Annotation of rpl/lapack/lapack/dgbsvx.f, revision 1.13

1.8       bertrand    1: *> \brief <b> DGBSVX computes the solution to system of linear equations A * X = B for GB matrices</b>
                      2: *
                      3: *  =========== DOCUMENTATION ===========
                      4: *
                      5: * Online html documentation available at 
                      6: *            http://www.netlib.org/lapack/explore-html/ 
                      7: *
                      8: *> \htmlonly
                      9: *> Download DGBSVX + dependencies 
                     10: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgbsvx.f"> 
                     11: *> [TGZ]</a> 
                     12: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgbsvx.f"> 
                     13: *> [ZIP]</a> 
                     14: *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgbsvx.f"> 
                     15: *> [TXT]</a>
                     16: *> \endhtmlonly 
                     17: *
                     18: *  Definition:
                     19: *  ===========
                     20: *
                     21: *       SUBROUTINE DGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
                     22: *                          LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
                     23: *                          RCOND, FERR, BERR, WORK, IWORK, INFO )
                     24: * 
                     25: *       .. Scalar Arguments ..
                     26: *       CHARACTER          EQUED, FACT, TRANS
                     27: *       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
                     28: *       DOUBLE PRECISION   RCOND
                     29: *       ..
                     30: *       .. Array Arguments ..
                     31: *       INTEGER            IPIV( * ), IWORK( * )
                     32: *       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                     33: *      $                   BERR( * ), C( * ), FERR( * ), R( * ),
                     34: *      $                   WORK( * ), X( LDX, * )
                     35: *       ..
                     36: *  
                     37: *
                     38: *> \par Purpose:
                     39: *  =============
                     40: *>
                     41: *> \verbatim
                     42: *>
                     43: *> DGBSVX uses the LU factorization to compute the solution to a real
                     44: *> system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
                     45: *> where A is a band matrix of order N with KL subdiagonals and KU
                     46: *> superdiagonals, and X and B are N-by-NRHS matrices.
                     47: *>
                     48: *> Error bounds on the solution and a condition estimate are also
                     49: *> provided.
                     50: *> \endverbatim
                     51: *
                     52: *> \par Description:
                     53: *  =================
                     54: *>
                     55: *> \verbatim
                     56: *>
                     57: *> The following steps are performed by this subroutine:
                     58: *>
                     59: *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
                     60: *>    the system:
                     61: *>       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
                     62: *>       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
                     63: *>       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
                     64: *>    Whether or not the system will be equilibrated depends on the
                     65: *>    scaling of the matrix A, but if equilibration is used, A is
                     66: *>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
                     67: *>    or diag(C)*B (if TRANS = 'T' or 'C').
                     68: *>
                     69: *> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
                     70: *>    matrix A (after equilibration if FACT = 'E') as
                     71: *>       A = L * U,
                     72: *>    where L is a product of permutation and unit lower triangular
                     73: *>    matrices with KL subdiagonals, and U is upper triangular with
                     74: *>    KL+KU superdiagonals.
                     75: *>
                     76: *> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
                     77: *>    returns with INFO = i. Otherwise, the factored form of A is used
                     78: *>    to estimate the condition number of the matrix A.  If the
                     79: *>    reciprocal of the condition number is less than machine precision,
                     80: *>    INFO = N+1 is returned as a warning, but the routine still goes on
                     81: *>    to solve for X and compute error bounds as described below.
                     82: *>
                     83: *> 4. The system of equations is solved for X using the factored form
                     84: *>    of A.
                     85: *>
                     86: *> 5. Iterative refinement is applied to improve the computed solution
                     87: *>    matrix and calculate error bounds and backward error estimates
                     88: *>    for it.
                     89: *>
                     90: *> 6. If equilibration was used, the matrix X is premultiplied by
                     91: *>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
                     92: *>    that it solves the original system before equilibration.
