446:          INFO = -6
                    447:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
                    448:          INFO = -8
                    449:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
                    450:          INFO = -10
                    451:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    452:      $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    453:          INFO = -12
                    454:       ELSE
                    455:          IF( ROWEQU ) THEN
                    456:             RCMIN = BIGNUM
                    457:             RCMAX = ZERO
                    458:             DO 10 J = 1, N
                    459:                RCMIN = MIN( RCMIN, R( J ) )
                    460:                RCMAX = MAX( RCMAX, R( J ) )
                    461:    10       CONTINUE
                    462:             IF( RCMIN.LE.ZERO ) THEN
                    463:                INFO = -13
                    464:             ELSE IF( N.GT.0 ) THEN
                    465:                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
                    466:             ELSE
                    467:                ROWCND = ONE
                    468:             END IF
                    469:          END IF
                    470:          IF( COLEQU .AND. INFO.EQ.0 ) THEN
                    471:             RCMIN = BIGNUM
                    472:             RCMAX = ZERO
                    473:             DO 20 J = 1, N
                    474:                RCMIN = MIN( RCMIN, C( J ) )
                    475:                RCMAX = MAX( RCMAX, C( J ) )
                    476:    20       CONTINUE
                    477:             IF( RCMIN.LE.ZERO ) THEN
                    478:                INFO = -14
                    479:             ELSE IF( N.GT.0 ) THEN
                    480:                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
                    481:             ELSE
                    482:                COLCND = ONE
                    483:             END IF
                    484:          END IF
                    485:          IF( INFO.EQ.0 ) THEN
                    486:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    487:                INFO = -16
                    488:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    489:                INFO = -18
                    490:             END IF
                    491:          END IF
                    492:       END IF
                    493: *
                    494:       IF( INFO.NE.0 ) THEN
                    495:          CALL XERBLA( 'DGBSVX', -INFO )
                    496:          RETURN
                    497:       END IF
                    498: *
                    499:       IF( EQUIL ) THEN
                    500: *
                    501: *        Compute row and column scalings to equilibrate the matrix A.
                    502: *
                    503:          CALL DGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
                    504:      $                AMAX, INFEQU )
                    505:          IF( INFEQU.EQ.0 ) THEN
                    506: *
                    507: *           Equilibrate the matrix.
                    508: *
                    509:             CALL DLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
                    510:      $                   AMAX, EQUED )
                    511:             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    512:             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    513:          END IF
                    514:       END IF
                    515: *
                    516: *     Scale the right hand side.
                    517: *
                    518:       IF( NOTRAN ) THEN
                    519:          IF( ROWEQU ) THEN
                    520:             DO 40 J = 1, NRHS
                    521:                DO 30 I = 1, N
                    522:                   B( I, J ) = R( I )*B( I, J )
                    523:    30          CONTINUE
                    524:    40       CONTINUE
                    525:          END IF
                    526:       ELSE IF( COLEQU ) THEN
                    527:          DO 60 J = 1, NRHS
                    528:             DO 50 I = 1, N
                    529:                B( I, J ) = C( I )*B( I, J )
                    530:    50       CONTINUE
                    531:    60    CONTINUE
                    532:       END IF
                    533: *
                    534:       IF( NOFACT .OR. EQUIL ) THEN
                    535: *
                    536: *        Compute the LU factorization of the band matrix A.
                    537: *
                    538:          DO 70 J = 1, N
                    539:             J1 = MAX( J-KU, 1 )
                    540:             J2 = MIN( J+KL, N )
                    541:             CALL DCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1,
                    542:      $                  AFB( KL+KU+1-J+J1, J ), 1 )
                    543:    70    CONTINUE
                    544: *
                    545:          CALL DGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
                    546: *
                    547: *        Return if INFO is non-zero.
                    548: *
                    549:          IF( INFO.GT.0 ) THEN
                    550: *
                    551: *           Compute the reciprocal pivot growth factor of the
                    552: *           leading rank-deficient INFO columns of A.
                    553: *
                    554:             ANORM = ZERO
                    555:             DO 90 J = 1, INFO
                    556:                DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
                    557:                   ANORM = MAX( ANORM, ABS( AB( I, J ) ) )
                    558:    80          CONTINUE
                    559:    90       CONTINUE
                    560:             RPVGRW = DLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ),
                    561:      $                       AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB,
                    562:      $                       WORK )
                    563:             IF( RPVGRW.EQ.ZERO ) THEN
                    564:                RPVGRW = ONE
                    565:             ELSE
                    566:                RPVGRW = ANORM / RPVGRW
                    567:             END IF
                    568:             WORK( 1 ) = RPVGRW
                    569:             RCOND = ZERO
                    570:             RETURN
                    571:          END IF
                    572:       END IF
                    573: *
                    574: *     Compute the norm of the matrix A and the
                    575: *     reciprocal pivot growth factor RPVGRW.
                    576: *
                    577:       IF( NOTRAN ) THEN
                    578:          NORM = '1'
                    579:       ELSE
                    580:          NORM = 'I'
                    581:       END IF
                    582:       ANORM = DLANGB( NORM, N, KL, KU, AB, LDAB, WORK )
                    583:       RPVGRW = DLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, WORK )
                    584:       IF( RPVGRW.EQ.ZERO ) THEN
                    585:          RPVGRW = ONE
                    586:       ELSE
                    587:          RPVGRW = DLANGB( 'M', N, KL, KU, AB, LDAB, WORK ) / RPVGRW
                    588:       END IF
                    589: *
                    590: *     Compute the reciprocal of the condition number of A.
                    591: *
                    592:       CALL DGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
                    593:      $             WORK, IWORK, INFO )
                    594: *
                    595: *     Compute the solution matrix X.
                    596: *
                    597:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    598:       CALL DGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
                    599:      $             INFO )
                    600: *
                    601: *     Use iterative refinement to improve the computed solution and
                    602: *     compute error bounds and backward error estimates for it.
                    603: *
                    604:       CALL DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV,
                    605:      $             B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
                    606: *
                    607: *     Transform the solution matrix X to a solution of the original
                    608: *     system.
                    609: *
                    610:       IF( NOTRAN ) THEN
                    611:          IF( COLEQU ) THEN
                    612:             DO 110 J = 1, NRHS
                    613:                DO 100 I = 1, N
                    614:                   X( I, J ) = C( I )*X( I, J )
                    615:   100          CONTINUE
                    616:   110       CONTINUE
                    617:             DO 120 J = 1, NRHS
                    618:                FERR( J ) = FERR( J ) / COLCND
                    619:   120       CONTINUE
                    620:          END IF
                    621:       ELSE IF( ROWEQU ) THEN
                    622:          DO 140 J = 1, NRHS
                    623:             DO 130 I = 1, N
                    624:                X( I, J ) = R( I )*X( I, J )
                    625:   130       CONTINUE
                    626:   140    CONTINUE
                    627:          DO 150 J = 1, NRHS
                    628:             FERR( J ) = FERR( J ) / ROWCND
                    629:   150    CONTINUE
                    630:       END IF
                    631: *
                    632: *     Set INFO = N+1 if the matrix is singular to working precision.
                    633: *
                    634:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    635:      $   INFO = N + 1
                    636: *
                    637:       WORK( 1 ) = RPVGRW
                    638:       RETURN
                    639: *
                    640: *     End of DGBSVX
                    641: *
                    642:       END

CVSweb interface <joel.bertrand@systella.fr>