                     93: *> \endverbatim
                     94: *
                     95: *  Arguments:
                     96: *  ==========
                     97: *
                     98: *> \param[in] FACT
                     99: *> \verbatim
                    100: *>          FACT is CHARACTER*1
                    101: *>          Specifies whether or not the factored form of the matrix A is
                    102: *>          supplied on entry, and if not, whether the matrix A should be
                    103: *>          equilibrated before it is factored.
                    104: *>          = 'F':  On entry, AFB and IPIV contain the factored form of
                    105: *>                  A.  If EQUED is not 'N', the matrix A has been
                    106: *>                  equilibrated with scaling factors given by R and C.
                    107: *>                  AB, AFB, and IPIV are not modified.
                    108: *>          = 'N':  The matrix A will be copied to AFB and factored.
                    109: *>          = 'E':  The matrix A will be equilibrated if necessary, then
                    110: *>                  copied to AFB and factored.
                    111: *> \endverbatim
                    112: *>
                    113: *> \param[in] TRANS
                    114: *> \verbatim
                    115: *>          TRANS is CHARACTER*1
                    116: *>          Specifies the form of the system of equations.
                    117: *>          = 'N':  A * X = B     (No transpose)
                    118: *>          = 'T':  A**T * X = B  (Transpose)
                    119: *>          = 'C':  A**H * X = B  (Transpose)
                    120: *> \endverbatim
                    121: *>
                    122: *> \param[in] N
                    123: *> \verbatim
                    124: *>          N is INTEGER
                    125: *>          The number of linear equations, i.e., the order of the
                    126: *>          matrix A.  N >= 0.
                    127: *> \endverbatim
                    128: *>
                    129: *> \param[in] KL
                    130: *> \verbatim
                    131: *>          KL is INTEGER
                    132: *>          The number of subdiagonals within the band of A.  KL >= 0.
                    133: *> \endverbatim
                    134: *>
                    135: *> \param[in] KU
                    136: *> \verbatim
                    137: *>          KU is INTEGER
                    138: *>          The number of superdiagonals within the band of A.  KU >= 0.
                    139: *> \endverbatim
                    140: *>
                    141: *> \param[in] NRHS
                    142: *> \verbatim
                    143: *>          NRHS is INTEGER
                    144: *>          The number of right hand sides, i.e., the number of columns
                    145: *>          of the matrices B and X.  NRHS >= 0.
                    146: *> \endverbatim
                    147: *>
                    148: *> \param[in,out] AB
                    149: *> \verbatim
                    150: *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
                    151: *>          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
                    152: *>          The j-th column of A is stored in the j-th column of the
                    153: *>          array AB as follows:
                    154: *>          AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
                    155: *>
                    156: *>          If FACT = 'F' and EQUED is not 'N', then A must have been
                    157: *>          equilibrated by the scaling factors in R and/or C.  AB is not
                    158: *>          modified if FACT = 'F' or 'N', or if FACT = 'E' and
                    159: *>          EQUED = 'N' on exit.
                    160: *>
                    161: *>          On exit, if EQUED .ne. 'N', A is scaled as follows:
                    162: *>          EQUED = 'R':  A := diag(R) * A
                    163: *>          EQUED = 'C':  A := A * diag(C)
                    164: *>          EQUED = 'B':  A := diag(R) * A * diag(C).
                    165: *> \endverbatim
                    166: *>
                    167: *> \param[in] LDAB
                    168: *> \verbatim
                    169: *>          LDAB is INTEGER
                    170: *>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
                    171: *> \endverbatim
                    172: *>
                    173: *> \param[in,out] AFB
                    174: *> \verbatim
1.10      bertrand  175: *>          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
1.8       bertrand  176: *>          If FACT = 'F', then AFB is an input argument and on entry
                    177: *>          contains details of the LU factorization of the band matrix
                    178: *>          A, as computed by DGBTRF.  U is stored as an upper triangular
                    179: *>          band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
                    180: *>          and the multipliers used during the factorization are stored
                    181: *>          in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
                    182: *>          the factored form of the equilibrated matrix A.
                    183: *>
                    184: *>          If FACT = 'N', then AFB is an output argument and on exit
                    185: *>          returns details of the LU factorization of A.
                    186: *>
                    187: *>          If FACT = 'E', then AFB is an output argument and on exit
                    188: *>          returns details of the LU factorization of the equilibrated
                    189: *>          matrix A (see the description of AB for the form of the
                    190: *>          equilibrated matrix).
                    191: *> \endverbatim
                    192: *>
                    193: *> \param[in] LDAFB
                    194: *> \verbatim
                    195: *>          LDAFB is INTEGER
                    196: *>          The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
                    197: *> \endverbatim
                    198: *>
                    199: *> \param[in,out] IPIV
                    200: *> \verbatim
1.10      bertrand  201: *>          IPIV is INTEGER array, dimension (N)
1.8       bertrand  202: *>          If FACT = 'F', then IPIV is an input argument and on entry
                    203: *>          contains the pivot indices from the factorization A = L*U
                    204: *>          as computed by DGBTRF; row i of the matrix was interchanged
                    205: *>          with row IPIV(i).
                    206: *>
                    207: *>          If FACT = 'N', then IPIV is an output argument and on exit
                    208: *>          contains the pivot indices from the factorization A = L*U
                    209: *>          of the original matrix A.
                    210: *>
                    211: *>          If FACT = 'E', then IPIV is an output argument and on exit
                    212: *>          contains the pivot indices from the factorization A = L*U
                    213: *>          of the equilibrated matrix A.
                    214: *> \endverbatim
                    215: *>
                    216: *> \param[in,out] EQUED
                    217: *> \verbatim
1.10      bertrand  218: *>          EQUED is CHARACTER*1
1.8       bertrand  219: *>          Specifies the form of equilibration that was done.
                    220: *>          = 'N':  No equilibration (always true if FACT = 'N').
                    221: *>          = 'R':  Row equilibration, i.e., A has been premultiplied by
                    222: *>                  diag(R).
                    223: *>          = 'C':  Column equilibration, i.e., A has been postmultiplied
                    224: *>                  by diag(C).
                    225: *>          = 'B':  Both row and column equilibration, i.e., A has been
                    226: *>                  replaced by diag(R) * A * diag(C).
                    227: *>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
                    228: *>          output argument.
                    229: *> \endverbatim
                    230: *>
                    231: *> \param[in,out] R
                    232: *> \verbatim
1.10      bertrand  233: *>          R is DOUBLE PRECISION array, dimension (N)
1.8       bertrand  234: *>          The row scale factors for A.  If EQUED = 'R' or 'B', A is
                    235: *>          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
                    236: *>          is not accessed.  R is an input argument if FACT = 'F';
                    237: *>          otherwise, R is an output argument.  If FACT = 'F' and
                    238: *>          EQUED = 'R' or 'B', each element of R must be positive.
                    239: *> \endverbatim
                    240: *>
                    241: *> \param[in,out] C
                    242: *> \verbatim
1.10      bertrand  243: *>          C is DOUBLE PRECISION array, dimension (N)
1.8       bertrand  244: *>          The column scale factors for A.  If EQUED = 'C' or 'B', A is
                    245: *>          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
                    246: *>          is not accessed.  C is an input argument if FACT = 'F';
                    247: *>          otherwise, C is an output argument.  If FACT = 'F' and
                    248: *>          EQUED = 'C' or 'B', each element of C must be positive.
                    249: *> \endverbatim
                    250: *>
                    251: *> \param[in,out] B
                    252: *> \verbatim
                    253: *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
                    254: *>          On entry, the right hand side matrix B.
                    255: *>          On exit,
                    256: *>          if EQUED = 'N', B is not modified;
                    257: *>          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
                    258: *>          diag(R)*B;
                    259: *>          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
                    260: *>          overwritten by diag(C)*B.
                    261: *> \endverbatim
                    262: *>
                    263: *> \param[in] LDB
                    264: *> \verbatim
                    265: *>          LDB is INTEGER
                    266: *>          The leading dimension of the array B.  LDB >= max(1,N).
                    267: *> \endverbatim
                    268: *>
                    269: *> \param[out] X
                    270: *> \verbatim
                    271: *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
                    272: *>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
                    273: *>          to the original system of equations.  Note that A and B are
                    274: *>          modified on exit if EQUED .ne. 'N', and the solution to the
                    275: *>          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
                    276: *>          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
                    277: *>          and EQUED = 'R' or 'B'.
                    278: *> \endverbatim
                    279: *>
                    280: *> \param[in] LDX
                    281: *> \verbatim
                    282: *>          LDX is INTEGER
                    283: *>          The leading dimension of the array X.  LDX >= max(1,N).
                    284: *> \endverbatim
                    285: *>
                    286: *> \param[out] RCOND
                    287: *> \verbatim
                    288: *>          RCOND is DOUBLE PRECISION
                    289: *>          The estimate of the reciprocal condition number of the matrix
                    290: *>          A after equilibration (if done).  If RCOND is less than the
                    291: *>          machine precision (in particular, if RCOND = 0), the matrix
                    292: *>          is singular to working precision.  This condition is
                    293: *>          indicated by a return code of INFO > 0.
                    294: *> \endverbatim
                    295: *>
                    296: *> \param[out] FERR
                    297: *> \verbatim
                    298: *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
                    299: *>          The estimated forward error bound for each solution vector
                    300: *>          X(j) (the j-th column of the solution matrix X).
                    301: *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
                    302: *>          is an estimated upper bound for the magnitude of the largest
                    303: *>          element in (X(j) - XTRUE) divided by the magnitude of the
                    304: *>          largest element in X(j).  The estimate is as reliable as
                    305: *>          the estimate for RCOND, and is almost always a slight
                    306: *>          overestimate of the true error.
                    307: *> \endverbatim
                    308: *>
                    309: *> \param[out] BERR
                    310: *> \verbatim
                    311: *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
                    312: *>          The componentwise relative backward error of each solution
                    313: *>          vector X(j) (i.e., the smallest relative change in
                    314: *>          any element of A or B that makes X(j) an exact solution).
                    315: *> \endverbatim
                    316: *>
                    317: *> \param[out] WORK
                    318: *> \verbatim
                    319: *>          WORK is DOUBLE PRECISION array, dimension (3*N)
                    320: *>          On exit, WORK(1) contains the reciprocal pivot growth
                    321: *>          factor norm(A)/norm(U). The "max absolute element" norm is
                    322: *>          used. If WORK(1) is much less than 1, then the stability
                    323: *>          of the LU factorization of the (equilibrated) matrix A
                    324: *>          could be poor. This also means that the solution X, condition
                    325: *>          estimator RCOND, and forward error bound FERR could be
                    326: *>          unreliable. If factorization fails with 0<INFO<=N, then
                    327: *>          WORK(1) contains the reciprocal pivot growth factor for the
                    328: *>          leading INFO columns of A.
                    329: *> \endverbatim
                    330: *>
                    331: *> \param[out] IWORK
                    332: *> \verbatim
                    333: *>          IWORK is INTEGER array, dimension (N)
                    334: *> \endverbatim
                    335: *>
                    336: *> \param[out] INFO
                    337: *> \verbatim
                    338: *>          INFO is INTEGER
                    339: *>          = 0:  successful exit
                    340: *>          < 0:  if INFO = -i, the i-th argument had an illegal value
                    341: *>          > 0:  if INFO = i, and i is
                    342: *>                <= N:  U(i,i) is exactly zero.  The factorization
                    343: *>                       has been completed, but the factor U is exactly
                    344: *>                       singular, so the solution and error bounds
                    345: *>                       could not be computed. RCOND = 0 is returned.
                    346: *>                = N+1: U is nonsingular, but RCOND is less than machine
                    347: *>                       precision, meaning that the matrix is singular
                    348: *>                       to working precision.  Nevertheless, the
                    349: *>                       solution and error bounds are computed because
                    350: *>                       there are a number of situations where the
                    351: *>                       computed solution can be more accurate than the
                    352: *>                       value of RCOND would suggest.
                    353: *> \endverbatim
                    354: *
                    355: *  Authors:
                    356: *  ========
                    357: *
                    358: *> \author Univ. of Tennessee 
                    359: *> \author Univ. of California Berkeley 
                    360: *> \author Univ. of Colorado Denver 
                    361: *> \author NAG Ltd. 
                    362: *
1.10      bertrand  363: *> \date April 2012
1.8       bertrand  364: *
                    365: *> \ingroup doubleGBsolve
                    366: *
                    367: *  =====================================================================
1.1       bertrand  368:       SUBROUTINE DGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
                    369:      $                   LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
                    370:      $                   RCOND, FERR, BERR, WORK, IWORK, INFO )
                    371: *
1.10      bertrand  372: *  -- LAPACK driver routine (version 3.4.1) --
1.1       bertrand  373: *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
                    374: *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
1.10      bertrand  375: *     April 2012
1.1       bertrand  376: *
                    377: *     .. Scalar Arguments ..
                    378:       CHARACTER          EQUED, FACT, TRANS
                    379:       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
                    380:       DOUBLE PRECISION   RCOND
                    381: *     ..
                    382: *     .. Array Arguments ..
                    383:       INTEGER            IPIV( * ), IWORK( * )
                    384:       DOUBLE PRECISION   AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
                    385:      $                   BERR( * ), C( * ), FERR( * ), R( * ),
                    386:      $                   WORK( * ), X( LDX, * )
                    387: *     ..
                    388: *
                    389: *  =====================================================================
                    390: *
                    391: *     .. Parameters ..
                    392:       DOUBLE PRECISION   ZERO, ONE
                    393:       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
                    394: *     ..
                    395: *     .. Local Scalars ..
                    396:       LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
                    397:       CHARACTER          NORM
                    398:       INTEGER            I, INFEQU, J, J1, J2
                    399:       DOUBLE PRECISION   AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
                    400:      $                   ROWCND, RPVGRW, SMLNUM
                    401: *     ..
                    402: *     .. External Functions ..
                    403:       LOGICAL            LSAME
                    404:       DOUBLE PRECISION   DLAMCH, DLANGB, DLANTB
                    405:       EXTERNAL           LSAME, DLAMCH, DLANGB, DLANTB
                    406: *     ..
                    407: *     .. External Subroutines ..
                    408:       EXTERNAL           DCOPY, DGBCON, DGBEQU, DGBRFS, DGBTRF, DGBTRS,
                    409:      $                   DLACPY, DLAQGB, XERBLA
                    410: *     ..
                    411: *     .. Intrinsic Functions ..
                    412:       INTRINSIC          ABS, MAX, MIN
                    413: *     ..
                    414: *     .. Executable Statements ..
                    415: *
                    416:       INFO = 0
                    417:       NOFACT = LSAME( FACT, 'N' )
                    418:       EQUIL = LSAME( FACT, 'E' )
                    419:       NOTRAN = LSAME( TRANS, 'N' )
                    420:       IF( NOFACT .OR. EQUIL ) THEN
                    421:          EQUED = 'N'
                    422:          ROWEQU = .FALSE.
                    423:          COLEQU = .FALSE.
                    424:       ELSE
                    425:          ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    426:          COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    427:          SMLNUM = DLAMCH( 'Safe minimum' )
                    428:          BIGNUM = ONE / SMLNUM
                    429:       END IF
                    430: *
                    431: *     Test the input parameters.
                    432: *
                    433:       IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
                    434:      $     THEN
                    435:          INFO = -1
                    436:       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
                    437:      $         LSAME( TRANS, 'C' ) ) THEN
                    438:          INFO = -2
                    439:       ELSE IF( N.LT.0 ) THEN
                    440:          INFO = -3
                    441:       ELSE IF( KL.LT.0 ) THEN
                    442:          INFO = -4
                    443:       ELSE IF( KU.LT.0 ) THEN
                    444:          INFO = -5
                    445:       ELSE IF( NRHS.LT.0 ) THEN
                    446:          INFO = -6
                    447:       ELSE IF( LDAB.LT.KL+KU+1 ) THEN
                    448:          INFO = -8
                    449:       ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
                    450:          INFO = -10
                    451:       ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
                    452:      $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
                    453:          INFO = -12
                    454:       ELSE
                    455:          IF( ROWEQU ) THEN
                    456:             RCMIN = BIGNUM
                    457:             RCMAX = ZERO
                    458:             DO 10 J = 1, N
                    459:                RCMIN = MIN( RCMIN, R( J ) )
                    460:                RCMAX = MAX( RCMAX, R( J ) )
                    461:    10       CONTINUE
                    462:             IF( RCMIN.LE.ZERO ) THEN
                    463:                INFO = -13
                    464:             ELSE IF( N.GT.0 ) THEN
                    465:                ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
                    466:             ELSE
                    467:                ROWCND = ONE
                    468:             END IF
                    469:          END IF
                    470:          IF( COLEQU .AND. INFO.EQ.0 ) THEN
                    471:             RCMIN = BIGNUM
                    472:             RCMAX = ZERO
                    473:             DO 20 J = 1, N
                    474:                RCMIN = MIN( RCMIN, C( J ) )
                    475:                RCMAX = MAX( RCMAX, C( J ) )
                    476:    20       CONTINUE
                    477:             IF( RCMIN.LE.ZERO ) THEN
                    478:                INFO = -14
                    479:             ELSE IF( N.GT.0 ) THEN
                    480:                COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
                    481:             ELSE
                    482:                COLCND = ONE
                    483:             END IF
                    484:          END IF
                    485:          IF( INFO.EQ.0 ) THEN
                    486:             IF( LDB.LT.MAX( 1, N ) ) THEN
                    487:                INFO = -16
                    488:             ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
                    489:                INFO = -18
                    490:             END IF
                    491:          END IF
                    492:       END IF
                    493: *
                    494:       IF( INFO.NE.0 ) THEN
                    495:          CALL XERBLA( 'DGBSVX', -INFO )
                    496:          RETURN
                    497:       END IF
                    498: *
                    499:       IF( EQUIL ) THEN
                    500: *
                    501: *        Compute row and column scalings to equilibrate the matrix A.
                    502: *
                    503:          CALL DGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
                    504:      $                AMAX, INFEQU )
                    505:          IF( INFEQU.EQ.0 ) THEN
                    506: *
                    507: *           Equilibrate the matrix.
                    508: *
                    509:             CALL DLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
                    510:      $                   AMAX, EQUED )
                    511:             ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
                    512:             COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
                    513:          END IF
                    514:       END IF
                    515: *
                    516: *     Scale the right hand side.
                    517: *
                    518:       IF( NOTRAN ) THEN
                    519:          IF( ROWEQU ) THEN
                    520:             DO 40 J = 1, NRHS
                    521:                DO 30 I = 1, N
                    522:                   B( I, J ) = R( I )*B( I, J )
                    523:    30          CONTINUE
                    524:    40       CONTINUE
                    525:          END IF
                    526:       ELSE IF( COLEQU ) THEN
                    527:          DO 60 J = 1, NRHS
                    528:             DO 50 I = 1, N
                    529:                B( I, J ) = C( I )*B( I, J )
                    530:    50       CONTINUE
                    531:    60    CONTINUE
                    532:       END IF
                    533: *
                    534:       IF( NOFACT .OR. EQUIL ) THEN
                    535: *
                    536: *        Compute the LU factorization of the band matrix A.
                    537: *
                    538:          DO 70 J = 1, N
                    539:             J1 = MAX( J-KU, 1 )
                    540:             J2 = MIN( J+KL, N )
                    541:             CALL DCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1,
                    542:      $                  AFB( KL+KU+1-J+J1, J ), 1 )
                    543:    70    CONTINUE
                    544: *
                    545:          CALL DGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
                    546: *
                    547: *        Return if INFO is non-zero.
                    548: *
                    549:          IF( INFO.GT.0 ) THEN
                    550: *
                    551: *           Compute the reciprocal pivot growth factor of the
                    552: *           leading rank-deficient INFO columns of A.
                    553: *
                    554:             ANORM = ZERO
                    555:             DO 90 J = 1, INFO
                    556:                DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
                    557:                   ANORM = MAX( ANORM, ABS( AB( I, J ) ) )
                    558:    80          CONTINUE
                    559:    90       CONTINUE
                    560:             RPVGRW = DLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ),
                    561:      $                       AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB,
                    562:      $                       WORK )
                    563:             IF( RPVGRW.EQ.ZERO ) THEN
                    564:                RPVGRW = ONE
                    565:             ELSE
                    566:                RPVGRW = ANORM / RPVGRW
                    567:             END IF
                    568:             WORK( 1 ) = RPVGRW
                    569:             RCOND = ZERO
                    570:             RETURN
                    571:          END IF
                    572:       END IF
                    573: *
                    574: *     Compute the norm of the matrix A and the
                    575: *     reciprocal pivot growth factor RPVGRW.
                    576: *
                    577:       IF( NOTRAN ) THEN
                    578:          NORM = '1'
                    579:       ELSE
                    580:          NORM = 'I'
                    581:       END IF
                    582:       ANORM = DLANGB( NORM, N, KL, KU, AB, LDAB, WORK )
                    583:       RPVGRW = DLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, WORK )
                    584:       IF( RPVGRW.EQ.ZERO ) THEN
                    585:          RPVGRW = ONE
                    586:       ELSE
                    587:          RPVGRW = DLANGB( 'M', N, KL, KU, AB, LDAB, WORK ) / RPVGRW
                    588:       END IF
                    589: *
                    590: *     Compute the reciprocal of the condition number of A.
                    591: *
                    592:       CALL DGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
                    593:      $             WORK, IWORK, INFO )
                    594: *
                    595: *     Compute the solution matrix X.
                    596: *
                    597:       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
                    598:       CALL DGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
                    599:      $             INFO )
                    600: *
                    601: *     Use iterative refinement to improve the computed solution and
                    602: *     compute error bounds and backward error estimates for it.
                    603: *
                    604:       CALL DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV,
                    605:      $             B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
                    606: *
                    607: *     Transform the solution matrix X to a solution of the original
                    608: *     system.
                    609: *
                    610:       IF( NOTRAN ) THEN
                    611:          IF( COLEQU ) THEN
                    612:             DO 110 J = 1, NRHS
                    613:                DO 100 I = 1, N
                    614:                   X( I, J ) = C( I )*X( I, J )
                    615:   100          CONTINUE
                    616:   110       CONTINUE
                    617:             DO 120 J = 1, NRHS
                    618:                FERR( J ) = FERR( J ) / COLCND
                    619:   120       CONTINUE
                    620:          END IF
                    621:       ELSE IF( ROWEQU ) THEN
                    622:          DO 140 J = 1, NRHS
                    623:             DO 130 I = 1, N
                    624:                X( I, J ) = R( I )*X( I, J )
                    625:   130       CONTINUE
                    626:   140    CONTINUE
                    627:          DO 150 J = 1, NRHS
                    628:             FERR( J ) = FERR( J ) / ROWCND
                    629:   150    CONTINUE
                    630:       END IF
                    631: *
                    632: *     Set INFO = N+1 if the matrix is singular to working precision.
                    633: *
                    634:       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
                    635:      $   INFO = N + 1
                    636: *
                    637:       WORK( 1 ) = RPVGRW
                    638:       RETURN
                    639: *
                    640: *     End of DGBSVX
                    641: *
                    642:       END

CVSweb interface <joel.bertrand@systella.fr>